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Abstract

Given a connected Riemannian manifold N , an m-dimensional Riemannian manifold M which is either compact or the 
Euclidean space, p ∈ [1, +∞) and s ∈ (0, 1], we establish, for the problems of surjectivity of the trace, of weak-bounded approxi-
mation, of lifting and of superposition, that qualitative properties satisfied by every map in a nonlinear Sobolev space Ws,p(M, N )

imply corresponding uniform quantitative bounds. This result is a nonlinear counterpart of the classical Banach–Steinhaus uniform 
boundedness principle in linear Banach spaces.
© 2018 Elsevier Masson SAS. All rights reserved.
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1. Introduction

When s ∈ (0, 1) and p ∈ [1, +∞), the Sobolev space Ws,p(M, N ) of maps between the Riemannian manifolds 
M and N can be defined as

Ws,p(M,N ) = {
u : M →N is measurable and Es,p(u,M) < +∞}

,

where Es,p is the Gagliardo energy for fractional Sobolev maps defined for a measurable map u :M →N as

Es,p(u,M) =
ˆ

M

ˆ

M

dN
(
u(x),u(y)

)p

dM(x, y)m+sp
dx dy, (1.1)
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with dN and dM being the geodesic distances induced by the Riemannian metrics of the manifolds N and M and 
m = dimM. When the manifold N is embedded into a Euclidean space Rν by a bi-Lipschitz embedding and N is 
identified to this embedding’s image, we have Ws,p(M, N ) = {u ∈ Ws,p(M, Rν) : u ∈ N almost everywhere in M}
and the corresponding energies are comparable.

When s = 1 we can assume by the Nash embedding theorem [55] that the manifold N is isometrically embedded 
into Rν , and we can define

W 1,p(M,N ) = {
u ∈ W 1,p(M,Rν) : u(x) ∈N for almost every x ∈ M

}
and

E1,p(u,M) =
ˆ

M

|Du|p.

The space, the energy and the topology on this space are independent of the embedding and can be defined intrinsi-
cally [31].

1.1. Extension of traces

We first consider relationships between a qualitative and quantitative properties for the problem of surjectivity of the 
trace. In the setting of linear Sobolev spaces, given s ∈ (0, 1), p ∈ (1, +∞) and a manifold M which is either compact 
or the Euclidean space, the classical trace theory states that the restriction of functions in C∞

c (M ×[0, +∞), R) has a 
linear continuous extension to the trace operator tr : Ws+1/p,p(M × (0, +∞), R) → Ws,p(M, R) and that the latter 
trace operator is surjective [1, Theorem 7.39], [33, Chapter 10], [63, Theorem 2.7.2]. By the proof of the surjectivity or 
by a straightforward application of Banach’s open mapping theorem (see for example [27, Theorem 2.6]), which can be 
deduced from the Banach–Steinhaus uniform boundedness principle, every function u ∈ Ws,p(M, R) can be written 
as u = trU , with a function U ∈ Ws+1/p,p(M × (0, +∞), R) whose norm is controlled by the norm of the function u. 
When dealing with nonlinear Sobolev spaces Ws,p(M, N ) into a compact Riemannian manifold N , the trace operator 
remains a well-defined continuous operator. The question of its surjectivity is more delicate: if s = 1 − 1

p
, sp ≤ m

and if π1(N ) � · · · � π�p	−1(N ) � {0} – that is for every j ∈ N such that j ≤ p − 1, every continuous map f from 
the j -dimensional sphere into N has a continuous extension from the (j + 1)-dimensional ball to N –, then the trace 
operator is surjective [42, Theorem 6.2]. This topological condition is almost necessary: if the trace is surjective, then 
when p < 2 one has π1(N ) � {0} whereas when p ≥ 2, π1(N ) is finite and π2(N ) � · · · � π�p	−1(N ) � {0} [9] (see 
also [13,42]).

In order to study quantitatively the problem, we introduce the extension energy, defined for every r ∈ (0, 1] and 
q ∈ [1, +∞) such that rq > 1, for every manifold M and every measurable map u :M →N by

Eext
r,q (u,M) = inf

{
Er,q(U,M×R+) : U ∈ Wr,q(M×R+,N ) and trU = u

}
∈ [0,+∞].

(The condition rq > 1 guarantees that the trace is well-defined.) In particular, the surjectivity of the trace operator can 
be reformulated by stating that if Es,p(u, M) < +∞ then Eext

s+1/p,p(u, M) < +∞.
Our first nonlinear uniform boundedness principle states that the surjectivity of the trace implies a linear uniform 

bound:

Theorem 1.1. Let s, r ∈ (0, 1], p, q ∈ [1, +∞), m ∈ N∗, M be a Euclidean space or a compact Riemannian manifold 
of dimension m and N be a connected Riemannian manifold which is compact if either sp > m or s = p = m = 1. If 
sp = rq − 1 and if every map in Ws,p(M, N ) is the trace of some map in Wr,q(M × (0, +∞), N ), then there exists 
a constant C > 0 such that for each measurable function u :Bm →N with either sp < m or Es,p(u, Bm) ≤ 1/C, then

Eext
r,q (u,Bm) ≤ C Es,p(u,Bm),

where Bm stands for the unit ball in Rm.

When s = 1 − 1
p

, r = 1, p = q ≥ 2, the manifold N is compact and π1(N ) � · · · � π�p	−1(N ) � {0}, the estimate 
of Theorem 1.1 was already known as a byproduct of the proof of the surjectivity of the trace by Hardt and Lin 
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[42, proof of Theorem 6.2]; some flavour of Theorem 1.1 is present in Bethuel’s counterexample [9]. Theorem 1.1
shows that these linear bounds are an essential feature for this class of problems.

In the case where the trace operator is not surjective and the manifold N is compact, since W 1,q−1(M, N ) ⊂
W 1−1/q,q(M, N ), one can still wonder whether any map in this smaller space is the trace of a map in W 1,q(M ×
(0, +∞), N ). Theorem 1.1 shows that this would still imply a weaker uniform estimate.

The smallness restriction on the energy when sp ≥ m is related in the proof to scaling properties of Sobolev 
energies and ensures that moving a map to smaller scales decreases the Sobolev energy. Moreover, extension results 
for sp ≥ m are proved by patching a nearest point retraction of an extension together with a smooth extension of a 
smooth map [13, Theorems 1 and 2] for which there does not seem to be an immediate linear bound; when sp > m a 
compactness argument leads to a nonlinear estimate of the norm of the extension by the norm of the trace which has 
no reason to be linear [59, Theorem 4]. When s = 1 − 1/p and N is a compact Riemannian manifold such that either 
π1(N ) is infinite or πj (N ) �� {0} for some j ≤ p − 1, there exists a sequence (un)n∈N in W 1−1/p,p(Bm, N ) such that 
[9, (1.36)]

lim inf
n→∞

Eext
1,p(un,B

m)

Ep/(p−1)
1−1/p,p(un,Bm)

> 0 and lim
n→∞E1−1/p,p(un,B

m) = +∞, (1.2)

ruling thus out the extension of the estimate of Theorem 1.1 when sp ≥ m for large Sobolev energies.
In the limit case s → 1 and p → +∞, the problem of quantitative bounds has some analogy with the construction of 

controlled Lipschitz homotopies to constant maps [37], whose answer depends on the finiteness of the first homotopy 
groups of the target manifold N [36].

1.2. Weak-bounded approximation

Smooth functions are known to be dense in the Sobolev space Ws,p(M, R) with respect to the strong topology 
induced by the norm. The strong approximation problem asks whether any Sobolev map in Ws,p(M, N ) can be 
approximated in the strong topology by smooth maps in C∞(M, N ). When sp ≥ m, and N is compact, the answer 
is positive and related to the fact that maps in Ws,p(M, N ) are continuous when sp > m and have vanishing mean 
oscillation (VMO) when sp = m [61, §4]. When sp < m, the answer is delicate and depends on the homotopy type of 
the pair (M, N ) [8,30,40]. In the particular case where the domain M is a ball, a necessary and sufficient condition for 
strong density is that π�sp	 � {0}, that is, every continuous map f ∈ C(S�sp	, N ) is the restriction of some continuous 
map F ∈ C(B�sp+1	, N ).

When strong density of smooth maps does not hold, one can still wonder whether a map u ∈ Ws,p(M, N ) has a 
weak-bounded approximation, that is, whether there exists a sequence (ui)i∈N in C∞(M, N ) that converges almost 
everywhere to u and for which the sequence of Sobolev energies (Es,p(ui))i∈N remains bounded. When p > 1 and 
the manifold N is compact, the weak-bounded convergence is equivalent to the weak convergence induced by the 
embedding of N in the Euclidean space Rν . In the nonintegral case sp /∈ N, and if s ∈ N, a map u ∈ Ws,p(M, N )

has a weak-bounded approximation if and only if it has a strong approximation [8, Theorem 3 bis]. The remaining 
interesting case (when s ∈ N) seems thus to be the integral case sp ∈N.

Hang and Lin have given a necessary condition on the homotopy type of the pair (M, N ) so that each map in 
W 1,p(M, N ) has a weak-bounded approximation [40, Theorem 7.1]. Every map in W 1,p(M, N ) is known to have 
a weak-bounded approximation when N = Sp [7], [8, Theorem 6], [28] or π1(N ) � · · · � πp−1(N ) � {0} [39] (see 
also [21, Theorem 1.7], [41, Proposition 8.3]), when p = 2 [58] and p = 1 [57,58]. On the other hand, when m ≥ 4
there exists a map u ∈ W 1,3(M, S2) that does not have any weak-bounded approximation [10]. In the fractional case, 
it is known that any map in W 1/2,2(S2, S1) has a weak-bounded approximation [60].

Following Bethuel, Brezis and Coron [11,25,26], we define the relaxed energy for every manifold M and every 
measurable map u :M → N by

E rel
s,p(u,M) := inf

{
lim inf
n→∞ Es,p(un,M) : for each n ∈N, un ∈ C∞(M,N )

and un → u almost everywhere as n → ∞
}
.

A map u ∈ Ws,p(M, N ) has a weak-bounded approximation in Ws,p(M, N ) if and only if E rel
s,p(u, M) < +∞.
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Theorem 1.2. Let s, r ∈ (0, 1], p, q ∈ [1, +∞), m ∈ N∗, M be a Euclidean space or a compact Riemannian manifold 
of dimension m and let N be a connected Riemannian manifold. If sp = rq < m and if every map u ∈ Ws,p(M, N )

has a weak-bounded approximation in Wr,q(M, N ), then there exists a constant C > 0 such that for each measurable 
function u : Bm → N , one has

E rel
r,q(u,Bm) ≤ C Es,p(u,Bm).

Theorem 1.2 extends trivially to the case where sp ≥ m and the target manifold N is compact, since every map 
has then a strong approximation and thus for every u ∈ Ws,p(Bm, N ), E rel

s,p(u, Bm) = Es,p(u, Bm). In the situation 
where sp = m and the manifold N is not compact, either N is sufficiently nondegenerate at infinity to satisfy the 
trimming property that implies that every map has then a strong approximation [23] and therefore the relaxed energy 
coincides with the Sobolev energy, or the trimming property fails and there exists a map that has no weak-bounded 
approximation [24].

Theorem 1.2 also implies that if every map in W 1,p(M, N ) has a weak-bounded approximation in the larger space 
Ws,p/s(M, N ), with s ∈ (0, 1), then a similar uniform boundedness principle has to hold.

When s = r = 1 and p = q , Theorem 1.2 is due to Hang and Lin [41, Theorem 9.6]; Theorem 1.2 is also present 
in the final step of the construction of the counterexample to the weak-bounded approximation in W 1,3(M, S2) [10].

1.3. Lifting

Another situation in which Sobolev maps enjoy a uniform bound principles is the lifting problem. Given a 
manifold F and a Lipschitz map π : F → N , it can be checked immediately that if ϕ ∈ Ws,p(M, F), then 
π ◦ ϕ ∈ Ws,p(M, N ). The lifting problem asks whether every map u ∈ Ws,p(M, N ) can be lifted to a map 
ϕ ∈ Ws,p(M, F) such that π ◦ ϕ = u on M, that is, there exists ϕ such that the diagram

M u

ϕ

N

F
π

commutes. In other words, we wonder whether the composition operator ϕ ∈ Ws,p(M, F) → π ◦ ϕ ∈ Ws,p(M, N )

is surjective.
This lifting problem has been the object of a detailed study when N is the unit circle S1 and π : R → S

1 is its 
universal covering, defined by π(t) = (cos t, sin t) for every t ∈ R. In this case, when the manifold M is simply-
connected, every map in Ws,p(M, S1) admits a lifting if and only if either s = 1 and p ≥ 2, or s < 1 and sp < 1, 
or s < 1 and sp ≥ m [17]. Similar results hold for the universal covering π : F → N when the fundamental group 
π1(N ) is infinite [12]; when π1(N ) is a nontrivial finite group, it is not yet known whether the condition sp /∈ [1, m)

is necessary when s < 1. These results apply to the case of the universal covering of the projective space RP m by the 
sphere Sm when m ≥ 2 [5,54].

Another lifting problem that has been studied is the lifting problem for fibrations. For the Hopf fibration π :
S

3 → S
2, in contrast with the universal covering, some gauge invariance property shows that the existence of one 

lifting implies the presence of a continuum of liftings and a lifting is known to exist when s = 1 and 1 ≤ p < 2 ≤ m

or p ≥ m ≥ 3 or p > m = 2 [12], and known to be impossible for some map if 2 ≤ p < m [10,12].
To quantify the lifting of a Sobolev map we define the lifting energy of a map u :M →N by

E lift
s,p(u,M) := inf

{
Es,p(ϕ,M) : ϕ : M →F is measurable and π ◦ ϕ = u

}
.

