Density of smooth maps for fractional Sobolev spaces W s,p into simply connected manifolds when s1
Confluentes Mathematici, Tome 5 (2013) no. 2, pp. 3-24.

Given a compact manifold N n ν and real numbers s1 and 1p<, we prove that the class C (Q ¯ m ;N n ) of smooth maps on the cube with values into N n is strongly dense in the fractional Sobolev space W s,p (Q m ;N n ) when N n is sp simply connected. For sp integer, we prove weak sequential density of C (Q ¯ m ;N n ) when N n is sp-1 simply connected. The proofs are based on the existence of a retraction of ν onto N n except for a small subset of N n and on a pointwise estimate of fractional derivatives of composition of maps in W s,p W 1,sp .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.5
Classification : 58D15, 46E35, 46T20
Mots-clés : Strong density; weak sequential density; Sobolev maps; fractional Sobolev spaces; simply connectedness
Bousquet, Pierre 1 ; Ponce, Augusto C. 2 ; Van Schaftingen, Jean 2

1 Aix-Marseille Université, Laboratoire d’analyse, topologie, probabilités UMR7353, CMI 39, Rue Frédéric Joliot Curie, 13453 Marseille Cedex 13, France
2 Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium
@article{CML_2013__5_2_3_0,
     author = {Bousquet, Pierre and Ponce, Augusto C. and Van Schaftingen, Jean},
     title = {Density of smooth maps for fractional {Sobolev} spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$},
     journal = {Confluentes Mathematici},
     pages = {3--24},
     publisher = {Institut Camille Jordan},
     volume = {5},
     number = {2},
     year = {2013},
     doi = {10.5802/cml.5},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/cml.5/}
}
TY  - JOUR
AU  - Bousquet, Pierre
AU  - Ponce, Augusto C.
AU  - Van Schaftingen, Jean
TI  - Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$
JO  - Confluentes Mathematici
PY  - 2013
SP  - 3
EP  - 24
VL  - 5
IS  - 2
PB  - Institut Camille Jordan
UR  - http://www.numdam.org/articles/10.5802/cml.5/
DO  - 10.5802/cml.5
LA  - en
ID  - CML_2013__5_2_3_0
ER  - 
%0 Journal Article
%A Bousquet, Pierre
%A Ponce, Augusto C.
%A Van Schaftingen, Jean
%T Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$
%J Confluentes Mathematici
%D 2013
%P 3-24
%V 5
%N 2
%I Institut Camille Jordan
%U http://www.numdam.org/articles/10.5802/cml.5/
%R 10.5802/cml.5
%G en
%F CML_2013__5_2_3_0
Bousquet, Pierre; Ponce, Augusto C.; Van Schaftingen, Jean. Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into $\ell $ simply connected manifolds when $s \ge 1$. Confluentes Mathematici, Tome 5 (2013) no. 2, pp. 3-24. doi : 10.5802/cml.5. http://www.numdam.org/articles/10.5802/cml.5/

[1] Adams, Robert A. Sobolev spaces, Academic Press, New York-London (Pure and Applied Mathematics, Vol. 65)

[2] Bethuel, Fabrice A characterization of maps in H 1 (B 3 ,S 2 ) which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 7, pp. 269-286

[3] Bethuel, Fabrice Approximations in trace spaces defined between manifolds, Nonlinear Anal., Volume 24 no. 1, pp. 121-130 | DOI

[4] Bethuel, Fabrice The approximation problem for Sobolev maps between two manifolds, Acta Math., Volume 167 no. 3-4, pp. 153-206 | DOI

[5] Brezis, Haïm; Mironescu, Petru (in preparation)

[6] Brezis, Haïm; Mironescu, Petru Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 no. 4, pp. 387-404 | DOI

[7] Brezis, Haïm; Nirenberg, Louis Degree theory and BMO, Part I : compact manifolds without boundaries, Selecta Math., pp. 197-263

