We study a two-dimensional model for micromagnetics, which consists in an energy functional over
Mots-clés : micromagnetics, thin films, cross-tie walls, gamma-convergence
@article{COCV_2002__8__31_0, author = {Alouges, Fran\c{c}ois and Rivi\`ere, Tristan and Serfaty, Sylvia}, title = {N\'eel and {Cross-Tie} wall energies for planar micromagnetic configurations}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {31--68}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002017}, mrnumber = {1932944}, zbl = {1092.82047}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2002017/} }
TY - JOUR AU - Alouges, François AU - Rivière, Tristan AU - Serfaty, Sylvia TI - Néel and Cross-Tie wall energies for planar micromagnetic configurations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 31 EP - 68 VL - 8 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2002017/ DO - 10.1051/cocv:2002017 LA - en ID - COCV_2002__8__31_0 ER -
%0 Journal Article %A Alouges, François %A Rivière, Tristan %A Serfaty, Sylvia %T Néel and Cross-Tie wall energies for planar micromagnetic configurations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 31-68 %V 8 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2002017/ %R 10.1051/cocv:2002017 %G en %F COCV_2002__8__31_0
Alouges, François; Rivière, Tristan; Serfaty, Sylvia. Néel and Cross-Tie wall energies for planar micromagnetic configurations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 31-68. doi : 10.1051/cocv:2002017. http://www.numdam.org/articles/10.1051/cocv:2002017/
[1] Asymptotic behavior of the Landau-Lifschitz model of ferromagnetism. Appl. Math. Optim. 23 (1991) 171-193. | MR | Zbl
, and ,[2] Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equation 9 (1999) 327-355. | MR | Zbl
, and ,[3] A mathematical problem related to the physical theory of liquid crystals configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1-16. | MR
and ,[4] On lower semicontinuity of a defect obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Royal Soc. Edinburgh Sect. A 129 (1999) 1-17. | MR | Zbl
and ,[5] A Viscosity Property of Minimizing Micromagnetic Configurations. Preprint. | MR | Zbl
, and ,[6] On nematics stabilized by a large external field. Rev. Math. Phys. 11 (1999) 653-710. | MR | Zbl
and ,[7] Ginzburg-Landau vortices. Birkhauser (1994). | MR | Zbl
, and ,[8] Density of smooth functions between two manifolds in Sobolev spaces. J. Func. Anal. 80 (1988) 60-75. | MR | Zbl
and ,[9] Micromagnetics. Wiley, New York (1963).
,[10] Regularity for critical points of a non local energy. Calc. Var. Partial Differential Equation 5 (1997) 409-433. | MR | Zbl
,
[11] A
[12] Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 (1993) 99-143. | MR | Zbl
,[13] Minima absolus pour des énergies ferromagnétiques. C. R. Acad. Sci. Paris 331 (2000) 497-500. | MR | Zbl
and ,[14] A compactness result in the gradient theory of phase transitions. Proc. Roy. Soc. Edinburgh 131 (2001) 833-844. | MR | Zbl
, , and ,[15] Magnetic microstructures, a paradigm of multiscale problems. Proceedings of ICIAM. | Zbl
, , and ,[16] A reduced theory for thin-film micromagnetics. Preprint (2001). | MR | Zbl
, , and ,[17]
, , and (in preparation).[18] Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, Stud. Adv. Math. (1992). | MR | Zbl
and ,[19] Some regularity results in ferromagnetism. Comm. Partial Differential Equation 25 (2000) 1235-1258. | MR | Zbl
and ,[20]
, Ph.D. Thesis. Courant Institute (2001).[21] Magnetic Domains. Springer (1998).
and ,[22] Singular Perturbation and the Energy of Folds. J. Nonlinear Sci. 10 (2000) 355-390. | MR | Zbl
and ,[23] Frustration in ferromagnetic materials, Continuum Mech. Thermodynamics 2 (1990) 215-239. | MR
and ,[24] Ginzburg-Landau line energies: The zero-energy case (to appear).
, , and ,[25] Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. | Zbl
and ,[26] Regularity for micromagnetic configurations having zero jump energy. Calc. Var. Partial Differential Equations (to appear). | MR | Zbl
and ,
[27]
[28] Direct solution of the Landau-Lifshitz-Gilbert equation for micromagnetics. Japanese J. Appl. Phys. 28 (1989) 2485-2507.
, and ,[29] The Magnetic Ground State of a Thin-Film Element. IEEE Trans. Mag. 36 (2000) 3886-3899.
and ,[30] Limiting Domain Wall Energy for a Problem Related to Micromagnetics. Comm. Pure Appl. Math. 54 (2001) 294-338. | MR | Zbl
and ,[31] Compactness, kinetic formulation and entropies for a problem related to micromagnetics. Comm. in Partial Differential Equations (to appear). | MR | Zbl
and ,[32] On Landau-Lifschitz equations for ferromagnetism, Japanese J. Appl. Math. 2 (1985) 69-84. | Zbl
,[33]
, preprint (1999) and habilitation thesis. University of Tours (2000).[34] The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101 (1988) 209-260. | MR | Zbl
,[35] Self-consistent domain theory in soft micromagnetic media, II, Basic domain structures in thin film objects. J. Appl. Phys. 60 (1986) 1104-1113.
,Cité par Sources :