When s = 1 and p ≥ 1, the lifting W 1,p(M, S1) preserves the Sobolev energy; when s < 1 and sp < 1, the exist-
ing bounds on liftings of maps in Ws,p(M, S1) are linear [17] (see also [53]) and suggest the following uniform 
boundedness principle:

Theorem 1.3. Let s, r ∈ (0, 1], p, q ∈ [1, +∞), m ∈ N∗, M be a Euclidean space or a compact Riemannian manifold 
of dimension m, N and F be Riemannian manifolds with N connected and, if either sp > m or s = p = m = 1, 
compact, and π : F → N . If rq = sp and if for every map in Ws,p(M, N ) there exists ϕ ∈ Wr,q(M, F) such that 
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π ◦ ϕ = u, then there exists a constant C > 0 such that for each measurable function u : Bm → N , if either sp < m

or Es,p(u, Bm) ≤ 1/C,

E lift
r,q (u,Bm) ≤ C Es,p(u,Bm).

The restriction sp < m for avoiding the smallness condition comes again from the scaling properties of Sobolev 
spaces. For the lifting problem of maps in Ws,p(M, S1), it is known that when s ∈ (0, 1) and p ∈ (1, +∞) with 
sp > 1, there exists a sequence of maps (un)n∈N in Ws,p(M, S1) such that [47, Theorem 1.1], [53, Proposition 5.7]

lim inf
n→∞

E lift
s,p(un)

Es,p(un)1/s
> 0 and lim

n→∞Es,p(un) = +∞. (1.3)

The exponent 1/s in the denominator rules out the possibility of a linear upper bound when s < 1.

1.4. Superposition operator

The superposition problem asks whether for a given function f : N → F , one has f ◦ u ∈ Wr,q(M, F) for each 
u ∈ Ws,p(M, N ). In analogy to the previous theorems, we have a uniform bound principle:

Theorem 1.4. Let s, r ∈ (0, 1], p, q ∈ [1, +∞), m ∈ N∗, let M be an m-dimensional Riemannian manifold which is 
either Rm or compact, N and F be Riemannian manifolds and assume that N is connected and, if either sp > m or 
s = p = m = 1, compact. If rq = sp < m and if a measurable map f :N → F is such that for every u ∈ Ws,p(M, N )

one has f ◦ u ∈ Wr,q(M, F), then there exists a constant C > 0 such that for every measurable function u :Bm → N , 
if either sp < m or Es,p(u) ≤ 1/C, then

Er,q(f ◦ u,Bm) ≤ C Es,p(u,Bm).

Theorem 1.4 implies that, with the same assumptions and for each x, y ∈ N , dF (f (x), f (y)) ≤ C′dN (x, y)p/q

when sp < m or dN (x, y) remains small (see Theorem 4.5). In particular, when p > q , the map f is constant. When 
p = q , the map f is Lipschitz; this necessary condition is well-known for Sobolev functions [2,14,15,43,45].

1.5. General uniform boundedness principle

The similarity of the statements of Theorems 1.1 to 1.4, is not a coincidence, but comes from the common properties 
of the extension, relaxed, lifting and composition energies, which are nonnegative functionals that do not increase 
under the restriction of functions.

Definition 1.5 (Energy). The map G is an energy over Rm with state space N whenever G maps every open set 
A ⊂ R

m and every measurable map u : A → N to some G (u, A) ∈ [0, +∞] such that if A ⊆ B are open sets and if 
the map u : B →N is measurable, then one has G (u|A, A) ≤ G (u, B).

For the sake of simplicity, when the map u : B → N is measurable and A ⊂ B ⊂ R
m are open, we write G (u, A)

rather than G (u|A, A).

Theorem 1.6 (Nonlinear uniform boundedness principle). Let m ∈ N∗, s ∈ (0, 1], p ∈ [1, +∞), N be a connected 
Riemannian manifold which, if either sp > m or s = p = m = 1, is compact, and let G be an energy over Rm with 
state space N . Assume that for every measurable map u :Rm →N

(i) (superadditivity) if the sets A, B ⊂R
m are open and if Ā ∩ B̄ = ∅, then

G (u,A ∪ B) ≥ G (u,A) + G (u,B),
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(ii) (scaling) for all λ > 0, h ∈ R
m and any open set A ⊂R

m,

G (u,h + λA) = λm−spG (u(h + λ·),A).

If for every measurable function u : Bm → N , Es,p(u, Bm) < +∞ implies G (u, Bm) < +∞ and Es,p(u, Bm) = 0
implies G (u, Bm) = 0, then there exists a constant C ∈ [0, +∞) such that for every measurable map u : Bm → N , if 
either sp < m or Es,p(u, Bm) ≤ 1/C,

G (u,Bm) ≤ C Es,p(u,Bm).

Compared to the statements of the classical uniform boundedness principle in Banach spaces, the nonlinear uniform 
boundedness principle of Theorem 1.6 replaces the linearity assumption with some superadditivity and some scaling 
assumption. When dealing with functions spaces, the scaling in the linear target has been replaced by a scaling in the 
domain.

Equivalently, Theorem 1.6 is a general tool to construct a counterexample out of the failure of a linear estimate. 
When sp ≤ m, these counterexamples form in fact a dense set (Theorem 3.3). Similar density of counterexamples have 
been obtained recently for the Lavrentiev phenomenon for harmonic maps [46]. When sp ≤ m and the energy G is 
lower semi-continuous, Theorem 1.6 and its consequences Theorems 1.1 to 1.4 still hold under the weaker assumption 
that the set {u ∈ Ws,p(Bm, N ) : G(u, Bm) < +∞} has at least one interior point in Ws,p(Bm, N ) (see Theorem 3.3
below).

If the energy G is lower semi-continuous – which is indeed the case in all the examples considered in the present 
work – then either a linear energy bound holds or the set of maps in Ws,p(Bm, N ) of infinite energy is a dense 
countable intersection of open sets, and thus this set is comeagre in the sense of Baire whereas the set of maps whose 
energy G is finite is meagre.

Following the strategy of Hang and Lin [41] (see also [9,10]), Theorem 1.6 will be proved by assuming by con-
tradiction the existence for each n ∈ N of a Sobolev map un ∈ Ws,p(Bm, N ) such that G (un, Bm) ≥ 2nEs,p(un, Bm)

and then reaching a contradiction by constructing a map u ∈ Ws,p(Bm, N ) such that G (u, Bm) = +∞ in two main 
constructions:

Opening: The sequence (un)n∈N is transformed by an opening of maps (in the sense of Brezis and Li [29]) and some 
gluing of maps in a sequence (ũn)n∈N of maps that all take a fixed value near the boundary (see Steps 1–3 in 
the proof of Theorem 3.1, Section 3).

Patching: We patch together rescaled translations of the elements of the sequence (ũn)n∈N in such a way that they 
fit together in the unit ball, the total Sobolev energy remains bounded (by a kind of sub-additivity property: 
see Lemma 2.3) but, by superadditivity, the energy G is infinite (see Step 4 in the proof of Theorem 3.1, 
Section 3).

A substantial contribution in the present work is the possibility to handle the fractional case 0 < s < 1.
The global strategy of the proof of Theorem 1.6 is also somehow reminiscent of the original proofs of Hahn and 

Banach of the uniform boundedness principle, where worse and worse elements are summed up by the gliding hump 
technique to obtain a contradiction [6,38] (see also [62]).

When 0 < s < 1, the proof only uses the fact that N is a Lipschitz-connected metric space, that is a metric space 
of which any pair of points is connected by a Lipschitz-continuous path.

The strategy of proof also covers the case s = 0, corresponding to superposition operators in Lp spaces (see 
Section 5) and the case s > 1, for which the resulting theorem involves an estimate by the Sobolev on a larger ball and 
a lower-order term (see Section 6).

1.6. Structure of the article

Section 2 is devoted to the two main tools we need: opening lemma and weak subadditivity of Sobolev energies. 
We use them in Section 3 to prove our general uniform bound principle and we give several applications in Sec-
tion 4 including Theorems 1.1 to 1.4. We then investigate the generalization of our method to the limiting case s = 0
(Section 5) and to higher order Sobolev spaces (Section 6).
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.

2. Toolbox

2.1. Opening of Sobolev maps

The aim of the opening construction, introduced by Brezis and Li [29], is to perform a singular composition of a 
Sobolev map u ∈ Ws,p(M, N ) with a smooth function: given a smooth function ϕ, we want to control the composite 
map u ◦ ϕ in Sobolev energy. For a fixed change of variable ϕ which is not a diffeomorphism, in general u ◦ ϕ

has infinite energy. It turns out however that it has finite energy if we take ϕ out of a suitable family of changes of 
variable.

Since the image under ϕ of sets of positive Lebesgue measure can be negligible, the singular composition does not 
preserve equivalence classes of maps equal almost everywhere. In order to avoid this problem, we will not put our 
maps in equivalence classes and we will consider measurable maps defined everywhere in their domain.

Lemma 2.1 (Opening of maps). Let m ∈N∗, s ∈ (0, 1], p ∈ [1, +∞), λ > 1 and η ∈ (0, λ). There is a constant C > 0
such that for every ρ > 0, every measurable map u : Bm

λρ → N and every Lipschitz-continuous map ϕ : Bm
(1+η)ρ →

B
m
(λ−η)ρ , there exists a point a ∈ B

m
ηρ such that

Es,p

(
u ◦ (ϕ(· − a) + a),Bm

ρ

) ≤ C Lip(ϕ)spEs,p(u,Bm
λρ),

where for every r ≥ 0, Bm
r := {x ∈ R

m : |x| ≤ r}.

In the statement the dependence of the point a on the map u is essential; modifying u merely on a Lebesgue null 
set could change the choice of this point a.

The assumptions on the map ϕ ensure that if a ∈ B
m
ηρ and x ∈ B

m
ρ , then ϕ(x − a) + a ∈ B

m
λρ and thus the left-hand 

side of the inequality is well defined.

Proof of Lemma 2.1. We define for each point a ∈ B
m
ηρ the map ϕa = (ϕ(· − a) + a) : Bm

ρ → B
m
λρ . We will prove an 

averaged estimate 

B
m
ηρ/2

Es,p(u ◦ ϕa,B
m
ρ )da ≤ C Lip(ϕ)spEs,p(u,Bm

λρ). (2.1)

In the case s = 1, we follow [22, Lemma 2.3]: by the chain rule for Sobolev functions, we have |D(u ◦ ϕa)| ≤
Lip(ϕ) |Du| ◦ ϕa in Bm

ρ and so by definition of the map ϕa ,
ˆ

Bm
ηρ

E1,p(u ◦ ϕa,B
m
ρ )da =

ˆ

Bm
ηρ

ˆ

Bm
ρ

|D(u ◦ ϕa)(x)|p dx da

≤ Lip(ϕ)p
ˆ

Bm
ηρ

(ˆ
Bm

ρ

|Du(a + ϕ(x − a))|p dx

)
da

By a change of variable y = x − a and by interchanging the order of integration, we deduce that
ˆ

Bm
ηρ

E1,p(u ◦ ϕa,B
m
ρ )da ≤ Lip(ϕ)p

ˆ

Bm
ηρ

( ˆ

B
m
(1+η)ρ

|Du(a + ϕ(y))|p dy

)
da = Lip(ϕ)p

ˆ

B
m
(1+η)ρ

E1,p

(
u,Bm

ηρ(ϕ(y))
)

dy

We finally have, by monotonicity of the Sobolev energy,ˆ

Bm
ηρ

E1,p(u ◦ ϕa,B
m
ρ )da ≤ Lip(ϕ)p

ˆ

B
m
(1+η)ρ

E1,p

(
u,Bm

λρ

)
dy = Lm

(
B

m
(1+η)ρ

)
Lip(ϕ)p E1,p

(
u,Bm

λρ

)
.

The conclusion follows with C = 2m(1 + 1 )m.

η
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When 0 < s < 1, we define for x, y ∈ B
m
ρ and a ∈ B

m
ηρ/2 the set

B
m
a,x,y := B |ϕa(x)−ϕa(y)|

β

(ϕa(x) + ϕa(y)

2

)
⊂ R

m, with β := 4λ

η
− 2.

For such points x, y, a, we observe that |ϕa(x) ± ϕa(y)| ≤ ρ(2λ − η). In particular,

|ϕa(x) + ϕa(y)|
2

+ |ϕa(x) − ϕa(y)|
β

≤ ρ(2λ − η)
(1

2
+ 1

β

)
= λρ,

and therefore Bm
a,x,y ⊆ B

m
λρ . By the triangle inequality and by convexity of the function t ∈ R �→ |t |p , we have for 

every x, y ∈ Bm
ρ , a ∈ B

m
ηρ/2 and z ∈ Bm

a,x,y ,

dN
(
u ◦ ϕa(x),u ◦ ϕa(y)

)p ≤ 2p−1(dN (
u ◦ ϕa(x),u(z)

)p + dN
(
u(z),u ◦ ϕa(y)

)p)
.

By averaging over z ∈ B
m
a,x,y , we obtain

Es,p(u ◦ ϕa,B
m
ρ ) =

ˆ

Bm
ρ

ˆ

Bm
ρ

dN
(
u(ϕa(x)), u(ϕa(y))

)p

|x − y|m+sp
dx dy

≤ 2p

ˆ

Bm
ρ

ˆ

Bm
ρ

 

Bm
a,x,y

dN
(
u(ϕa(x)), u(z)

)p

|x − y|m+sp
dzdx dy

= C1

ˆ

Bm
ρ

ˆ

Bm
ρ

ˆ

Bm
a,x,y

dN
(
u(ϕa(x)), u(z)

)p

|ϕa(x) − ϕa(y)|m|x − y|m+sp
dzdx dy.

We next observe that if z ∈ B
m
a,x,y

|ϕa(x) − z| ≤
∣∣∣ϕa(x) − ϕa(y)

2

∣∣∣ +
∣∣∣ϕa(x) + ϕa(y)

2
− z

∣∣∣ ≤
(1

2
+ 1

β

)
|ϕa(x) − ϕa(y)| = λ

2λ − η
|ϕa(x) − ϕa(y)|,

and therefore

Es,p(u ◦ ϕa,B
m
ρ ) ≤ C2

ˆ

Bm
ρ

ˆ

Bm
ρ

ˆ

Bm
a,x,y

dN
(
u(ϕa(x)), u(z)

)p

|ϕa(x) − z|m|x − y|m+sp
dzdx dy.

