Uniform boundedness principles for Sobolev maps into manifolds
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 417-449.

Given a connected Riemannian manifold N, an m-dimensional Riemannian manifold M which is either compact or the Euclidean space, p[1,+) and s(0,1], we establish, for the problems of surjectivity of the trace, of weak-bounded approximation, of lifting and of superposition, that qualitative properties satisfied by every map in a nonlinear Sobolev space Ws,p(M,N) imply corresponding uniform quantitative bounds. This result is a nonlinear counterpart of the classical Banach–Steinhaus uniform boundedness principle in linear Banach spaces.

DOI : 10.1016/j.anihpc.2018.06.002
Classification : 46T20, 46E35, 46T10, 58D15
Mots-clés : Nonlinear uniform boundedness principle, Opening of maps, Counterexamples
@article{AIHPC_2019__36_2_417_0,
     author = {Monteil, Antonin and Van Schaftingen, Jean},
     title = {Uniform boundedness principles for {Sobolev} maps into manifolds},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {417--449},
     publisher = {Elsevier},
     volume = {36},
     number = {2},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.06.002},
     mrnumber = {3913192},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.06.002/}
}
TY  - JOUR
AU  - Monteil, Antonin
AU  - Van Schaftingen, Jean
TI  - Uniform boundedness principles for Sobolev maps into manifolds
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 417
EP  - 449
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.06.002/
DO  - 10.1016/j.anihpc.2018.06.002
LA  - en
ID  - AIHPC_2019__36_2_417_0
ER  - 
%0 Journal Article
%A Monteil, Antonin
%A Van Schaftingen, Jean
%T Uniform boundedness principles for Sobolev maps into manifolds
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 417-449
%V 36
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.06.002/
%R 10.1016/j.anihpc.2018.06.002
%G en
%F AIHPC_2019__36_2_417_0
Monteil, Antonin; Van Schaftingen, Jean. Uniform boundedness principles for Sobolev maps into manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 417-449. doi : 10.1016/j.anihpc.2018.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.06.002/

[1] Adams, R.; Fournier, J. Sobolev Spaces, Pure and Applied Mathematics, vol. 140, Elsevier/Academic Press, Amsterdam, 2003 | MR | Zbl

[2] Allaoui, S.E. Remarques sur le calcul symbolique dans certains espaces de Besov à valeurs vectorielles, Ann. Math. Blaise Pascal, Volume 16 (2009) no. 2, pp. 399–429 | DOI | Numdam | MR | Zbl

[3] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems, vol. 254, Clarendon Press Oxford, Oxford, 2000 | MR | Zbl

[4] Appell, J.; Zabrejko, P.P. Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, vol. 95, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[5] Ball, J.M.; Zarnescu, A. Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., Volume 202 (2011) no. 2, pp. 493–535 | MR | Zbl

[6] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., Volume 3 (1922) no. 1, pp. 133–181 | JFM | MR

[7] Bethuel, F. A characterization of maps in H1(B3,S2) which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 4, pp. 269–286 | DOI | Numdam | MR | Zbl

[8] Bethuel, F. The approximation problem for Sobolev maps between two manifolds, Acta Math., Volume 167 (1991) no. 3–4, pp. 153–206 | MR | Zbl

[9] Bethuel, F. A new obstruction to the extension problem for Sobolev maps between manifolds, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 155–183 | DOI | MR | Zbl

[10] Bethuel, F. A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces | arXiv | DOI

[11] Bethuel, F.; Brezis, H.; Coron, J.-M. Variational Methods, Progr. Nonlinear Differential Equations Appl., Volume vol. 4, Birkhäuser, Boston, MA (1990), pp. 37–52 (Paris, 1988) | MR | Zbl

[12] Bethuel, F.; Chiron, D. Some questions related to the lifting problem in Sobolev spaces, Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 125–152 | DOI | MR | Zbl

[13] Bethuel, F.; Demengel, F. Extensions for Sobolev mappings between manifolds, Calc. Var. Partial Differ. Equ., Volume 3 (1995) no. 4, pp. 475–491 | DOI | MR | Zbl

[14] Bourdaud, G. Fonctions qui opèrent sur les espaces de Besov et de Triebel, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993) no. 4, pp. 413–422 | DOI | Numdam | MR | Zbl

