Given a connected Riemannian manifold , an m-dimensional Riemannian manifold which is either compact or the Euclidean space, and , we establish, for the problems of surjectivity of the trace, of weak-bounded approximation, of lifting and of superposition, that qualitative properties satisfied by every map in a nonlinear Sobolev space imply corresponding uniform quantitative bounds. This result is a nonlinear counterpart of the classical Banach–Steinhaus uniform boundedness principle in linear Banach spaces.
Mots-clés : Nonlinear uniform boundedness principle, Opening of maps, Counterexamples
@article{AIHPC_2019__36_2_417_0, author = {Monteil, Antonin and Van Schaftingen, Jean}, title = {Uniform boundedness principles for {Sobolev} maps into manifolds}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {417--449}, publisher = {Elsevier}, volume = {36}, number = {2}, year = {2019}, doi = {10.1016/j.anihpc.2018.06.002}, mrnumber = {3913192}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.06.002/} }
TY - JOUR AU - Monteil, Antonin AU - Van Schaftingen, Jean TI - Uniform boundedness principles for Sobolev maps into manifolds JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 417 EP - 449 VL - 36 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.06.002/ DO - 10.1016/j.anihpc.2018.06.002 LA - en ID - AIHPC_2019__36_2_417_0 ER -
%0 Journal Article %A Monteil, Antonin %A Van Schaftingen, Jean %T Uniform boundedness principles for Sobolev maps into manifolds %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 417-449 %V 36 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.06.002/ %R 10.1016/j.anihpc.2018.06.002 %G en %F AIHPC_2019__36_2_417_0
Monteil, Antonin; Van Schaftingen, Jean. Uniform boundedness principles for Sobolev maps into manifolds. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 417-449. doi : 10.1016/j.anihpc.2018.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.06.002/
[1] Sobolev Spaces, Pure and Applied Mathematics, vol. 140, Elsevier/Academic Press, Amsterdam, 2003 | MR | Zbl
[2] Remarques sur le calcul symbolique dans certains espaces de Besov à valeurs vectorielles, Ann. Math. Blaise Pascal, Volume 16 (2009) no. 2, pp. 399–429 | DOI | Numdam | MR | Zbl
[3] Functions of Bounded Variation and Free Discontinuity Problems, vol. 254, Clarendon Press Oxford, Oxford, 2000 | MR | Zbl
[4] Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, vol. 95, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[5] Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., Volume 202 (2011) no. 2, pp. 493–535 | MR | Zbl
[6] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., Volume 3 (1922) no. 1, pp. 133–181 | JFM | MR
[7] A characterization of maps in which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 4, pp. 269–286 | DOI | Numdam | MR | Zbl
[8] The approximation problem for Sobolev maps between two manifolds, Acta Math., Volume 167 (1991) no. 3–4, pp. 153–206 | MR | Zbl
[9] A new obstruction to the extension problem for Sobolev maps between manifolds, J. Fixed Point Theory Appl., Volume 15 (2014) no. 1, pp. 155–183 | DOI | MR | Zbl
[10] A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces | arXiv | DOI
[11] Variational Methods, Progr. Nonlinear Differential Equations Appl., Volume vol. 4, Birkhäuser, Boston, MA (1990), pp. 37–52 (Paris, 1988) | MR | Zbl
[12] Some questions related to the lifting problem in Sobolev spaces, Perspectives in Nonlinear Partial Differential Equations, Contemp. Math., vol. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 125–152 | DOI | MR | Zbl
[13] Extensions for Sobolev mappings between manifolds, Calc. Var. Partial Differ. Equ., Volume 3 (1995) no. 4, pp. 475–491 | DOI | MR | Zbl
[14] Fonctions qui opèrent sur les espaces de Besov et de Triebel, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993) no. 4, pp. 413–422 | DOI | Numdam | MR | Zbl
[15] Composition operators on function spaces with fractional order of smoothness, Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, vol. B26, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, pp. 93–132 | MR | Zbl
[16] On the equation and application to control of phases, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 393–426 | DOI | MR | Zbl
[17] Lifting in Sobolev spaces, J. Anal. Math., Volume 80 (2000), pp. 37–86 | DOI | MR | Zbl
[18] On the structure of the Sobolev space with values into the circle, C. R. Acad. Sci., Sér. 1 Math., Volume 331 (2000) no. 2, pp. 119–124 | MR | Zbl
[19] maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Études Sci. (2004) no. 99, pp. 1–115 | Numdam | MR | Zbl
[20] Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math., Volume 58 (2005) no. 4, pp. 529–551 | DOI | MR | Zbl
[21] Density of smooth maps for fractional Sobolev spaces into ℓ simply connected manifolds when , Confluentes Math., Volume 5 (2013) no. 2, pp. 3–22 | DOI | Numdam | MR
[22] Strong density for higher order Sobolev spaces into compact manifolds, J. Eur. Math. Soc., Volume 17 (2015) no. 4, pp. 763–817 | DOI | MR