By Fubini’s theorem, this can be rewritten as

Es,p(u ◦ ϕa,B
m
ρ ) ≤ C2

ˆ

B
m
λρ

ˆ

Bm
ρ

ˆ

Ya,x,z

dN
(
u(ϕa(x)), u(z)

)p

|ϕa(x) − z|m|x − y|m+sp
dy dx dz, (2.2)

where Ya,x,y ⊂ R
m is the set of points y for which z ∈ B

m
a,x,y :

Ya,x,z = {
y ∈ B

m
ρ : β|ϕa(x) + ϕa(y) − 2z| ≤ 2|ϕa(x) − ϕa(y)|}.

Since |ϕa(x) + ϕa(y) − 2z| ≥ 2|ϕa(x) − z| − |ϕa(x) − ϕa(y)|, we have

Ya,x,z ⊆ {
y ∈ B

m
ρ : |ϕa(x) − z| ≤ C3|ϕa(x) − ϕa(y)|}

⊆ {
y ∈ R

m : |ϕa(x) − z| ≤ C3 Lip(ϕ)|x − y|}.
We compute

ˆ

Ya,x,z

dy

|x − y|m+sp
≤

ˆ

Rm\B |ϕa(x)−z|
C Lip(ϕ)

(x)

dy

|x − y|m+sp
= C4

Lip(ϕ)sp

|ϕa(x) − z|sp . (2.3)
3
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By combining (2.2) and (2.3), integrating over a ∈ B
m
ηρ/2 and by the changes of variable y = x − a ∈ B

m
(1+ η

2 )ρ
and 

w = a + ϕ(y) ∈ B
m
(λ− η

2 )ρ
, we are led to the estimates

ˆ

B
m
ηρ/2

Es,p(u ◦ ϕa,B
m
ρ )da ≤ C5Lip(ϕ)sp

ˆ

B
m
ηρ/2

ˆ

B
m
λρ

ˆ

Bm
ρ

dN
(
u(ϕa(x)), u(z)

)p

|ϕa(x) − z|m+sp
dx dz da

≤ C5Lip(ϕ)sp
ˆ

B
m
ηρ/2

ˆ

B
m
λρ

ˆ

B
m

(1+ η
2 )ρ

dN
(
u(a + ϕ(y)), u(z)

)p

|a + ϕ(y) − z|m+sp
dy dz da

≤ C5Lip(ϕ)sp
ˆ

B
m

(1+ η
2 )ρ

ˆ

B
m

(λ− η
2 )ρ

ˆ

B
m
λρ

dN
(
u(w),u(z)

)p

|w − z|m+sp
dz dw dy

≤ C5Lip(ϕ)spLm(Bm
(1+ η

2 )ρ
)Es,p(u,Bm

λρ).

The conclusion follows with C = C5(1 + 2
η
)m. �

2.2. Gluing interior and exterior estimates

The next lemma will allow us to combine constructions performed on different parts of the domain. Whereas when 
s = 1 it is sufficient to have traces matching on the boundary, the nonlocality of the fractional case s ∈ (0, 1) invites 
us to consider a gluing with a buffer zone Bm

ρ \ B̄m
ηρ in the energies.

Lemma 2.2 (Gluing along a buffer zone). Let m ∈ N∗, s ∈ (0, 1], p ∈ [1, ∞). There exists a constant C > 0 such 
that for every η ∈ (0, 1), every open set A ⊂ R

m, every measurable function u : A → N and every ρ > 0 such that 
B

m
ρ \ B̄m

ηρ ⊆ A,

Es,p(u,A) ≤
(

1 + C

(1 − η)sp+1

)
Es,p(u,A ∩B

m
ρ ) +

(
1 + Cηm

1 − η

)
Es,p(u,A \ B̄m

ηρ).

The constant C in the statement of Lemma 2.2 only depends on the dimension m, on the regularity s ∈ (0, 1] and 
on the integrability p ∈ [1, +∞). It does not depend on the set A nor on the map u nor on the radius ρ nor on η.

We will apply Lemma 2.2 in the case where A is the entire Euclidean space Rm and a ball Bm
R ⊂R

m with ρ < R.

Proof of Lemma 2.2. When s = 1, we have Es,p(u, A) ≤ Es,p(u, A ∩ B
m
ρ ) + Es,p(u, A \ B̄

m
ηρ) and the conclusion 

follows with C = 1.
For 0 < s < 1, we have by additivity of the double integral defining the fractional Sobolev energy Es,p,

Es,p(u,A) ≤ Es,p(u,A ∩B
m
ρ ) + Es,p(u,A \ B̄m

ηρ) + 2
ˆ

A\Bm
ρ

ˆ

A∩B̄m
ηρ

dN
(
u(x),u(y)

)p

|x − y|m+sp
dx dy; (2.4)

it will thus be sufficient to estimate the last integral on the right-hand side. We notice that for each x ∈ A ∩ B̄
m
ηρ , 

y ∈ A \Bm
ρ and z ∈ B

m
ρ \ B̄m

ηρ ⊂ A, we have, by convexity of the function t ∈ R �→ |t |p ,

dN (u(x),u(y))p ≤ 2p−1(dN (
u(x),u(z)

)p + dN
(
u(z),u(y)

)p)
. (2.5)

By averaging the inequality (2.5) over z ∈ B
m
ρ \ B̄m

ηρ we estimate the integral in the right-hand side of (2.4) as

ˆ

A\Bm
ρ

ˆ

A∩B̄m

dN
(
u(x),u(y)

)p

|x − y|m+sp
dx dy
ηρ
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≤ 2p−1
(  

Bm
ρ \B̄m

ηρ

ˆ

A\Bm
ρ

ˆ

A∩B̄m
ηρ

dN
(
u(x),u(z)

)p

|x − y|m+sp
dx dy dz

+
 

Bm
ρ \B̄m

ηρ

ˆ

A\Bm
ρ

ˆ

A∩B̄m
ηρ

dN
(
u(z),u(y)

)p

|x − y|m+sp
dx dy dz

)
. (2.6)

For the first integral in the right-hand side of (2.6), since for each x ∈ A ∩ B̄
m
ηρ and y ∈ A \ B

m
ρ , one has |x − y| ≥

(1 − η)ρ, we first have by integration over y
ˆ

Bm
ρ \B̄m

ηρ

ˆ

A\Bm
ρ

ˆ

A∩B̄m
ηρ

dN
(
u(x),u(z)

)p

|x − y|m+sp
dx dy dz ≤ C1

(1 − η)spρsp

ˆ

Bm
ρ \B̄m

ηρ

ˆ

A∩B̄m
ηρ

dN
(
u(x),u(z)

)p dx dz.

Moreover, by dividing by the measure of the set Bm
ρ \ B̄m

ηρ and noting that for each x ∈ A ∩ B̄
m
ηρ and z ∈ B

m
ρ \ B̄m

ηρ , one 
has |x − z| ≤ 2ρ, we conclude that

 

Bm
ρ \B̄m

ηρ

ˆ

A\Bm
ρ

ˆ

A∩B̄m
ηρ

dN
(
u(x),u(z)

)p

|x − y|m+sp
dx dy dz ≤ C2

(1 − η)sp(1 − ηm)

ˆ

Bm
ρ \B̄m

ηρ

ˆ

A∩B̄m
ηρ

dN
(
u(x),u(z)

)p

|x − z|m+sp
dx dz

≤ C2

(1 − η)sp+1 Es,p(u,A ∩B
m
ρ ).

(2.7)

We consider now the second integral in the right-hand side of (2.6). We note that if x ∈ A ∩ B̄
m
ηρ and y ∈ A \ Bm

ρ , 
then |x − y| ≥ |y| − ηρ ≥ 0, and thus

ˆ

Bm
ρ \B̄m

ηρ

ˆ

A\Bm
ρ

ˆ

A∩B̄m
ηρ

dN
(
u(z),u(y)

)p

|x − y|m+sp
dx dy dz ≤ C3η

mρm

ˆ

Bm
ρ \B̄m

ηρ

ˆ

A\Bm
ρ

dN
(
u(z),u(y)

)p

(|y| − ηρ)m+sp
dy dz.

Next, if y ∈ A \Bm
ρ and z ∈ B

m
ρ \ B̄m

ηρ , we have

|y − z| ≤ dist(y,Bm
ηρ) + dist(z,Bm

ηρ) ≤ 2 dist(y,Bm
ηρ) = 2(|y| − ηρ)

and therefore
 

Bm
ρ \B̄m

ηρ

ˆ

A\Bm
ρ

ˆ

A∩B̄m
ηρ

dN
(
u(z),u(y)

)p

|x − y|m+sp
dx dy dz ≤ C4η

m

1 − ηm

ˆ

Bm
ρ \B̄m

ηρ

ˆ

A\Bm
ρ

dN
(
u(z),u(y)

)p

|z − y|m+sp
dy dz

≤ C4η
m

1 − η
E s,p

(
u,A \ B̄m

ηρ

)
.

(2.8)

The conclusion follows then from (2.4), (2.6), (2.7) and (2.8) with C = 2 max{C2, C4}. �
2.3. Patching countably many Sobolev maps

We want to estimate the energy of a map obtained by patching countable many maps different from a common 
constant value on disjoint sets Ai . If we apply the gluing technique from above (Lemma 2.2) countably many times 
(which essentially means, for each i, estimating the total energy of u by the energy on Ai plus the energy out of Ai ), 
since the constants appearing in the statement are larger than 1 when s ∈ (0, 1), the constant coming from the iterative 
process will be unbounded and will thus give no estimate in the limit. In order to deal with this situation, we derive a 
specific bound for the patching of a countable family of maps.

Lemma 2.3 (Countable patching). Let m ∈ N∗, s ∈ (0, 1], p ∈ [1, +∞), M and N be Riemannian manifolds with 
dim(M) = m, I be a finite or countably infinite set, and for each i ∈ I , let ui : M → N be a measurable map. If 
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there exist b ∈ N and a collection (Ai)i∈I of open subsets of M such that if x ∈ M \ Ai with i ∈ I , ui(x) = b and if 
i, j ∈ I with i �= j , Āi ∩ Āj = ∅, then, if u :M →N is defined by

u(x) =
{

ui(x) if x ∈ Ai,

b otherwise,

we have

Es,p(u,M) ≤ C
∑
i∈I

Es,p(ui,M)

with C = 1 if s = 1 and C = 2p if s ∈ (0, 1).

Proof. First, we consider the case where s = 1 and the set I is finite. For each i ∈ I , if E1,p(ui, M) < +∞, then the 
function u is weakly differentiable on the set M \ ⋃

j∈I\{i} Āj , which is open since I is finite. Therefore the function 
u is weakly differentiable on M, Du = Dui almost everywhere in Ai for all i ∈ I and Du = 0 almost everywhere 
in M \ ⋃

i∈I Ai since u = b almost everywhere on this set (see [35, Theorem 4.4, iv] for instance). In particular, by 
additivity of the integral, we have

E1,p(u,M) ≤
∑
i∈I

E1,p(ui,M).

If the set I is countably infinite, we assume that I = N and we define for each n ∈ N the function un : 	 → N by 
setting for each x ∈ 	,

un(x) =
{

ui(x) if x ∈ Ai for some i ∈ {0, . . . , n},
b otherwise.

Assuming that 
∑

i∈N E1,p(ui, M) < +∞, we have by the first part of the proof that un ∈ W 1,p(M, N ) and for almost 
every x ∈M,

Dun(x) =
{

Dui(x) if x ∈ Ai and i ∈ {0, . . . , n},
0 otherwise.

We observe then that the sequence (Dun)n∈N converges almost everywhere to g defined for x ∈ M by

g(x) =
{

Dui(x) if x ∈ Ai and i ∈N,

0 otherwise.

Since for each n ∈N, |Dun| ≤ |g| almost everywhere in M and since
ˆ

M

|g|p =
∑
i∈N

E1,p(ui,M) < +∞,

by Lebesgue’s dominated convergence theorem, the sequence (Dun)n∈N converges strongly to g. In view of the 
convergence of the sequence (un)n∈N to u almost everywhere, it follows that Du = g and thus, we have

E1,p(u,M) =
∑
i∈I

E1,p(ui,M),

which is the claim.

We assume now that 0 < s < 1. We write, by additivity of the integral and the fact that u(x) = u(y) if (x, y) ∈
(M \ ⋃

i∈I Ai) × (M \ ⋃
i∈I Ai),
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Es,p(u,M) =
∑
i∈I

Es,p(u,Ai) +
∑
i,j∈I
i �=j

ˆ

Ai

ˆ

Aj

dN
(
u(x),u(y)

)p

dM(x, y)m+sp
dx dy

+ 2
∑
i∈I

ˆ

Ai

ˆ

M\⋃j∈I Aj

dN
(
u(x),u(y)

)p

dM(x, y)m+sp
dx dy.

We first observe that, by assumption,

Es,p(u,Ai) = Es,p(ui,Ai),

and
ˆ

Ai

ˆ

M\⋃j∈I Aj

dN
(
u(x),u(y)

)p

dM(x, y)m+sp
dx dy =

ˆ

Ai

ˆ

M\⋃j∈I Aj

dN
(
ui(x), ui(y)

)p

dM(x, y)m+sp
dx dy.

Finally, if i, j ∈ I and i �= j , we have

ˆ

Ai

ˆ

Aj

dN
(
u(x),u(y)

)p

dM(x, y)m+sp
dx dy ≤ 2p−1

(ˆ
Ai

ˆ

Aj

dN
(
u(x), b

)p

dM(x, y)m+sp
dx dy +

ˆ

Ai

ˆ

Aj

dN
(
b,u(y)

)p

dM(x, y)m+sp
dx dy

)

= 2p−1
(ˆ

Ai

ˆ

Aj

dN
(
uj (x), uj (y)

)p

dM(x, y)m+sp
dx dy +

ˆ

Ai

ˆ

Aj

dN
(
ui(x), ui(y)

)p

dM(x, y)m+sp
dx dy

)
.

