@article{AIHPC_1990__7_4_269_0, author = {Bethuel, F.}, title = {A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {269--286}, publisher = {Gauthier-Villars}, volume = {7}, number = {4}, year = {1990}, mrnumber = {1067776}, zbl = {0708.58004}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1990__7_4_269_0/} }
TY - JOUR AU - Bethuel, F. TI - A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 269 EP - 286 VL - 7 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1990__7_4_269_0/ LA - en ID - AIHPC_1990__7_4_269_0 ER -
%0 Journal Article %A Bethuel, F. %T A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps %J Annales de l'I.H.P. Analyse non linéaire %D 1990 %P 269-286 %V 7 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1990__7_4_269_0/ %G en %F AIHPC_1990__7_4_269_0
Bethuel, F. A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 269-286. http://www.numdam.org/item/AIHPC_1990__7_4_269_0/
[B] private communication.
,[BCL] Harmonic maps with defects.Comm. Math. Phys., t. 107, 1986, p. 649-705. | MR | Zbl
, and ,[Bel] The approximation problem for Sobolev maps between two manifolds, to appear. | MR | Zbl
,[BZ] Density of smooth functions between two manifolds in Sobolev spaces. J. Func. Anal., t. 80, 1988, p. 60-75. | MR | Zbl
and ,[CG] Minimizing p-harmonic maps into spheres, preprint. | MR
and ,[H] Approximations of Sobolev maps between an open set and an euclidean sphere, boundary data, and singularities, preprint. | MR
,[SU] A regularity theory for harmonic maps. J. Diff. Geom., t. 17, 1982, p. 307-335. | MR | Zbl
and ,[W] Infima of energy functionals in homotopy classes. J. Diff. Geom, t. 23, 1986, p. 127-142. | MR | Zbl
,