[23] Density of bounded maps in Sobolev spaces into complete manifolds, Ann. Mat. Pura Appl. (4), Volume 196 (2017) no. 6, pp. 2261–2301 | DOI | MR
[24] Weak approximation by bounded Sobolev maps with values into complete manifolds, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 3, pp. 264–271 | DOI | MR
[25] Relaxed energies for harmonic maps and liquid crystals, Ric. Mat., Volume 40 (1991) no. Suppl., pp. 163–173 | MR | Zbl
[26] Functional Analysis and Related Topics, Lecture Notes in Math., Volume vol. 1540, Springer, Berlin (1993), pp. 11–24 (Kyoto, 1991) | DOI | MR | Zbl
[27] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | MR | Zbl
[28] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986) no. 4, pp. 649–705 | DOI | MR | Zbl
[29] Topology and Sobolev spaces, J. Funct. Anal., Volume 183 (2001) no. 2, pp. 321–369 | DOI | MR | Zbl
[30] Density in , J. Funct. Anal., Volume 269 (2015) no. 7, pp. 2045–2109 | MR
[31] Intrinsic co-local weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 16 (2016) no. 1, pp. 97–128 | MR
[32] Higher order weak differentiability and Sobolev spaces between manifolds, Adv. Calc. Var. (2018) (in press) | DOI | MR
[33] Real Analysis, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer, New York, 2016 | MR
[34] A fractional order Hardy inequality, Ill. J. Math., Volume 48 (2004) no. 2, pp. 575–588 | MR | Zbl
[35] Measure Theory and Fine Properties of Functions, Textbooks in Mathematics, CRC Press, 2015 | MR | Zbl
[36] Quantitative algebraic topology and Lipschitz homotopy, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 48, pp. 19246–19250 | DOI | MR | Zbl
[37] Prospects in Mathematics, Amer. Math. Soc., Providence, RI (1999), pp. 45–49 (Princeton, NJ, 1996) | MR | Zbl
[38] Über folgen linearer Operationen, Monatshefte Math. Phys., Volume 32 (1922), pp. 3–88 | JFM | MR
[39] Approximation of Sobolev mappings, Nonlinear Anal., Volume 22 (1994) no. 12, pp. 1579–1591 | DOI | MR | Zbl
[40] Topology of Sobolev mappings. II, Acta Math., Volume 191 (2003) no. 1, pp. 55–107 | DOI | MR | Zbl
[41] Topology of Sobolev mappings. III, Commun. Pure Appl. Math., Volume 56 (2003) no. 10, pp. 1383–1415 | DOI | MR | Zbl
[42] Mappings minimizing the norm of the gradient, Commun. Pure Appl. Math., Volume 40 (1987) no. 5, pp. 555–588 | DOI | MR | Zbl
[43] Sur les fonctions qui opèrent sur l'espace , Ann. Inst. Fourier (Grenoble), Volume 15 (1965) no. 2, pp. 525–536 | DOI | Numdam | MR | Zbl
[44] Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York, 1964 | MR | Zbl
[45] Complete characterization of functions which act, via superposition, on Sobolev spaces, Trans. Am. Math. Soc., Volume 251 (1979), pp. 187–218 | DOI | MR | Zbl
[46] The Lavrentiev gap phenomenon for harmonic maps into spheres holds on a dense set of zero degree boundary data, Adv. Calc. Var., Volume 10 (2017) no. 3, pp. 303–314 | DOI | MR
[47] Two remarks on liftings of maps with values into , C. R. Math. Acad. Sci. Paris, Volume 343 (2006) no. 7, pp. 467–472 | DOI | MR | Zbl
[48] Sobolev maps on manifolds: degree, approximation, lifting, Contemp. Math., Volume 446 (2007), pp. 413–436 | DOI | MR | Zbl
[49] Lifting default for -valued maps, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 19–20, pp. 1039–1044 | MR | Zbl
[50] P. Mironescu, Lifting of -valued maps in sums of Sobolev spaces, 2008.
[51] Decomposition of -valued maps in Sobolev spaces, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 13–14, pp. 743–746 | MR | Zbl
[52] Superposition with subunitary powers in Sobolev spaces, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 6, pp. 483–487 | DOI | MR | Zbl
[53] Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015) no. 5, pp. 965–1013 | DOI | Numdam | MR | Zbl
[54] Maps into projective spaces: liquid crystal and conformal energies, Discrete Contin. Dyn. Syst., Ser. B, Volume 17 (2012) no. 2, pp. 597–635 | MR | Zbl
[55] The imbedding problem for Riemannian manifolds, Ann. Math. (2), Volume 63 (1956), pp. 20–63 | DOI | MR | Zbl
[56] Inequalities related to liftings and applications, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 17–18, pp. 957–962 | MR | Zbl
[57] Weak density of smooth maps in for non-abelian , Ann. Glob. Anal. Geom., Volume 23 (2003) no. 1, pp. 1–12 | DOI | MR | Zbl
[58] Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal., Volume 13 (2003) no. 1, pp. 223–257 | DOI | MR | Zbl
[59] Controlled singular extension of critical trace Sobolev maps from spheres to compact manifolds, Int. Math. Res. Not., Volume 2017 (2017) no. 12, pp. 3467–3683 | MR | Zbl
[60] Dense subsets of , Ann. Glob. Anal. Geom., Volume 18 (2000) no. 5, pp. 517–528 | DOI | MR | Zbl
[61] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 253–268 | DOI | MR | Zbl
[62] A really simple elementary proof of the uniform boundedness theorem, Am. Math. Mon., Volume 118 (2011) no. 5, pp. 450–452 | MR | Zbl
[63] Theory of Function Spaces, Monographs in Mathematics, vol. 78, Birkhäuser, Basel, 1983 | MR | Zbl
[64] Functional Analysis, Cornerstones, Birkhäuser, New York, 2013 (Fundamentals and applications) | MR | Zbl
Cité par Sources :