Therefore, we have

Es,p(u,M) ≤
∑
i∈I

Es,p(ui,Ai) + 2p
∑
i,j∈I
i �=j

ˆ

Ai

ˆ

Aj

dN
(
ui(x), ui(y)

)p

dM(x, y)m+sp
dx dy

+ 2
∑
i∈I

ˆ

Ai

ˆ

M\⋃j∈I Aj

dN
(
ui(x), ui(y)

)p

dM(x, y)m+sp
dx dy,

which implies that Es,p(u, M) ≤ 2p
∑

i∈I Es,p(ui, M). �
2.4. Extension

In the application of the opening construction (Lemma 2.1), because the change of variable ϕa is completely known 
a priori, we will need to define our map u on a slightly larger domain and with a control on the energy.

Lemma 2.4 (Extension). Let m ∈ N∗, s ∈ (0, 1], p ∈ [1, +∞) and λ ≥ 1. There exists C > 0 such that if ρ > 0 and 
u : Bm

ρ → N is measurable, there exists v : Bm
λρ →N such that v = u on Bm

ρ and

‖v‖p

Lp(Bm
λρ)

≤ C‖u‖p

Lp(Bm
ρ )

and Es,p(v,Bm
λρ) ≤ C Es,p(u,Bm

ρ ).

The proof of Lemma 2.4 is classical. For the convenience of the reader, we sketch an argument based on Euclidean 
inversion.

Proof. By scaling we can assume that ρ = 1 and we define the map v : Bm
λ →N by setting

v(x) =
{

u(x) if |x| < 1,

u(x/|x|2) if |x| > 1.
(2.9)
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It is clear that ‖v‖p

Lp(Bm
λ )

≤ C‖u‖p

Lp(Bm)
for an appropriate constant C > 0. It remains to estimate Es,p(v, Bm

λ ). If 
s = 1, one can check that

E1,p(v,Bm
λ ) =

ˆ

B
m
1

|Du|p +
ˆ

B
m
1 \Bm

1/λ

|Du(x)|p
|x|2(m−p)

dx ≤ (
1 + λ2(m−p)+)

E1,p(u,Bm
1 ).

When 0 < s < 1, we have by a change of variable

Es,p(v,Bm
λ ) =

ˆ

B
m
1

ˆ

B
m
1

dN
(
u(x),u(y)

)p

|x − y|m+sp
dx dy + 2

ˆ

B
m
1

ˆ

B
m
1/λ

dN
(
u(x),u(y)

)p

|x/|x|2 − y|m+sp|x|2m
dx dy

+
ˆ

B
m
1 \Bm

1/λ

ˆ

B
m
1 \Bm

1/λ

dN
(
u(x),u(y)

)p

|x/|x|2 − y/|y|2|m+sp |x|2m |y|2m
dx dy.

We observe that if x, y ∈ B
m
1 , we have |x|2 |x/|x|2 − y|2 = |x − y|2 + (1 − |x|2) (1 − |y|2) ≥ |x − y|2 and 

|x|2 |y|2 |x/|x|2 − y/|y|2|2 = |x − y|2; therefore,

Es,p(v,Bm
λ ) =

ˆ

B
m
1

ˆ

B
m
1

dN
(
u(x),u(y)

)p

|x − y|m+sp
dx dy + 2

ˆ

B
m
1

ˆ

B
m
1/λ

dN
(
u(x),u(y)

)p

|x − y|m+sp|x|m−sp
dx dy

+
ˆ

B
m
1 \Bm

1/λ

ˆ

B
m
1 \Bm

1/λ

dN
(
u(x),u(y)

)p

|x − y|m+sp|x|m−sp|y|m−sp
dx dy

≤ (
1 + λ2(m−sp)+)

Es,p(u,Bm
1 ). �

3. General uniform boundedness principle

3.1. Obtaining a single obstruction

We will prove a slightly refined version of the contraposite of Theorem 1.6.

Theorem 3.1. Let m ∈ N∗, s ∈ (0, 1], p ∈ [1, +∞), N be a connected Riemannian manifold, and let G be an energy 
over Rm with state space N . Assume that for every measurable map u :Rm →N

(i) (superadditivity) for all open sets A, B ⊂R
m with disjoint closure,

G (u,A ∪ B) ≥ G (u,A) + G (u,B),

(ii) (scaling) for every λ > 0, every h ∈R
m and every open set A ⊂R

m, one has

G (u,h + λA) = λm−sp G
(
u(h + λ·),A)

.

Subcritical case: If sp < m and if there exists a sequence (un)n∈N of measurable maps from Bm to N such that for 
each n ∈N, Es,p(un, Bm) > 0, G (un, Bm) < +∞, and

lim
n→∞

G (un,B
m)

Es,p(un,Bm)
= +∞,

then for every b∗ ∈N and every ε > 0 there exists a measurable map u :Rm →N such that Es,p(u, Rm) ≤ ε, 
u = b∗ in Rm \Bm and G (u, Bm) = +∞.
1/2
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Critical case: If sp = m but we do not have s = p = m = 1, and if there exists a sequence (un)n∈N of measurable 
maps from Bm to N such that for each n ∈N, Es,p(un, Bm) > 0, G (un, Bm) < +∞, and

lim
n→∞Es,p(un,B

m) = 0 and lim
n→∞

G (un,B
m)

Es,p(un,Bm)
= +∞,

then for every b∗ ∈ N and every ε > 0, there exists a measurable map u :Rm →N such that Es,p(u, Rm) ≤
ε, u = b∗ in Rm \Bm

1/2 and G (u, Bm) = +∞.
Supercritical case: If sp > m or s = p = m = 1, if N is compact, and if there exists a sequence (un)n∈N of measur-

able maps from Bm to N such that for each n ∈N, Es,p(un, Bm) > 0, G (un, Bm) < +∞, and

lim
n→∞Es,p(un,B

m) = 0 and lim
n→∞

G (un,B
m)

Es,p(un,Bm)
= +∞,

then for every ε > 0, there exists b∗ ∈ N and a measurable map u : Rm → N such that Es,p(u, Rm) ≤ ε, 
u = b∗ in Rm \Bm

1/2 and G (u, Bm) = +∞.

Note that in the supercritical case, by contrast with the critical and subcritical cases, we cannot choose an arbitrary 
boundary value b∗ ∈ N ; we only claim the existence of such a point and for that we require N to be compact.

The proof of Theorem 3.1 follows the proof of the uniform boundedness for the weak-bounded approximation 
problem when s = 1 [41, Theorem 9.6].

Proof of Theorem 3.1 in the subcritical case sp < m. By passing if necessary to a subsequence, we can assume that 
for each n ∈N, there exists a function un : Bm → N such that

0 < Es,p(un,B
m) ≤ μ−nG (un,B

m) < +∞,

where the parameter μ > 1 will be fixed later in the proof.

Step 1: Extension. By Lemma 2.4, for each n ∈N, there exists a function un : Bm
3 →N such that un = un on Bm and

Es,p(un,B
m
3 ) ≤ C1Es,p(un,B

m).

In particular, we have,

Es,p(un,B
m
3 ) ≤ C1Es,p(un,B

m) ≤ C1μ
−nG (un,B

m) = C1μ
−nG (un,B

m). (3.1)

Step 2: Opening. We prove that we can make the map un constant out of the ball Bn
2. We take a Lipschitz-continuous

map ϕ : Bm
6 → B

m
2 such that ϕ(x) = x if |x| ≤ 2, and ϕ(x) = 0 if |x| ≥ 3. By Lemma 2.1 with ρ = 5, η = 1

5 and 
λ = 3

5 , there exists a point an ∈ B
m
1 such that

Es,p

(
un ◦ (ϕ(· − an) + an),B

m
5

) ≤ C2Es,p(un,B
m
3 ).

By the conditions that we have imposed on ϕ, if |x| ≤ 1 then ϕ(x − an) + an = x and(
un ◦ (ϕ(· − an) + an)

)
(x) = un(x) = un(x),

whereas if |x| ≥ 4, then |x − an| ≥ 3 and ϕ(x − an) + an = an and thus(
un ◦ (ϕ(· − an) + an)

)
(x) = bn := un(an).

We define the map uopn
n :Rm → N by

u
opn
n (x) =

{
un

(
ϕ(x − an) + an)

)
if x ∈ B

m
4 ,

bn if x ∈ R
m \Bm

4 .

By construction, uopn
n = un = un in Bm and uopn

n = bn in Rm \Bm
4 . Moreover, by Lemma 2.2,

Es,p(u
opn
n ,Rm) ≤ C3Es,p

(
un ◦ (ϕ(· − an) + an),B

m
5

)
.
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Finally, we have by (3.1),

Es,p(u
opn
n ,Rm) ≤ C3C2 Es,p(un,B

m
3 ) ≤ C3C2C1μ

−n G (un,B
m) = μ−nC4 G (u

opn
n ,Bm), (3.2)

with C4 = C3C2C1.

Step 3: Clustering the maps. We fix a point b∗ ∈N . Since the manifold N is connected, for each n ∈N, there exists a 
smooth map vn : Rm → N such that vn = bn in Bm

1/2 and vn = b∗ in Rm \ Bm
1 . In particular, we have Es,p(vn, Rm) <

+∞.
The ball Bm

1/2 contains a cube Q of side-length 1/
√

m that can be decomposed for each k ∈ N∗ into km cubes of 
side-length 1/(k

√
m). In particular, there is a set Pk ⊂ B

m
1/2 such that #Pk = km and the balls (Bm

1/(2k
√

m)
(c))c∈Pk

are 
disjoint subsets of Bm

1/2. We define for each c ∈ Pk the map

vn,k,c(x) = u
opn
n

(
16k

√
m(x − c)

)
,

and we observe that vn,k,c(x) = bn if x ∈R
m \Bm

1/(4k
√

m)
(c). We define now

vn,k(x) =
{

vn,k,c(x) if c ∈ Pk and x ∈ B
m
1/(2k

√
m)

(c),

vn(x) otherwise.

On the one hand, by an application of Lemma 2.3, we have

Es,p(vn,k,R
m) ≤ C5

(
Es,p(vn,R

m) +
∑
c∈Pc

Es,p(vn,k,c,R
m)

)

= C5

(
Es,p(vn,R

m) + ksp

(16
√

m)m−sp
Es,p(u

opn
n ,Rm)

)
.

On the other hand, we have

Es,p(vn,k,R
m) ≥

∑
c∈Pc

Es,p

(
vn,k,c,B

m
1/(16k

√
m)

(c)
)

= ksp

(16
√

m)m−sp
Es,p(u

opn
n ,Bm).

Since Es,p(u
opn
n , Bm) = Es,p(un, Bm) > 0, this implies that we can choose k = k(n) ∈ N∗ in such a way that

ν ≤ Es,p(vn,k,R
m) ≤ 2C5

ksp(
16

√
m

)m−sp
Es,p(u

opn
n ,Rm),

where the constant ν > 0 will be fixed at the end of the proof and will depend on ε, m, s, p. By superadditivity of the 
energy G, we have

G (vn,k,B
m) ≥

∑
c∈Pc

G
(
vn,k,c,B

m
1/(16k

√
m)

(c)
)

= ksp(
16

√
m

)m−sp
G (u

opn
n ,Bm).

We have therefore by (3.2),

ν ≤ Es,p(vn,k,R
m) ≤ μ−n2C5 C4 G (vn,k,B

m).

We define the map uclstr
n : Rm → N for every x ∈ R

m by

uclstr
n (x) = vn,k(x/λ),

where λ ∈ (0, 1] is chosen by scaling in such a way that

ν = Es,p(uclstr
n ,Rm) ≤ μ−nC6 G (uclstr

n ,Bm), (3.3)

with C6 = 2 C5 C4. By construction, one has also uclstr
n = b∗ out of Bm.

Step 4: Gluing the maps. If Q denotes a cube of side-length 1/
√

m contained in Bm
1/2, by dyadic decomposition the 

cube Q contains a family of cubes of sidelengths (2−n−1/
√

m)n∈N and thus, if we set ρn = 2−n−2/
√

m, there exists a 
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sequence of points (an)n∈N such that the balls 
(
B̄ρn(an)

)
n∈N are disjoint balls contained in the open ball Bm

1/2 and the 
sequence (an)n∈N converges to 0. We define the map u :Rm → N for each point x ∈R

m by

u(x) =
{

uclstr
n

(
x−an

ρn

)
if x ∈ B

m
ρn

(an),

b∗ otherwise.

If we take μ = 2m−sp , we have by countable superadditivity (which is a consequence of finite superadditivity by the 
monotone convergence theorem for series), translation-invariance and scaling of the energy G, in view of (3.3),

G (u,Bm) ≥
∑
n∈N

G
(
u,Bm

ρn
(an)

) =
∑
n∈N

ρ
m−sp
n G (uclstr

n ,Bm) ≥
∑
n∈N

νμn

C6
(
2n+2

√
m

)m−sp
= +∞.

On the other hand, by choosing ν > 0 small enough (depending on ε, m, s, p), we have by Lemma 2.3 and by (3.3)
again

Es,p(u,Rm) ≤ 2p
∑
n∈N

ρ
m−sp
n Es,p(uclstr

n ,Rm) ≤ 2p
∑
n∈N

ν(
2n+2

√
m

)m−sp
≤ ε < +∞,

since sp < m. �
We now consider the critical case s = m/p and p > 1 (the last inequality only excludes the case s = p = m = 1

since p = 1 implies s = m and so s = m = 1). In this case, the Sobolev energy is scaling invariant and it is not always 
possible to obtain a Sobolev map with finite energy by gluing an infinite number of rescaled copies of the un. We use 
the assumption that (Em/p,p(un, Bm))n∈N goes to 0 to bypass this limitation and the following classical result:

Lemma 3.2. Let m ∈ N∗, s ∈ (0, 1] and p ∈ (1, +∞). If sp = m, then there exists a sequence of maps (wn)n∈N in 
C∞

c (Rm, [0, 1]) such that for each n ∈N, wn = 1 on Bm and

lim
n→∞Es,p(wn,R

m) = 0.