[15] Bourdaud, G.; Sickel, W. Composition operators on function spaces with fractional order of smoothness, Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, vol. B26, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 93–132 | MR | Zbl

[16] Bourgain, J.; Brezis, H. On the equation divY=f and application to control of phases, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 393–426 | DOI | MR | Zbl

[17] Bourgain, J.; Brezis, H.; Mironescu, P. Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37–86 | DOI | MR | Zbl

[18] Bourgain, J.; Brezis, H.; Mironescu, P. On the structure of the Sobolev space H1/2 with values into the circle, C. R. Acad. Sci., Sér. 1 Math., Volume 331 (2000) no. 2, pp. 119–124 | MR | Zbl

[19] Bourgain, J.; Brezis, H.; Mironescu, P. H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études Sci. (2004) no. 99, pp. 1–115 | Numdam | MR | Zbl

[20] Bourgain, J.; Brezis, H.; Mironescu, P. Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005) no. 4, pp. 529–551 | DOI | MR | Zbl

[21] Bousquet, P.; Ponce, A.C.; Van Schaftingen, J. Density of smooth maps for fractional Sobolev spaces Ws,p into simply connected manifolds when s1 , Confluentes Math., Volume 5 (2013) no. 2, pp. 3–22 | DOI | Numdam | MR

[22] Bousquet, P.; Ponce, A.C.; Van Schaftingen, J. Strong density for higher order Sobolev spaces into compact manifolds, J. Eur. Math. Soc., Volume 17 (2015) no. 4, pp. 763–817 | DOI | MR

[23] Bousquet, P.; Ponce, A.C.; Van Schaftingen, J. Density of bounded maps in Sobolev spaces into complete manifolds, Ann. Mat. Pura Appl. (4), Volume 196 (2017) no. 6, pp. 2261–2301 | DOI | MR

[24] Bousquet, P.; Ponce, A.C.; Van Schaftingen, J. Weak approximation by bounded Sobolev maps with values into complete manifolds, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 3, pp. 264–271 | DOI | MR

[25] Brezis, H. Relaxed energies for harmonic maps and liquid crystals, Ric. Mat., Volume 40 (1991) no. Suppl., pp. 163–173 | MR | Zbl

[26] Brezis, H. Functional Analysis and Related Topics, Lecture Notes in Math., Volume vol. 1540, Springer, Berlin (1993), pp. 11–24 (Kyoto, 1991) | DOI | MR | Zbl

[27] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | MR | Zbl

[28] Brezis, H.; Coron, J.-M.; Lieb, E.H. Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 649–705 | DOI | MR | Zbl

[29] Brezis, H.; Li, Y. Topology and Sobolev spaces, J. Funct. Anal., Volume 183 (2001) no. 2, pp. 321–369 | DOI | MR | Zbl

[30] Brezis, H.; Mironescu, P. Density in Ws,p(Ω;N) , J. Funct. Anal., Volume 269 (2015) no. 7, pp. 2045–2109 | MR

[31] Convent, A.; Van Schaftingen, J. Intrinsic co-local weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 16 (2016) no. 1, pp. 97–128 | MR

[32] Convent, A.; Van Schaftingen, J. Higher order weak differentiability and Sobolev spaces between manifolds, Adv. Calc. Var. (2018) (in press) | DOI | MR

[33] DiBenedetto, E. Real Analysis, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer, New York, 2016 | MR

[34] Dyda, B. A fractional order Hardy inequality, Ill. J. Math., Volume 48 (2004) no. 2, pp. 575–588 | MR | Zbl

[35] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Textbooks in Mathematics, CRC Press, 2015 | MR | Zbl

[36] Ferry, S.; Weinberger, S. Quantitative algebraic topology and Lipschitz homotopy, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 48, pp. 19246–19250 | DOI | MR | Zbl

[37] Gromov, M. Prospects in Mathematics, Amer. Math. Soc., Providence, RI (1999), pp. 45–49 (Princeton, NJ, 1996) | MR | Zbl

[38] Hahn, H. Über folgen linearer Operationen, Monatshefte Math. Phys., Volume 32 (1922), pp. 3–88 | JFM | MR

[39] Hajłasz, P. Approximation of Sobolev mappings, Nonlinear Anal., Volume 22 (1994) no. 12, pp. 1579–1591 | DOI | MR | Zbl