[8] Bousquet, Pierre; Ponce, Augusto C.; Van Schaftingen, Jean Strong density for higher order Sobolev spaces into compact manifolds (submitted paper)

[9] Bethuel, Fabrice; Zheng, Xiao Min Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 no. 1, pp. 60-75 | DOI

[10] Escobedo, Miguel Some remarks on the density of regular mappings in Sobolev classes of S M -valued functions, Rev. Mat. Univ. Complut. Madrid, Volume 1 no. 1-3, pp. 127-144

[11] Federer, Herbert; Fleming, Wendell H. Normal and integral currents, Ann. of Math. (2), Volume 72, pp. 458-520

[12] Gagliardo, Emilio Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova, Volume 27, pp. 284-305

[13] Gagliardo, Emilio Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., Volume 8, pp. 24-51

[14] Gastel, Andreas; Nerf, Andreas J. Density of smooth maps in W k,p (M,N) for a close to critical domain dimension, Ann. Global Anal. Geom., Volume 39 no. 2, pp. 107-129

[15] Hajłasz, Piotr Approximation of Sobolev mappings, Nonlinear Anal., Volume 22 no. 12, pp. 1579-1591 | DOI

[16] Hang, Fengbo Density problems for W 1,1 (M,N), Comm. Pure Appl. Math., Volume 55 no. 7, pp. 937-947 | DOI

[17] Hedberg, Lars Inge On certain convolution inequalities, Proc. Amer. Math. Soc., Volume 36, pp. 505-510

[18] Hardt, Robert; Kinderlehrer, David; Lin, Fang-Hua Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 5 no. 4, pp. 297-322

[19] Hang, Fengbo; Lin, Fanghua Topology of Sobolev mappings. II, Acta Math., Volume 191 no. 1, pp. 55-107

[20] Hang, Fengbo; Lin, Fanghua Topology of Sobolev mappings. III, Comm. Pure Appl. Math., Volume 56 no. 10, pp. 1383-1415 | DOI

[21] Mazʼya, Vladimir Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, 342, Springer, xxviii+866 pages | DOI

[22] Mironescu, Petru Sobolev maps on manifolds: degree, approximation, lifting, Perspectives in nonlinear partial differential equations (Berestycki, Henri; Bertsch, Michiel; Browder, Felix E.; Nirenberg, Louis; Peletier, Lambertus A.; Véron, Laurent, eds.) (Contemp. Math.), Volume 446, Amer. Math. Soc., pp. 413-436 (In honor of Haïm Brezis) | DOI

[23] Mazʼya, Vladimir; Shaposhnikova, Tatyana An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, J. Evol. Equ., Volume 2 no. 1, pp. 113-125 | DOI

[24] Mucci, Domenico Strong density results in trace spaces of maps between manifolds, Manuscripta Math., Volume 128 no. 4, pp. 421-441 | DOI

[25] Nirenberg, Louis On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), Volume 13, pp. 115-162

[26] Oru, Frédérique Rôle des oscillations dans quelques problèmes d’analyse non linéaire (Thèse de doctorat)

[27] Pakzad, Mohammad Reza Weak density of smooth maps in W 1,1 (M,N) for non-abelian π 1 (N), Ann. Global Anal. Geom., Volume 23 no. 1, pp. 1-12 | DOI

[28] Pakzad, Mohammad Reza; Rivière, Tristan Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal., Volume 13 no. 1, pp. 223-257 | DOI

[29] Rivière, Tristan Dense subsets of H 1/2 (S 2 ,S 1 ), Ann. Global Anal. Geom., Volume 18 no. 5, pp. 517-528 | DOI

[30] Runst, Thomas; Sickel, Winfried Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter & Co., x+547 pages | DOI

[31] Stein, Elias M. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press

[32] Schoen, Richard; Uhlenbeck, Karen Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom., Volume 18 no. 2, pp. 253-268

[33] White, Brian Infima of energy functionals in homotopy classes of mappings, J. Differential Geom., Volume 23 no. 2, pp. 127-142

Cité par Sources :