The construction is classical and is related to the nonembedding of the critical Sobolev spaces into L∞ and the null 
critical capacity of points. For the convenience of the reader, we give a detailed proof of the lemma.

Proof. We set wn(x) = w( 1
n

ln|x|) for every x ∈ R
m, where the function w ∈ C∞(R, [0, 1]) satisfies w = 1 on 

(−∞, 0] and w = 0 on [1, +∞). When s = 1 and p = m > 1, it follows by direct computation that Es,p(wn, Rm) ≤
supR |w′| n−(p−1) → 0 as n → ∞.

When s ∈ (0, 1) and sp = m, we have by the change of variables x = esu, y = etv,

Es,p(wn,R
m) =

ˆ

Rm

ˆ

Rm

|wn(x) − wn(y)|p
|x − y|2m

dx dy =
ˆ

R

ˆ

R

ˆ

Sm−1

ˆ

Sm−1

|w(s/n) − w(t/n)|p
|esu − etv|2m

em(s+t) dudv ds dt.

We observe that for each u, v ∈ S
m, we have

|esu − etv|2
es+t

= |u − v|2 +
(

2 sinh
(

s−t
2

))2
,

and we deduce the estimate

Es,p(wn,R
m) ≤

ˆ

R

ˆ

R

ˆ

Sm−1

ˆ

Sm−1

|w(s/n) − w(t/n)|p(|u − v|2 + (
2 sinh

(
s−t

2

))2)m
dudv ds dt. (3.4)

When m ≥ 2, we apply now the change of variable given by a stereographic projection u = �v(z) = 2
1+|z|2 z+ 1−|z|2

1+|z|2 v, 

with z ∈ v⊥ �R
m−1. We use |u − v|2 = 4|z|2

2 and |D�v(z)[w]| = 2
2 |w| and we obtain
1+|z| 1+|z|
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ˆ

Sm−1

ˆ

Sm−1

1(|u − v|2 + (
2 sinh

(
s−t

2

))2)m
dudv = |Sm−1|

ˆ

Rm−1

(1 + |z|)2

2m+1
(|z|2 + (1 + |z|2)(sinh

(
s−t

2

))2)m
dz

= |Sm−1||Sm−2|
+∞ˆ

0

(1 + r2)rm−2

2
(
2r2 + 2(1 + r2)

(
sinh

(
s−t

2

))2)m
dr

≤ |Sm−1||Sm−2|
4
(
sinh

(
s−t

2

))2

+∞ˆ

0

rm−2(
r + |sinh

(
s−t

2

)|)2m−2 dr

≤ |Sm−1||Sm−2|
4
(
sinh

(
s−t

2

))2

+∞ˆ

0

1(
r + |sinh

(
s−t

2

)|)m dr

= |Sm−1||Sm−2|
4(m − 1)

∣∣sinh
(

s−t
2

)∣∣m+1 .

A similar estimate can be proved immediately when m = 1. Now, by (3.4), we have

Es,p(wn,R
m) ≤ C7

ˆ

R

ˆ

R

|w(s/n) − w(t/n)|p∣∣sinh
(

s−t
2

)∣∣m+1 ds dt.

We observe that the integrand is symmetric in s, t and that it vanishes if s, t ≤ 0 or s, t ≥ n, therefore

Es,p(wn,R
m) ≤ 2C7

+∞ˆ

0

min(t,n)ˆ

−∞

|w(s/n) − w(t/n)|p∣∣sinh
(

s−t
2

)∣∣m+1 ds dt. (3.5)

We now have

2nˆ

0

min(t,n)ˆ

−∞

|w(s/n) − w(t/n)|p∣∣2 sinh
(

s−t
2

)∣∣m+1 ds dt ≤
2nˆ

0

tˆ

−∞

|w(s/n) − w(t/n)|p∣∣2 sinh
(

s−t
2

)∣∣m+1 ds dt

≤ C8
Lip(w)p

np−1

+∞ˆ

0

σp

(sinhσ)m+1 dσ ≤ C9
Lip(w)p

np−1 .

(3.6)

By letting t = 3n
2 + 2τ and s = 3n

2 − 2σ , we also get, since |w(s/n) − w(t/n)| ≤ 1,

+∞ˆ

2n

min(n,t)ˆ

−∞

|w(s/n) − w(t/n)|p∣∣2 sinh
(

s−t
2

)∣∣m+1 ds dt ≤ 4

+∞ˆ

n/4

+∞ˆ

n/4

1

|2 sinh(τ + σ)|m+1 dτ dσ ≤ 4e−(m+1)n/4

m + 1
. (3.7)

The conclusion then follows from (3.5), (3.6) and (3.7). �
Proof of Theorem 3.1 in the critical case sp = m when p > 1. By passing if necessary to a subsequence, we can 
assume that there exists a sequence of measurable maps un : Bm →N such that

lim
n→∞Em/p,p(un,B

m) = 0 and 0 < Em/p,p(un,B
m) ≤ 2−nG (un,B

m) < +∞.

By Step 1 and Step 2 of the previous proof of Theorem 3.1 in the subcritical case sp < m (these steps do not use 
sp < m), we have existence of some maps uopn

n : Rm → N such that uopn
n = un in Bm, uopn

n =: bn ∈ N in Rm \ Bm
4

and

Em/p,p(u
opn
n ,Rm) ≤ C1Em/p,p(un,B

m) ≤ C12−nG (u
opn
n ,Bm). (3.8)
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Step 3: Clustering the maps. Since the manifold N is connected, for each n ∈ N, there exists a Lipschitz-continuous 
curve γn : [0, 1] → N such that γn(0) = b∗ and γn(1) = bn. We define for each � ∈ N, the mapping vn,� = γn ◦
w� : Rm → N , where the map w� is provided by Lemma 3.2.

By construction, we have vn,�(x) = bn on Bm and vn,�(x) = b∗ on Rm \ B
m
R�

for some R� ∈ (1, +∞). We take 
k ∈ N∗ and pick a family of k disjoint balls Bm

ρ1
(c1), . . . , Bm

ρk
(ck) in Bm

1/2, with c1, . . . , ck ∈ B
m
1/2 and ρ1, . . . , ρk > 0. 

We define for each i ∈ {1, . . . , k} the map

vn,k,i (x) = u
opn
n

( 8

ρi

(x − ci)
)
,

and we observe that vn,k,i(x) = bn if x ∈ R
m \Bm

ρi/2(ci). We define now

vn,k,�(x) =
{

vn,k,i (x) if i ∈ {1, . . . , k} and x ∈ B
m
ρi

(ci),

vn,�(x) otherwise.

On the one hand, by an application of Lemma 2.3 and by scaling invariance, we have

Em/p,p(vn,k,�,R
m) ≤ 2p

(
Em/p,p(vn,�,R

m) +
k∑

i=1

Em/p,p(vn,k,i ,R
m)

)

≤ C2

(
Lip(γn)

pEm/p,p(w�,R
m) + kEm/p,p(u

opn
n ,Rm)

)
.

On the other hand, by superadditivity of Em/p,p and by an application of Lemma 2.2, we have

Em/p,p(vn,k,�,R
m) ≥

k∑
i=1

Em/p,p

(
vn,k,i ,B

m
ρi

(ci)
) = kEm/p,p(u

opn
n ,Bm

8 ) ≥ C3kEm/p,p(u
opn
n ,Rm).

Since 0 < Em/p,p(u
opn
n , Rm) → 0 as n → ∞ and Em/p,p(w�, Rm) → 0 as � → ∞, by passing to a subsequence if 

necessary, one can assume that there exist k = k(n) ∈ N∗ and � = �(n) ∈ N∗ such that

Lip(γn)
pEm/p,p(w�,R

m) ≤ 2−nν ≤ kEm/p,p(u
opn
n ,Rm) ≤ 2−n+1ν,

where ν > 0 is a constant to be fixed at the end of the proof. In particular, by scaling invariance, the map uclstr
n :=

vn,k(n),�(n)(R�·) satisfies

Em/p,p(uclstr
n ,Rm) ≤ C22−n+2ν.

By superadditivity and scaling invariance of the energy G, and by (3.8), we have furthermore

G (uclstr
n ,Bm) ≥ kG (u

opn
n ,Bm) ≥ k2nC−1

1 Em/p,p(u
opn
n ,Rm) ≥ νC−1

1 > 0. (3.9)

By construction, we have also uclstr
n = b∗ in Rm \Bm.

Step 4: Gluing the maps. There exist a sequence of points (an)n∈N ⊂ B
m
1/2 and a sequence of radii (ρn)n∈N in (0, +∞)

such that the balls 
(
B̄ρn(an)

)
n∈N are disjoint balls contained in the open ball Bm

1/2 and the sequence (an)n∈N converges 
to 0. We define the map u :Rm → N for each x ∈ R

m by

u(x) =
{

uclstr
n

(
x−an

ρn

)
if x ∈ B

m
ρn

(an),

b∗ otherwise.

We have by superadditivity, translation invariance and scaling invariance of the energy G, in view of (3.9),

G (u,Bm) ≥
∑
n∈N

G
(
u,Bm

ρn
(an)

) =
∑
n∈N

G (uclstr
n ,Bm) = +∞.

On the other hand, we have by Lemma 2.3, if ν > 0 is small enough,

Em/p,p(u,Rm) ≤ 2p
∑
n∈N

Em/p,p(uclstr
n ,Rm) ≤ 2pC2ν

∑
n∈N

2−n+2 ≤ ε < +∞.

Since we have also u = b∗ out of Bm , this concludes the proof in the critical case. �
1/2
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We finally consider the case where sp > m or s = m = p = 1.

Proof of Theorem 3.1 in the supercritical case sp > m or s = m = p = 1. By passing if necessary to a subse-
quence, we can assume that there exists a sequence of measurable maps un : Bm → N such that

lim
n→∞Es,p(un,B

m) = 0 and 0 < Es,p(un,B
m) ≤ μ−nG (un,B

m) < +∞,

with μ > 1 that will be determined at the end of the proof. By Step 1 and Step 2 of the proof of Theorem 3.1 in 
the subcritical case, we have existence of some maps uopn

n : Rm → N such that uopn
n = un in Bm, uopn

n =: bn ∈ N in 
R

m \Bm
4 and

Es,p(u
opn
n ,Rm) ≤ C1Es,p(un,B

m) ≤ C1μ
−nG (u

opn
n ,Bm). (3.10)

Step 3: Fixing the boundary value. Since the manifold N is compact, by passing if necessary to a subsequence, 
one can assume that the sequence (bn)n∈N converges to some point b∗ ∈ N as n → ∞. We consider a function 
w∗ ∈ C1

c (Rn, [0, 1]) such that w∗ = 0 in Rm \ Bm
1 and w∗ = 1 on Bm

1/2. Since N is connected, for each n ∈ N, there 
exists a Lipschitz-continuous curve γn : [0, 1] → R such that γn(0) = b∗, γn(1) = bn and Lip(γn) ≤ 2dN (bn, b∗). 
Then the map vn = γn ◦ w∗ satisfies

Es,p(vn,R
m) ≤ Lip(γn)

pEs,p(w∗) ≤ C2dN (bn, b∗)p.

If sp > m, for every ρ ∈ (0, 1
16 ), we define now

vn,ρ(x) =
{

u
opn
n

(
x
ρ

)
if x ∈ B

m
1/2,

vn(x) if x ∈R
m \Bm

1/2.

By an application of Lemma 2.3, we have

Es,p(vn,ρ,Rm) ≤ 2p
(
Es,p(vn,R

m) + Es,p(u
opn
n (·/ρ),Rm)

)
≤ C3

(
dN (bn, b∗)p + 1

ρsp−m
Es,p(u

opn
n ,Rm)

)
.

Since 0 < Es,p(u
opn
n , Rm) → 0 and dN (bn, b∗) → 0 as n → ∞, by passing to a subsequence if necessary, one can 

assume that there exists ρ = ρ(n) ∈ (0, 1
16 ) such that

Es,p(vn,ρ,Rm) ≤ 2C3
1

ρsp−m
Es,p(u

opn
n ,Rm) ≤ νμ−n,

where ν > 0 is a constant whose value will be fixed at the end of the proof. Moreover, by scaling of the energy G and 
by (3.10), we have

G (vn,ρ,Bm) ≥ G
(
u

opn
n (·/ρ),Bm

ρ

) = 1

ρsp−m
G (u

opn
n ,Bm) ≥ C−1

1 μn

ρsp−m
Es,p(u

opn
n ,Rm).

We have therefore

Es,p(vn,ρ,Rm) ≤ νμ−n and Es,p(vn,ρ,Rm) ≤ C4μ
−nG (vn,ρ,Bm).

We define the map ub∗
n :Rm →N for every x ∈R

m by

ub∗
n (x) = vn,ρ(x/λ),

where λ ∈ (0, 1] is chosen by scaling in such a way that

νμ−n = Es,p(ub∗
n ,Rm) ≤ C4 μ−nG (ub∗

n ,Bm). (3.11)

By construction, we have also ub∗
n = b∗ out of Bm.

If s = p = m = 1, we proceed as in the proof of Theorem 3.1 when sp = m, with w∗ instead of w�, relying on the 
smallness of Lip(γn) instead of the smallness of the energy Es,p(w�).
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Step 4: Gluing the maps. There exists a sequence of points (an)n∈N such that the balls 
(
B̄ρn(an)

)
n∈N with ρn =

2−n−2/
√

m are disjoint balls contained in the open ball Bm
1/2 and the sequence of points (an)n∈N converges to 0. The 

map u :Rm →N is defined at each point x ∈R
m by

u(x) =
{

u
b∗
n

(
x−an

ρn

)
if x ∈ B

m
ρn

(an),

b∗ otherwise.

If we take μ > 2sp−m, we have by countable superadditivity, translation-invariance and scaling of the energy G, in 
view of (3.11),

G (u,Bm) ≥
∑
n∈N

G
(
u,Bm

ρn
(an)

) =
∑
n∈N

G
(
u

b∗
n ,Bm

)
ρ

sp−m
n

≥
∑
n∈N

ν(2n+2√m)sp−m

C4
= +∞.

