Line-energy Ginzburg-Landau models : zero-energy states
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 1, pp. 187-202.

We consider a class of two-dimensional Ginzburg-Landau problems which are characterized by energy density concentrations on a one-dimensional set. In this paper, we investigate the states of vanishing energy. We classify these zero-energy states in the whole space: They are either constant or a vortex. A bounded domain can sustain a zero-energy state only if the domain is a disk and the state a vortex. Our proof is based on specific entropies which lead to a kinetic formulation, and on a careful analysis of the corresponding weak solutions by the method of characteristics.

Classification : 35B65, 35J60, 35L65, 74G65, 82D30
@article{ASNSP_2002_5_1_1_187_0,
     author = {Jabin, Pierre-Emmanuel and Otto, Felix and Perthame, Beno\^It},
     title = {Line-energy {Ginzburg-Landau} models : zero-energy states},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {187--202},
     publisher = {Scuola normale superiore},
     volume = {Ser. 5, 1},
     number = {1},
     year = {2002},
     mrnumber = {1994807},
     zbl = {1072.35051},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2002_5_1_1_187_0/}
}
TY  - JOUR
AU  - Jabin, Pierre-Emmanuel
AU  - Otto, Felix
AU  - Perthame, BenoÎt
TI  - Line-energy Ginzburg-Landau models : zero-energy states
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2002
SP  - 187
EP  - 202
VL  - 1
IS  - 1
PB  - Scuola normale superiore
UR  - http://www.numdam.org/item/ASNSP_2002_5_1_1_187_0/
LA  - en
ID  - ASNSP_2002_5_1_1_187_0
ER  - 
%0 Journal Article
%A Jabin, Pierre-Emmanuel
%A Otto, Felix
%A Perthame, BenoÎt
%T Line-energy Ginzburg-Landau models : zero-energy states
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2002
%P 187-202
%V 1
%N 1
%I Scuola normale superiore
%U http://www.numdam.org/item/ASNSP_2002_5_1_1_187_0/
%G en
%F ASNSP_2002_5_1_1_187_0
Jabin, Pierre-Emmanuel; Otto, Felix; Perthame, BenoÎt. Line-energy Ginzburg-Landau models : zero-energy states. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 1 (2002) no. 1, pp. 187-202. http://www.numdam.org/item/ASNSP_2002_5_1_1_187_0/

[1] L. Ambrosio - C. De Lellis - C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. | MR | Zbl

[2] P. Aviles - Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for grasient fields, Proc. Roy. Soc. Edinburgh 129A (1999), 1-17. | MR | Zbl

[3] F. Béthuel - H. Brézis - F. Hélein, “Ginzburg-Landau vortices”, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 1994. | MR | Zbl

[4] M. Cessenat, Théorèmes de trace L p pour les espaces de fonctions de la neutronique, C.R. Acad. Sci. Paris Sér. I 299 (1984), 834 and 300 (1985), 89. | MR | Zbl

[5] A. Desimone - R. V. Kohn - S. Müller - F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844. | MR | Zbl

[6] A. Desimone - R. V. Kohn - S. Müller - F. Otto, Magnetic microstructures, a paradigm of multiscale problems, Proceedings of ICIAM, to appear. | Zbl

[7] H. Federer, “Geometric measure theory”, Springer-Verlag, 1969. | MR | Zbl

[8] R. Howard - A. Treibergs, A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature, Rocky Mountain J. Math. 25 (1995), n. 2, 635-684. | MR | Zbl

[9] P. E. Jabin - B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math. 54 (2001), 1096-1109. | MR | Zbl

[10] W. Jin - R. V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci 10 (2000), 355-390. | MR | Zbl

[11] T. Rivière - S. Serfaty, Limiting domain wall energy in micromagnetism, Comm. Pure Appl. Math. 54 (2001), 294-338. | MR | Zbl

[12] T. Rivière - S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, preprint (2001). | MR | Zbl

[13] S. Ukai, Solutions of the Boltzmann equation, In: “Pattern and waves”, North-Holland 1986. | MR | Zbl

[14] A. Vasseur, Strong traces for solutions to multidimensional scalar conservation laws, Arch. Rational Mech. Anal., to appear. | MR | Zbl