[40] Hang, F.; Lin, F. Topology of Sobolev mappings. II, Acta Math., Volume 191 (2003) no. 1, pp. 55–107 | DOI | MR | Zbl

[41] Hang, F.; Lin, F. Topology of Sobolev mappings. III, Commun. Pure Appl. Math., Volume 56 (2003) no. 10, pp. 1383–1415 | DOI | MR | Zbl

[42] Hardt, R.; Lin, F.-H. Mappings minimizing the Lp norm of the gradient, Commun. Pure Appl. Math., Volume 40 (1987) no. 5, pp. 555–588 | DOI | MR | Zbl

[43] Igari, S. Sur les fonctions qui opèrent sur l'espace Aˆ2 , Ann. Inst. Fourier (Grenoble), Volume 15 (1965) no. 2, pp. 525–536 | DOI | Numdam | MR | Zbl

[44] Krasnosel'skii, M.A. Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964 | MR | Zbl

[45] Marcus, M.; Mizel, V.J. Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Am. Math. Soc., Volume 251 (1979), pp. 187–218 | DOI | MR | Zbl

[46] Mazowiecka, K.; Strzelecki, P. The Lavrentiev gap phenomenon for harmonic maps into spheres holds on a dense set of zero degree boundary data, Adv. Calc. Var., Volume 10 (2017) no. 3, pp. 303–314 | DOI | MR

[47] Merlet, B. Two remarks on liftings of maps with values into S1 , C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 7, pp. 467–472 | DOI | MR | Zbl

[48] Mironescu, P. Sobolev maps on manifolds: degree, approximation, lifting, Contemp. Math., Volume 446 (2007), pp. 413–436 | DOI | MR | Zbl

[49] Mironescu, P. Lifting default for S1-valued maps, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 19–20, pp. 1039–1044 | MR | Zbl

[50] P. Mironescu, Lifting of S1-valued maps in sums of Sobolev spaces, 2008.

[51] Mironescu, P. Decomposition of S1-valued maps in Sobolev spaces, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 13–14, pp. 743–746 | MR | Zbl

[52] Mironescu, P. Superposition with subunitary powers in Sobolev spaces, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 6, pp. 483–487 | DOI | MR | Zbl

[53] Mironescu, P.; Molnar, I. Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 5, pp. 965–1013 | DOI | Numdam | MR | Zbl

[54] Mucci, D. Maps into projective spaces: liquid crystal and conformal energies, Discrete Contin. Dyn. Syst., Ser. B, Volume 17 (2012) no. 2, pp. 597–635 | MR | Zbl

[55] Nash, J. The imbedding problem for Riemannian manifolds, Ann. Math. (2), Volume 63 (1956), pp. 20–63 | DOI | MR | Zbl

[56] Nguyen, H.-M. Inequalities related to liftings and applications, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 17–18, pp. 957–962 | MR | Zbl

[57] Pakzad, M.R. Weak density of smooth maps in W1,1(M,N) for non-abelian π1(N) , Ann. Glob. Anal. Geom., Volume 23 (2003) no. 1, pp. 1–12 | DOI | MR | Zbl

[58] Pakzad, M.R.; Rivière, T. Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 223–257 | DOI | MR | Zbl

[59] Petrache, M.; Van Schaftingen, J. Controlled singular extension of critical trace Sobolev maps from spheres to compact manifolds, Int. Math. Res. Not., Volume 2017 (2017) no. 12, pp. 3467–3683 | MR | Zbl

[60] Rivière, T. Dense subsets of H1/2(S2,S1) , Ann. Glob. Anal. Geom., Volume 18 (2000) no. 5, pp. 517–528 | DOI | MR | Zbl

[61] Schoen, R.; Uhlenbeck, K. Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 253–268 | DOI | MR | Zbl

[62] Sokal, A.D. A really simple elementary proof of the uniform boundedness theorem, Am. Math. Mon., Volume 118 (2011) no. 5, pp. 450–452 | MR | Zbl

[63] Triebel, H. Theory of Function Spaces, Monographs in Mathematics, vol. 78, Birkhäuser, Basel, 1983 | MR | Zbl

[64] Willem, M. Functional Analysis, Cornerstones, Birkhäuser, New York, 2013 (Fundamentals and applications) | MR | Zbl

Cité par Sources :