On the other hand, we have by Lemma 2.3 and by the inequality (3.11) again

Es,p(u,Rm) ≤ 2p
∑
n∈N

Es,p(u
b∗
n ,Rm)

ρ
sp−m
n

= 2pν
∑
n∈N

(
2n+2√m

)sp−m

μn
≤ ε < +∞,

if ν > 0 is small enough, since sp ≥ m. �
3.2. Density of counterexamples

We use now Theorem 3.1 and ingredients of its proof to prove that when sp ≤ m, Sobolev maps with infinite energy 
G are dense.

Theorem 3.3 (Density of counterexamples). Let m ∈ N∗, s ∈ (0, 1], p ∈ [1, +∞), N be a connected Riemannian 
manifold, and let G be an energy over Rm with state space N . Assume that for every measurable map u :Rm →N

(i) (superadditivity) for all open sets A, B ⊂Rm with disjoint closure,

G (u,A ∪ B) ≥ G (u,A) + G (u,B),

(ii) (scaling) for all λ > 0, h ∈ Rm and any open set A ⊂Rm, one has

G (u,h + λA) = λm−spG (u(h + λ·),A).

Assume furthermore that we are in the subcritical case sp ≤ m but not in the case s = p = m = 1, and that there exists 
a sequence (un)n∈N of measurable maps un : Bm → N such that for each n ∈N, Es,p(un, Bm) > 0, G (un, Bm) < +∞, 
and

lim
n→∞

G (un,B
m)

Es,p(un,Bm)
= +∞, with lim

n→∞Es,p(un,B
m) = 0 if sp = m.

Then, for every ε > 0 and if the map v : Bm → N is measurable and Es,p(v, Bm) < +∞, there exists a measurable 
map u : Bm → N such that

(i) u = v on Bm \Bm
ε ,

(ii) Es,p(u, Bm) ≤ Es,p(v, Bm) + ε,
(iii) G (u, Bm) = +∞.

Theorem 3.3 implies that there exists a sequence (vn)n∈N such that vn = v on Bm\Bm
1/n and lim supn→∞ Es,p(vn) ≤

Es,p(v), which implies in particular that the sequence (vn)n∈N converges strongly to v in Ws,p(Bm, N ). Indeed, since 
Es,p(vn, Bm) → Es,p(v, Bm) as n → +∞, this follows from the fact that a sequence (fn)n converges strongly to f in 
Lp(	) if it converges in norm and almost everywhere (see for example [3, Proposition 1.33], [64, Proposition 4.2.6]); 
when s = 1, we apply this criterion to the functions defined for x ∈ B

m by
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fn(x) = ∇vn(x) and f (x) = ∇v(x) in Lp(Bm);

while if 0 < s < 1, we apply it to the functions defined for (x, y) ∈B
m ×B

m by

fn(x, y) = vn(x) − vn(y)

|x − y|m/p+s
and f (x, y) = v(x) − v(y)

|x − y|m/p+s
in Lp(Bm ×B

m).

Proof of Theorem 3.3. We proceed in two steps: we first open the map v by making it constant in a neighbourhood 
of 0 and then we insert a singularity of Theorem 3.1.

Step 1: Opening. We choose a Lipschitz-continuous function ϕ : Rm → R
m such that ϕ(x) = 0 if |x| ≤ 3/10 and 

ϕ(x) = x if |x| ≥ 1/2. Given δ ∈ (0, 1), we define ϕδ : Bm
9δ/10 → B

m
9δ/10 by ϕδ(x) = δϕ(x/δ). We apply Lemma 2.1

with ρ = 4δ/5, η = 1/8 and λ = 5/4, and we obtain the existence of a point a ∈ B
m
δ/10 such that

Es,p

(
v ◦ (ϕδ(· − a) + a),Bm

4δ/5

) ≤ C1Lip(ϕ)sp Es,p(v,Bm
δ ), (3.12)

since Lip(ϕδ) = Lip(ϕ). We observe that for x ∈ B
m
4δ/5,

ϕδ(x − a) + a =
{

x if |x| ≥ 3δ/5 (since then |x − a| ≥ 3δ/5 − |a| ≥ δ/2),

a if |x| ≤ δ/5 (since then |x − a| ≤ δ/5 + |a| ≤ 3δ/10).

Step 2: Inserting the singularity. Since sp ≤ m but we do not have s = p = m = 1, we apply Theorem 3.1 in the critical 
or subcritical case, with b∗ = v(a) and we obtain a map w : Rm → N such that w = b∗ on Rm \Bm, G (w, Bm) = +∞
and Es,p(w, Rm) ≤ ξ , where ξ > 0 will be fixed at the end of the proof. We define the map u : Bm → N for x ∈ B

m

by

u(x) =

⎧⎪⎨
⎪⎩

v(x) if |x| ≥ 4δ/5,

v(ϕδ(x − a) + a) if δ/5 ≤ |x| ≤ 4δ/5,

w(10x/δ) if |x| ≤ δ/5.

By a double application of Lemma 2.2, we have for every σ ∈ (δ, 1),

Es,p(u,Bm
σ ) ≤ C2

(
Es,p(u,Bm

σ \Bm
3δ/5) + Es,p(u,Bm

4δ/5 \Bm
δ/10) + Es,p(u,Bm

δ/5)
)
.

Since u = v on Bm
σ \ Bm

3δ/5, u = v(ϕδ(· − a) + a) on Bm
4δ/5 \ Bm

δ/10 and u = w(10x/δ) on Bm
δ/5, and since σ > δ, this 

implies by (3.12)

Es,p(u,Bm
σ ) ≤ C3

(
Es,p(v,Bm

σ ) + Es,p(w,Rm)
) ≤ C3

(
Es,p(v,Bm

σ ) + ξ
)
.

We assume now that σ ≥ 2δ, and we apply Lemma 2.2 with ρ = σ and η = δ/σ ≤ 1/2. We obtain

Es,p(u,Bm) ≤ C4Es,p(u,Bm
σ ) + (1 + C5η

m)Es,p(u,Bm \Bm
δ )

≤ Es,p(v,Bm) + C6

(( δ

σ

)m

Es,p(v,Bm) + Es,p(v,Bm
σ ) + ξ

)
.

In order to obtain the conclusion, we first fix σ ∈ (0, 1) such that

Es,p(v,Bm
σ ) ≤ ε

3C6
,

next δ ∈ (0, 1) such that δ ≤ σ
2 , δ ≤ ε and

( δ

σ

)m

Es,p(v,Bm) ≤ ε

3C6
,

this allows us then to construct the points a ∈ B
m
δ/10 and b∗ = v(a) and the obstruction w with ξ = ε

3C6
. �
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4. Concrete uniform boundedness principles

4.1. Extension of traces

We apply Theorem 3.1 to prove a uniform boundedness principle for the extension problem (Theorem 1.1).

Proof of Theorem 1.1. Let m ∈ N∗, s ∈ (0, 1] and p ∈ [1, +∞) and assume by contradiction that the linear bound 
does not hold. Then by Theorem 3.1 with G = Eext

r,q there exist a map u ∈ Ws,p(Rm, N ) and b∗ ∈ N such that 
Eext

r,q (u, Bm) = +∞ and u = b∗ in Rm \ B
m. If M = R

m we have a contradiction. Otherwise, M is a compact Rie-
mannian manifold, for which we consider a local chart � :Bm

2 → M. We define the map ũ :M → N by

ũ(x) =
{

u
(
�−1(x)

)
if x ∈ �(Bm

1 ),

b∗ otherwise.

Since M is compact, we conclude by a counterpart of the gluing technique of Lemma 2.2. �
Theorem 4.1. Let s, r ∈ (0, 1], p, q ∈ [1, +∞), m ∈ N∗, M be a Euclidean space or a compact Riemannian manifold 
of dimension m and N be a connected Riemannian manifold. Assume that we are in the subcritical case sp = rq −
1 ≤ m but not in the case s = p = m = 1. If every map in a nonempty open subset of Ws,p(M, N ) is the trace of 
some map in Wr,q(M × (0, +∞), N ), then there exists a constant C > 0 such that for each measurable function 
u : Bm → N such that either sp < m or Es,p(u, Bm) ≤ 1/C, then

Eext
r,q (u,Bm) ≤ C Es,p(u,Bm).

Theorem 4.1 is a local version of Theorem 1.1 in the sense that we do not assume that every map in Ws,p(M, N )

has an extension, but only maps in a nonempty open subset.

Proof of Theorem 4.1. We assume by contradiction that the estimate does not hold. Let v ∈ Ws,p(M, N ) and let 
� : Bm

2 → M be a local chart. We apply Theorem 3.3 to the map v ◦ � with the energy Eext
r,q , and we obtain a 

sequence of maps (un)n∈N∗ such that un = v ◦ � in Bm \Bm
1/n, Eext

r,q (un, Bm) = +∞ and lim supn→∞ Eext
r,q (un, Bm) ≤

Eext
r,q (v ◦ �, Bm). We define now vn : M →N by

vn(x) =
{

un

(
�−1(x)

)
if x ∈ �(Bm),

v(x) otherwise.

Since vn = v in �(Bm \Bm
1/n), we deduce by a counterpart of Lemma 2.2 that

lim sup
n→∞

Es,p(vn,M) ≤ Es,p(v,M)

and thus the sequence (vn)n∈N∗ converges strongly to v in Ws,p(M, N ) but for each n ∈ N, Eext
r,q (vn, M) = +∞, 

which contradicts the assumption. �
In view of the estimate (1.2) of Bethuel [9, (1.36)], Theorem 4.1 implies that if N is compact, if sp = p − 1 <

dim(M) and if either π1(N ) is infinite or πj (N ) �� {0} for some j ∈ {2, . . . , �p	 − 1}, then the set of maps in 
W 1−1/p,p(M, N ) that are not traces of maps in W 1,p(M ×R+, N ) is dense.

4.2. Weak-bounded approximation

The proof of Theorem 1.2 is similar to the proof of Theorem 1.1, with G = E rel
r,q . The counterpart of Theorem 4.1 is

Theorem 4.2. Let s, r ∈ (0, 1], p, q ∈ [1, +∞), m ∈ N∗, M be a Euclidean space or a compact Riemannian manifold 
of dimension m and let N be a connected Riemannian manifold. If sp = rq < m and if every map in a nonempty open 
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set of Ws,p(M, N ) has a weak-bounded approximation in Wr,q(M, N ), then there exists a constant C > 0 such that 
for each measurable function u :Bm → N , one has

E rel
r,q(u,Bm) ≤ C Es,p(u,Bm).

Theorem 4.2 is a local version of Theorem 1.2 in the sense that we do not assume that every map in Ws,p(M, N )

has a weak-bounded approximation, but only maps in a nonempty open subset.
In view of the failure of a linear bound for the weak-bounded approximation problem in the space W 1,3(Bm, S2)

when m ≥ 4 [10], we obtain as a consequence of Theorem 4.2 the density of mappings that have no weak-bounded 
approximation in W 1,3(M, S2) when dimM ≥ 4.

4.3. Lifting problem

Theorem 1.3 is also proved as Theorem 1.1, with G = E lift
r,q . The counterpart of Theorems 4.1 and 4.2 is

Theorem 4.3. Let s, r ∈ (0, 1], p, q ∈ [1, +∞), m ∈N∗, M be a Euclidean space or a compact Riemannian manifold 
of dimension m, N and F be Riemannian manifold manifolds with N connected and π : F →N . Assume that we are 
in the subcritical case sp = rq ≤ m but not in the case s = p = m = 1. If for every map u in a nonempty open subset 
of Ws,p(M, N ) there exists ϕ ∈ Wr,q(M, F) such that π ◦ ϕ = u, then there exists a constant C > 0 such that for 
each measurable function u :Bm →N , if either sp < m or Es,p(u, Bm) ≤ 1/C,

E lift
r,q (u,Bm) ≤ C Es,p(u,Bm).

Theorem 4.3 is a local version of Theorem 1.3 in the sense that we do not assume that every map in Ws,p(M, N )

has a lifting, but only maps in a nonempty open subset.
In view of the estimate (1.3) of Merlet [47, Theorem 1.1] and of Mironescu and Molnar [53, Proposition 5.7], 

Theorem 4.3 implies that maps in Ws,p(M, S1) having no lifting in Ws,p(M, R) are dense when s ∈ (0, 1) and 
1 < sp < dimM.

When sp > 2 and M is simply-connected, mappings in Ws,p(M, S1) still have a lifting in the larger space 
Ws,p(M, R) + W 1,sp(M, R) [16, Theorem 4], [18, Theorem 3], [19, Theorem 3], [20, Open Problem 1], [48, Theo-
rem 3.2], [49, Theorem 1], [50], [51], [56, Theorem 2]. By considering the energy

G(u,A) = inf
{
Es,p(ϕ1,A) + E1,sp(ϕ2,A) : u = π ◦ (ϕ1 + ϕ2), ϕ1 ∈ Ws,p(A,R), ϕ2 ∈ W 1,sp(A,R)

}
,

with π(t) := (cos t, sin t) for all t ∈R, we recover the known linear estimates in this setting:

Theorem 4.4. Let s ∈ (0, 1], p ∈ [1, +∞), m ∈ N∗, and let M be a m-dimensional Riemannian manifold such that 
either M is compact or M = R

m. If for every map u ∈ Ws,p(M, S1) there exists a lifting ϕ ∈ Ws,p(M, R) +
W 1,sp(M, R) such that u = π ◦ ϕ almost everywhere in M, then there exists a constant C > 0 such that for every 
measurable function u : Bm → S

1 with either sp < m or E s,p(u, Bm) ≤ 1/C, there exist ϕ1 ∈ Ws,p(Bm, R) and 
ϕ2 ∈ W 1,sp(Bm, R) such that u = π ◦ (ϕ1 + ϕ2) and

Es,p(ϕ1,B
m) + E1,sp(ϕ2,B

m) ≤ CEs,p(u,Bm).

