The Aviles Giga functional is a well known second order functional that forms a model for blistering and in a certain regime liquid crystals, a related functional models thin magnetized films. Given Lipschitz domain
Mots-clés : aviles giga functional
@article{COCV_2012__18_2_383_0, author = {Lorent, Andrew}, title = {A simple proof of the characterization of functions of low {Aviles} {Giga} energy on a ball \protect\emph{via }regularity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {383--400}, publisher = {EDP-Sciences}, volume = {18}, number = {2}, year = {2012}, doi = {10.1051/cocv/2010102}, zbl = {1259.49077}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2010102/} }
TY - JOUR AU - Lorent, Andrew TI - A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 383 EP - 400 VL - 18 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2010102/ DO - 10.1051/cocv/2010102 LA - en ID - COCV_2012__18_2_383_0 ER -
%0 Journal Article %A Lorent, Andrew %T A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 383-400 %V 18 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2010102/ %R 10.1051/cocv/2010102 %G en %F COCV_2012__18_2_383_0
Lorent, Andrew. A simple proof of the characterization of functions of low Aviles Giga energy on a ball via regularity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 2, pp. 383-400. doi : 10.1051/cocv/2010102. https://www.numdam.org/articles/10.1051/cocv/2010102/
[1] Neel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 31-68. | Numdam | MR | Zbl
, and ,[2] Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327-355. | MR | Zbl
, and ,[3] Viscosity property of minimizing micromagnetic configurations. Commun. Pure Appl. Math. 56 (2003) 681-688. | MR | Zbl
, and ,[4] A mathematical problem related to the physical theory of liquid crystal configurations, in Miniconference on geometry and partial differential equations 2, Canberra (1986) 1-16, Proc. Centre Math. Anal. Austral. Nat. Univ. 12, Austral. Nat. Univ., Canberra (1987). | MR
and ,[5] The distance function and defect energy. Proc. Soc. Edinb. Sect. A 126 (1996) 923-938. | MR | Zbl
and ,[6] On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Soc. Edinb. Sect. A 129 (1999) 1-17. | MR | Zbl
and ,[7] Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409-433. | MR | Zbl
,[8] Multiscale modeling of materials - the role of analysis, in Trends in nonlinear analysis, Springer, Berlin (2003) 375-408. | Zbl
, , , and ,[9] A compactness result in the gradient theory of phase transitions. Proc. Soc. Edinb. Sect. A 131 (2001) 833-844. | Zbl
, , and ,[10] A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55 (2002) 1408-1460. | MR | Zbl
, , and ,[11] Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society (1998). | Zbl
,[12] Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press (1992). | MR | Zbl
and ,[13] The morphology and folding patterns of buckling-driven thin-film blisters. J. Mech. Phys. Solids 42 (1994) 531-559. | MR | Zbl
and ,[14] Some regularity results in ferromagnetism. Commun. Partial Differ. Equ. 25 (2000) 1235-1258. | MR | Zbl
and ,[15] A compactness result in thin-film micromagnetics and the optimality of the Néel wall. J. Eur. Math. Soc. (JEMS) 10 (2008) 909-956. | MR | Zbl
and ,[16] Line-energy Ginzburg-Landau models : zero-energy states. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002) 187-202. | Numdam | MR | Zbl
, and ,[17] Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355-390. | MR | Zbl
and ,[18] A quantitative characterisation of functions with low Aviles Giga energy on convex domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (submitted). Available at http://arxiv.org/abs/0902.0154v1. | Zbl
,[19] Limiting domain wall energy for a problem related to micromagnetics. Commun. Pure Appl. Math. 54 (2001) 294-338. | MR | Zbl
and ,[20] Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30. Princeton University Press (1970). | MR | Zbl
,Cité par Sources :