4.4. Superposition operators

The proof of Theorem 1.4 is obtained by considering the energy G(u, A) = Er,q(f ◦ u) in Theorem 3.1. As in 
Theorems 4.1, 4.2 and 4.3, when we are in the subcritical case sp ≤ m but not in the case s = p = m = 1, it is possible 
to prove the uniform bound on Er,q(f ◦ u) on the assumption that the superposition operator acts on a nonempty open 
set.

Theorem 4.5 (Acting condition). Let s, r ∈ (0, 1], p, q ∈ [1, +∞) and m ∈ N∗ with rq = sp, let M be an 
m-dimensional Riemannian manifold which is either Rm or compact, N be a connected Riemannian manifold which 
is compact if sp > m or if s = p = m = 1, F be a Riemannian manifold and let f : N → F be a Borel-measurable 
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map. If for every u ∈ Ws,p(M, N ), f ◦ u ∈ Wr,q(M, F), then there exists a constant C ∈ [0, +∞), such that for 
every x, y ∈N , if either sp < m or dN (x, y) ≤ 1/C, then

dF
(
f (x), f (y)

) ≤ CdN (x, y)p/q . (4.1)

Moreover, when we are in the subcritical case sp ≤ m but not in the case s = p = m = 1, the above statements are 
satisfied if there is a nonempty open set U ⊂ Ws,p(M, N ) such that for every u ∈ U one has f ◦ u ∈ Wr,q(M, F).

In particular, if the superposition operator given by f maps Ws,p(M, N ) into Wr,q(M, F) and if p > q , then f
is constant on N .

When sp ≥ m, if p = q or if N is compact (which is our assumption when sp > m), it is easy to see that one can 
avoid the smallness condition on dN (x, y) in the conclusion of Theorem 4.5.

When sp = m and N is not compact, the Hölder continuity condition of Theorem 4.5 implies that for every 
x, y ∈N ,

dF (f (x), f (y)) ≤ C
(
dN (x, y)p/q + dN (x, y)

)
. (4.2)

If p = q , the Hölder continuity condition of Theorem 4.5 implies that f is Lipschitz-continuous; this condition is 
well-known to be necessary [2,14,15,43,45].

When s < 1, the condition (4.1) can be observed to be sufficient by a direct computation with the Gagliardo energy 
and relying, when sp = m, on (4.2) and the fractional Gagliardo–Nirenberg interpolation inequality.

When r < s = 1, the exact characterization of the superposition operators acting from the space W 1,p(M, N )

to Wr,q(M, F) remains open; when N = F = R and f (t) = |t |p/q , it is known that f maps W 1,p(M, R) to 
Wr,q(M, R) [52].

Proof of Theorem 4.5. By Theorem 1.4, there exists a constant C1 > 0 such that for every measurable function 
u : Bm → N ,

Er,q(f ◦ u,Bm) ≤ C1Es,p(u,Bm).

We fix two points a± = (± 1
2 , 0, . . . , 0) and we choose a function w ∈ C∞

c (Bm, [−1, 1]) such that w = ±1 on 
B

m
1/4(a±). For x, y ∈ N , we consider a Lipschitz-continuous curve γx,y : [−1, 1] → N satisfying γx,y(−1) = x, 

γx,y(1) = y and Lipγx,y ≤ dN (x, y). Such a curve exists since N is path-connected and a continuous path can al-
ways be reparametrized by arc-length. Since γx,y is Lipschitz-continuous, we have

Es,p(γx,y ◦ w,Bm) ≤ (Lipγx,y)
pEs,p(w,Bm) ≤ Es,p(w,Bm)dN (x, y)p.

Next, we observe that f ◦ γx,y ◦ w = f (x) on Bm
1/4(a−) and f ◦ γx,y ◦ w = f (y) on Bm

1/4(a+). Therefore, we have 
when r ∈ (0, 1),

Er,q(f ◦ γx,y ◦ w,Bm) ≥ 2
ˆ

B
m
1/4(a+)

ˆ

B
m
1/4(a−)

dF
(
f (x), f (y)

)q

|t − v|m+rq
dt dv ≥ 2m+1+rqLm(Bm

1/4)
2dF

(
f (x), f (y)

)q
.

When r = 1, we have by Hölder’s inequality,

E1,q (f ◦ γx,y ◦ w,Bm) ≥ E1,1(f ◦ γx,y ◦ w,Bm)q

Lm(Bm)q−1

and

E1,1(f ◦ γx,y ◦ w,Bm) ≥
ˆ

[− 1
2 , 1

2 ]×B
m−1
1/4

|D(f ◦ γx,y ◦ w)|dx ≥ Lm−1(Bm−1
1/4 )dF

(
f (x), f (y)

)
.

The assertion (4.1) then follows from the previous inequalities.
The last statement follows from Theorem 3.3. �
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5. The limiting case s = 0

We consider the question about what the uniform boundedness becomes in the limit case s = 0. Looking at the 
proof of Theorem 3.1, it appears that the clustering step requires the condition s > 0 to increase the energy. In order 
to bypass this difficulty, we assume that we have maps u :Bm →N with a large Lebesgue energy 

´
Bm |u|p .

Theorem 5.1. Let m ∈ N∗, p ∈ [1, +∞), N be a Riemannian manifold and let G be an energy over Rm with state 
space N . Assume that for every measurable map u :Rm → N

(i) (superadditivity) if the sets A, B ⊂R
m are open and if Ā ∩ B̄ = ∅, then

G (u,A ∪ B) ≥ G (u,A) + G (u,B),

(ii) (scaling) for all λ > 0, h ∈ R
m and any open set A ⊂R

m, one has

G (u,h + λA) = λmG (u(h + λ·),A).

If for every u ∈ Lp(Bm, N ), G (u, Bm) < +∞, then there exists C ∈ [0, +∞) such that for every u ∈ Lp(Bm, N ), one 
has

G (u,Bm) ≤ C

(
1 +

ˆ

Bm

|u|p
)

.

In Theorem 5.1, the fact that N is a Riemannian manifold is not crucial; we just need N to be embedded in a 
normed space (E, | · |) so that Lp(Bm, N ) ⊂ Lp(Bm, E) makes sense.

Theorem 5.1 allows one to recover classical results on superposition operators in Lebesgue spaces. Given a Borel-
measurable function f : RN → R

� and for every open set A ⊂ R
m and every measurable function u : A → R

N , we 
set G (u, A) = ´

A
|f ◦ u|p . By Theorem 5.1, if for every u ∈ Lp(Bm, RN), we have f ◦ u ∈ Lp(Bm, R�), then there 

exists a constant C ∈ [0, +∞) such that for every u ∈ Lp(Bm, RN) the following uniform bound holds:
ˆ

Bm

|f ◦ u|p ≤ C
(

1 +
ˆ

Bm

|u|p
)
.

By taking u to be a constant function, this implies in turn that for every t ∈R
N ,

|f (t)| ≤ C′(1 + |t |),
which is a classical necessary and sufficient condition to have a superposition operator acting from Lp(Bm, RN) to 
Lp(Bm, R�) [44, Theorem 2.3] (see also [4, Theorem 3.1]).

Proof of Theorem 5.1. We assume by contradiction that there exists a sequence (vn)n∈N of measurable maps from 
B

m to N such that for each n ∈N, we have G (vn, Bm) < +∞, and such that

lim
n→∞

G (vn,B
m)

1 +
ˆ

Bm

|vn|p
= +∞;

we are going to construct a function u ∈ Lp(Bm, N ) such that G (u, Bm) = +∞.
By rescaling vn if 

´
Bm |vn| > 1 and passing to a subsequence if necessary, we can assume that for each n ∈N, there 

exists a function un ∈ Lp(Bm, N ) such thatˆ

Bm

|un|p ≤ 1 and 2nm ≤ G (un,B
m) < +∞.
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If Q denotes a cube of side-length 1/
√

m contained in Bm, by dyadic decomposition, this cube Q contains a family of 
cubes of sidelengths (2−n−1/

√
m)n∈N and thus, if we set ρn = 2−n−2/

√
m, there exists a sequence of points (an)n∈N

such that the balls 
(
B̄ρn(an)

)
n∈N are disjoint balls contained in the open ball Bm. We define the map u : Bm → N for 

each point x ∈ B
m by

u(x) =
{

un

(
x−an

ρn

)
if x ∈ B

m
ρn

(an),

0 otherwise.

We have by countable superadditivity, translation-invariance and scaling of the energy G,

G (u,Bm) ≥
∑
n∈N

G
(
u,Bm

ρn
(an)

) =
∑
n∈N

ρm
n G

(
un,B

m
) ≥

∑
n∈N

(2−n−2

√
m

)m

2nm = +∞.

On the other hand, we have
ˆ

Bm

|u|p =
∑
n∈N

ρm
n

ˆ

Bm

|un|p ≤
∑
n∈N

(2−n−2

√
m

)m

< +∞,

thus ending the proof. �
6. Higher order spaces

If N is a connected Riemannian manifold embedded in a Euclidean space Rν by a smooth embedding, and if M is 
m-dimensional Riemannian manifold which is either Euclidean or compact, the nonlinear Sobolev space Ws,p(M, N )

can be defined extrinsically by

Ws,p(M,N ) = {
u ∈ Ws,p(M,Rν) : u(x) ∈N for almost every x ∈ M

}
,

where Ws,p(M, Rν) is the usual linear higher order Sobolev space, that is the space of measurable maps u :M →R
ν

such that Es,p(u, M) < +∞.
Here, if s ∈ N is an integer, the homogeneous Sobolev energy Es,p is defined for every measurable map 

u :M → Rν by

Es,p(u,M) =

⎧⎪⎨
⎪⎩
ˆ

M

|Dsu|p if the sth-order weak derivative Dsu belongs to Lp,

+∞ otherwise,

where Dsu is understood as a s-linear map on Rm valued in Rν , and | · | is any norm on the linear space composed by 
s-linear maps. If s /∈N is not an integer, we set

Es,p(u,M) =
{
Es−�s	,p(D�s	u,M) if u ∈ W �s	,p(M,Rν),

+∞ otherwise,

where Es−�s	,p with s − �s	 ∈ (0, 1) has been defined in (1.1) and D�s	u is a function from M valued in the normed 
linear space composed of �s	-linear maps.

A generalization of Theorem 1.6 is the following:

Theorem 6.1 (Higher order nonlinear uniform boundedness principle). Let m ∈N∗, s ∈ (1, +∞), p ∈ [1, +∞), N be 
a connected Riemannian manifold which if either sp > m or (p = 1 and s = m) is compact, and let G be an energy 
over Rm with state space N . Assume that for every measurable map u :Rm → N

(i) (superadditivity) for all open sets A, B ⊂R
m with disjoint closure,

G (u,A ∪ B) ≥ G (u,A) + G (u,B),
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(ii) (scaling) for all λ > 0, h ∈ R
m and any open set A ⊂R

m,

G (u,h + λA) = λm−spG (u(h + λ·),A).

If for every measurable function u : Bm
2 → N , Es,p(u, Bm

2 ) < +∞ implies G (u, Bm) < +∞ and Es,p(u, Bm
2 ) = 0

implies G (u, Bm) = 0, then there exists a constant C ∈ [0, +∞) such that for every measurable map u : Bm
2 → N , if 

either sp < m or Es,p(u) ≤ 1/C, then

G (u,Bm) ≤ C
(
Es,p(u,Bm

2 ) + E1,p(u,Bm
2 )

)
. (6.1)

Compared to Theorem 1.6, the conclusion of Theorem 6.1 has two weaknesses: the right-hand side contains a lower 
order energy E1,p(u, Bm

2 ) and the energies in the right-hand side are evaluated on a larger ball than on the left-hand 
side. There are several ways to mitigate this issue.

Remark 6.2. Theorem 6.1 implies that if u : Bm → N is constant in the annulus Bm \Bm
1/2, then

G (u,Bm) ≤ CEs,p(u,Bm).

Indeed, if we consider the extension ū : Bm
2 → N of u by the same constant, we have by a direct computation and by 

the Poincaré inequality,

Es,p(ū,Bm
2 ) + E1,p(ū,Bm

2 ) ≤ Es,p(u,Bm).

Remark 6.3. When s < 1 + 1
p

, we can conclude that

G (u,Bm) ≤ C
(
Es,p(u,Bm) + E1,p(u,Bm)

)
.

Indeed following the proof of Lemma 2.4, we use the construction by Euclidean inversion of v : Bm
λ → N by (2.9). 

We have thenˆ

B
m
λ \Bm

ˆ

Bm

|Dv(y) − Dv(x)|p dx dy

|x − y|m+(s−1)p
≤ 2p−1

ˆ

B
m
λ \Bm

ˆ

Bm

|Dv(y)|p + |Dv(x)|p dx dy

|x − y|m+(s−1)p

≤ 2p−1
ˆ

B
m
λ \Bm

|Dv(y)|p
(ˆ
Bm

dx

|x − y|m+(s−1)p

)
dy

+
ˆ

Bm

|Dv(x)|p
( ˆ

B
m
λ \Bm

dy

|x − y|m+(s−1)p

)
dx

≤ C1

ˆ

Bm

|Du(x)|p dx

(1 − |x|)(s−1)p
.

By the Hardy inequality for fractional Sobolev spaces [34, (17)], we haveˆ

Bm

|Du(x)|p dx

(1 − |x|)(s−1)p
≤ C2

(
Es,p(u,Bm) + E1,p(u,Bm)

)
.

The proof of Theorem 6.1 is rather similar to that of Theorem 1.6 (corresponding to the case s ≤ 1). The main 
change is in the opening lemma and this is why we need the additional term E1,p(u, Bm

2 ) in the estimate of G (u, Bm). 
Here, we will not give a detailed proof of Theorem 6.1; we only state and prove an opening lemma for higher order 
Sobolev maps.

Lemma 6.4. Let m ∈ N∗, s ∈ (1, +∞), p ∈ [1, +∞) and λ > 1, η ∈ (0, λ). For every ϕ ∈ C∞(Bm
(1+η)ρ, Bm

(λ−η)ρ), 
there exists a constant C > 0 such that for every ρ > 0 and every measurable map u : Bm

λρ → N , there exists a point 
a ∈ B

m
ηρ such that
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Es,p(u ◦ (ϕ(· − a) + a),Bm
ρ ) ≤ C

(
E1,p(u,Bm

λρ) + Es,p(u,Bm
λρ)

)
.

The lower-order term in Theorem 6.1 comes from the estimate of Lemma 6.4. This lower-order term cannot be 
removed: if u is linear and ϕ is not a polynomial of degree at most �s� − 1, where �s� stands for the smallest integer 
greater than or equal to s, then Es,p(u, Bm

λρ) = 0 and for every a ∈ B
m
ηρ , Es,p(u ◦ (ϕ(· − a) + a), Bm

ρ ) > 0.

Proof of Lemma 6.4. We define for each a ∈ B
m
ηρ the map ϕa = (ϕ(· − a) + a) : Bm

ρ → B
m
λρ . We will prove the 

average estimate 

B
m
ηρ/2

Es,p(u ◦ ϕa,B
m
ρ )da ≤ C

(
E1,p(u,Bm

λρ) + Es,p(u,Bm
λρ)

)
. (6.2)

In the case s ∈ N∗, we follow [22, Lemma 2.3]; by an easy induction over s and a rather classical approximation 
procedure, one gets the following claim:

Claim 1. For every u ∈ Ws,p(Bm
λρ, Rν), ϕ ∈ C∞(Bm

ρ , Bm
λρ), for almost every x ∈ B

m
ρ and h = (h1, . . . , hs) ∈ (Rm)s ,

Ds(u ◦ ϕ)(x)[h] =
s∑

k=1

∑
J∈Pk(s)

ck,J (Dku)(ϕ(x))
[
D|J1|ϕ(x)[hJ1 ], . . . ,D|Jk |ϕ(x)[hJk

]], (6.3)

where Pk(s) is the set of all partitions J = (J1, . . . , Jk) of {1, . . . , s} in k non empty sets, the ck,J ∈ R are some 
constants depending on k, J , and hJ := (hj )j∈J for every non empty subset J ⊂ {1, . . . , s}.

As a consequence of Claim 1, for almost every x ∈ B
m
ρ , we get the estimate

|Ds(u ◦ ϕ)(x)| ≤
∑

k,j1,...,jk∈{1,...,s}
j1+···+jk=s

|ck,J | |(Dku)(ϕ(x))| |Dj1ϕ(x)| · · · |Djkϕ(x)|.

By Young’s inequality for products, we have

|Dj1ϕ(x)| · · · |Djkϕ(x)| ≤ j1

s
|Dj1ϕ(x)| s

j1 + · · · + jk

s
|Djkϕ(x)| s

jk

and thus

|Ds(u ◦ ϕ)(x)| ≤ C1

s∑
k=1

s−k+1∑
l=1

|(Dku)(ϕ(x))| |Dlϕ| s
l .

Applying the inequality to our functions u and ϕa , and integrating the inequality over x ∈ B
m
ρ and a ∈ B

m
ηρ/2 yield a 

constant C2 (depending on ϕ) such thatˆ

B
m
ηρ/2

Es,p(u ◦ ϕa,B
m
ρ )da =

ˆ

B
m
ηρ/2

ˆ

Bm
ρ

|Ds(u ◦ ϕa)|p dx da

≤ C2

s∑
k=1

ˆ

B
m
ηρ/2

ˆ

Bm
ρ

|Dku|p(a + ϕ(x − a))dx da.

By changes of variable y = x − a ∈ B
m
(1+ η

2 )ρ
and w = a + ϕ(y) ∈ B

m
(λ− η

2 )ρ
, we are led to the estimates

ˆ

B
m
ηρ/2

Es,p(u ◦ ϕa,B
m
ρ )da ≤ C3

s∑
k=1

ˆ

B
(λ− η

2 )ρ

|Dku|p(w)dw ≤ C4
(
E1,p(u,Bm

λρ) + Es,p(u,Bm
λρ)

)
, (6.4)

where the last inequality follows by interpolation of the order of smoothness (see Lemma 6.6 below or [1, Theo-
rem 5.2], applied to v = Du ∈ Ws−1,p(Bλρ)). This ends the proof in the integer case.
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When s is not an integer, we estimate the norm of the difference D�s	(u ◦ ϕa)(x) −D�s	(u ◦ ϕa)(y). We use Claim 1 in 
order to express D�s	(u ◦ ϕa)(x) as a linear combination of expressions of the form F(x) := L(x)[H1(x), . . . , Hk(x)]
with L(x) = (Dku)(ϕa(x)) and Hl(x)[h] = D|Jl |(ϕa)(x)[hJl

]. We recall that if � is a multilinear map defined on a 
cross product of linear spaces A1 × · · · × Ak and a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ A1 × · · · × Ak then

�(a) − �(b) =
k∑

l=1

�(b1, . . . , bl−1, al − bl, al+1, . . . , ak).

In particular, we have the estimate

|F(x) − F(y)| ≤ |L(x) − L(y)|
k∏

l=1

|Hl(x)| +
k∑

m=1

(
|L(y)| |Hm(x) − Hm(y)|

∏
l �=m

|Hl(x)|
)

.

Since ϕ is smooth, each map Hl is smooth thus yielding a constant C5 > 0 depending on ϕ such that

|D�s	(u ◦ ϕa)(x) − D�s	(u ◦ ϕa)(y)| ≤ C5

( �s	∑
k=1

|(Dku)(ϕa(x)) − (Dku)(ϕa(y))| + |(Dku)(ϕa(y))| |x − y|
)

.

Thus, by integration we get

Es−�s	,p(D�s	(u ◦ ϕa),B
m
ρ ) ≤ C6

�s	∑
k=1

Es−�s	,p(Dku ◦ ϕa,B
m
ρ ) + C6

�s	∑
k=1

ˆ

Bm
ρ ×Bm

ρ

|(Dku)(ϕa(y))|p dx dy

|x − y|m+(s−�s	−1)p
. (6.5)

Since m + (s − �s	 − 1)p < m, the second term in the right-hand side of (6.5) is lower or equal than

C6

�s	∑
k=1

ˆ

Bm
ρ

|(Dku)(ϕa(x))|p dx

ˆ

B
m
2ρ

dy

|y|m+(s−�s	−1)p
≤ C7

�s	∑
k=1

ˆ

Bm
ρ

|(Dku)(ϕa(x))|p dx,

whose average over Bm
ηρ/2 is controlled by E1,p(u, Bm

λρ) + Es,p(u, Bm
λρ), by the same changes of variables that the one 

leading to (6.4).
Moreover, by the proof of Lemma 2.1, the average over Bm

ηρ/2 of the first term in the right-hand side of (6.5) is 
lower or equal than

C8

�s	∑
k=1

Es−�s	,p(Dku,Bm
λρ) ≤ C9

(
E1,p(u,Bm

λρ) + Es,p(u,Bm
λρ)

)
.

Here, we have applied an interpolation inequality of fractional order of smoothness. For convenience of the reader, we 
state and prove the required inequality in Lemma 6.6 below (for our purpose, we actually need to apply the lemma to 
the map v = Du). �
Remark 6.5. In the proof of Theorem 6.1 outlined above, it appears that the Sobolev maps are only precomposed. 
This implies that all the pointwise estimate in the proofs when s ∈ N∗ are still valid for intrinsic covariant derivatives 
[32] and thus Theorem 6.1 holds for intrinsic weak covariant derivatives.

Lemma 6.6 (Interpolation of order of smoothness). For every ρ ∈ (0, +∞), m, υ ∈ N∗, p ∈ [1, +∞), s ∈ (0, +∞)

and s′ ∈ (0, s), there exists a constant C10 ∈ (0, +∞) such that

Es′,p(v,Bm
ρ ) ≤ C10

(‖v‖p

Lp(Bm
ρ )

+ Es,p(v,Bm
ρ )

)
for every v ∈ Ws,p(Bm

ρ ,Rυ).

Remark 6.7. The lemma is still valid if replacing Bm
ρ by a bounded Lipschitz domain.



446 A. Monteil, J. Van Schaftingen / Ann. I. H. Poincaré – AN 36 (2019) 417–449
Proof of Lemma 6.6. Step 1: if �s	 < s′ < s < �s	 + 1. In particular, we have �s′	 = �s	; we deduce by boundedness 
of Bm

ρ and by definition of the Sobolev energies that

Es′,p(v,Bm
ρ ) =

ˆ

Bm
ρ

ˆ

Bm
ρ

∣∣D�s	v(x) − D�s	v(y)
∣∣p

|x − y|m+(s′−�s	)p dx dy

≤ C1

ˆ

Bm
ρ

ˆ

Bm
ρ

∣∣D�s	v(x) − D�s	v(y)
∣∣p

|x − y|m+(s−�s	)p dx dy = C1Es,p(v,Bm
ρ ).

Step 2: if �s′	 < s′ < s = �s′	 + 1. By a standard approximation procedure, we can assume that v is smooth and we 
compute

Es′,p(v,Bm
ρ ) =

ˆ

Bm
ρ

ˆ

Bm
ρ

|D�s′	v(x) − D�s′	v(y)|p
|x − y|m+(s′−�s′	)p dx dy

=
ˆ

Bm
ρ

ˆ

Bm
ρ

∣∣´ 1
0 D�s′	+1v(x + t (y − x)) · (y − x)dt

∣∣p
|x − y|m+(s′−�s′	)p dx dy

≤
ˆ

Bm
ρ

ˆ

Bm
ρ

1ˆ

0

|D�s′	+1v(x + t (y − x))|p
|x − y|m+(s′−�s′	−1)p

dt dx dy

≤
ˆ

B
m
R

dz

|z|m+(s′−�s′	−1)p
·
ˆ

Bm
ρ

|D�s′	+1v(x)|p dx = C2Es,p(v,Bm
ρ ),

where R > 0 is such that for every x, y ∈ B
m
ρ , one has y − x ∈ B

m
R , and the first integral converges since m + (s′ −

�s′	 − 1)p < m.

Step 3: if s′ ∈ N
∗. We shall prove the existence of a constant C3 > 0 such that

�s	∑
k=1

Ek,p(v,Bm
ρ ) ≤ C3

(‖v‖p

Lp(Bm
ρ )

+ Es,p(v,Bm
ρ )

)
.

We use a standard compactness argument: assuming that the inequality – which is homogeneous in v – fails with 
C3 = 2n for every n ∈N, one gets a sequence (vn)n∈N ⊂ Ws,p(Bm

ρ , Rυ) such that

1 =
�s	∑
k=1

Ek,p(vn,B
m
ρ ) > 2n

(‖vn‖p

Lp(Bm
ρ )

+ Es,p(vn,B
m
ρ )

)
for every n ∈ N.

In particular, (vn)n∈N is bounded in W �s	,p(Bm
ρ , Rυ) and (vn)n∈N goes to 0 in Lp . If k ∈ {1, . . . , �s	 − 1}, we deduce 

by the compact embedding W �s	,p ↪→ Wk,p that (Ek,p(vn, Bm
ρ ))n → 0. Moreover, as (Es,p(vn, Bm

ρ ))n → 0, we have 
by Lemma 6.8 below that (D�s	vn)n∈N converges to 0 strongly in Lp (the lemma is applied only when s /∈ N); this 
contradicts the fact that 1 = ∑�s	

k=1 Ek,p(vn, Bm
ρ ) for every n ∈N.

Step 4: if s′ /∈ N and s′ < �s	. In particular, �s′	 < s′ < �s′	 + 1 ≤ s and we have

Es′,p(v,Bm
ρ ) ≤ C4E�s′	+1,p(v,Bm

ρ ) ≤ C5
(‖v‖p

Lp(Bm
ρ )

+ Es,p(v,Bm
ρ )

)
,

where we have used successively Step 2 in the first inequality and Step 3 in the last one. �
Lemma 6.8. For every ρ ∈ (0, +∞), m, υ ∈ N

∗, s ∈ (0, 1) and p ∈ [1, +∞), the injection Ws,p(Bm
ρ , Rυ) ↪→

Lp(Bm
ρ , Rυ) is compact.
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Remark 6.9. The lemma is still valid if replacing Bm
ρ by a bounded Lipschitz domain.

Proof. Let (vn)n∈N be a sequence of maps in Lp(Bm
ρ ) such that supn ‖vn‖p

Lp(Bm
ρ )

+ Es,p(vn, Bm
ρ ) < +∞; we shall 

prove that (vn)n∈N has a subsequence which converges strongly in Lp. First, for each n ∈ N, Lemma 2.4 yields a map 
v̄n : Bm

2ρ →R
υ such that

v̄n = vn on B
m
ρ , ‖v̄n‖p

Lp(Bm
2ρ)

≤ ‖vn‖p

Lp(Bm
ρ )

and Es,p(v̄n,B
m
2ρ) ≤ Es,p(vn,B

m
ρ ).

By the Riesz–Fréchet–Kolmogorov compactness criterion (see for instance [27, Theorem 4.26]), it is enough to prove 
that

sup
n∈N

ˆ

Bm
ρ

|v̄n(x + τ) − v̄n(x)|p dx −→
τ→0

0.

We compute for every τ ∈ (0, ρ),ˆ

Bm
ρ

|v̄n(x + τ) − v̄n(x)|p dx ≤ 2p−1
ˆ

Bm
ρ

 

Bm
τ (x)

(|v̄n(x + τ) − v̄n(y)|p + |v̄n(y) − v̄n(x)|p)
dy dx

≤ 2p

Lm(Bm
τ )

ˆ
{
x,y ∈B

m
2ρ : |x−y|<2τ

}
|v̄n(y) − v̄n(x)|p dy dx

≤ 2p

Lm(Bm
τ )

ˆ
{
x,y ∈B

m
2ρ : |x−y|<2τ

}
|v̄n(y) − v̄n(x)|p (2τ)m+sp

|x − y|m+sp
dy dx

≤ C6τ
spEs,p(v̄n,B

m
2ρ) ≤ C6τ

spEs,p(vn,B
m
ρ );

the conclusion follows since sp > 0 and supn Es,p(vn, Bm
ρ ) < +∞. �
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