Holomorphic germs on Banach spaces
Annales de l'Institut Fourier, Tome 21 (1971) no. 3, pp. 107-141.

Soient E et F des espaces de Banach complexes, U un ouvert non-vide de E et K un compact de E. La notion de type d’holomorphie θ de E dans F et la topologie localement convexe naturelle 𝒯ω,θ sur l’espace vectoriel θ(U,F) de toutes les applications holomorphes de U dans F, d’un type d’holomorphie donné θ, ont été considérées d’abord par L. Nachbin. C’est le motif pour lequel nous introduisons l’espace localement convexe θ(K,F) de tous les germes d’applications holomorphes autour de K dans F, d’un type d’holomorphie donné θ, en étudiant ses rapports avec θ(U,F), et quelques unes des propriétés de la topologie 𝒯ω,θ.

Let E and F be two complex Banach spaces, U a nonempty subset of E and K a compact subset of E. The concept of holomorphy type θ between E and F, and the natural locally convex topology 𝒯ω,θ on the vector space θ(U,F) of all holomorphic mappings of a given holomorphy type θ from U to F were considered first by L. Nachbin. Motived by his work, we introduce the locally convex space θ(K,F) of all germs of holomorphic mappings into F around K of a given holomorphy type θ, and study its interplay with θ(U,F) and some other properties of the topology 𝒯ω,θ.

@article{AIF_1971__21_3_107_0,
     author = {Chae Soo Bong},
     title = {Holomorphic germs on {Banach} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {107--141},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {21},
     number = {3},
     year = {1971},
     doi = {10.5802/aif.381},
     mrnumber = {49 #9627},
     zbl = {0222.46018},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.381/}
}
TY  - JOUR
AU  - Chae Soo Bong
TI  - Holomorphic germs on Banach spaces
JO  - Annales de l'Institut Fourier
PY  - 1971
SP  - 107
EP  - 141
VL  - 21
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.381/
DO  - 10.5802/aif.381
LA  - en
ID  - AIF_1971__21_3_107_0
ER  - 
%0 Journal Article
%A Chae Soo Bong
%T Holomorphic germs on Banach spaces
%J Annales de l'Institut Fourier
%D 1971
%P 107-141
%V 21
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.381/
%R 10.5802/aif.381
%G en
%F AIF_1971__21_3_107_0
Chae Soo Bong. Holomorphic germs on Banach spaces. Annales de l'Institut Fourier, Tome 21 (1971) no. 3, pp. 107-141. doi : 10.5802/aif.381. https://www.numdam.org/articles/10.5802/aif.381/

[A] H. Alexander, Analytic functions on a Banach space, Thesis, University of California at Berkeley (1968).

[Ch] S.B. Chae, Sur les espaces localement convexes de germes holomorphes, C.R. Ac. Paris, 271 (1970), 990-991. | MR | Zbl

[Ar] R.M. Aron, Topological properties of the space of holomorphic mappings, Thesis, University of Rochester (1970).

[B] J.A. Barroso, Topologia em espacos de aplicações holomorfas entre espaços localmente convexos, Thesis, Instituto de Matematica Pura e Aplicada, Rio de Janeiro (1970).

[C] G. Coeure, Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques, Thèse, Université de Nancy (1969).

[D1] S. Dineen, Holomorphy type on a Banach space, Thesis, University of Maryland (1969).

[D2] S. Dineen, Holomorphic functions on a Banach space, Bulletin of American Mathematical Society (1970). | MR | Zbl

[D3] S. Dineen, The Cartan-Thullen theorem for Banach spaces, to appear Annali della Scuola Normale Superiore de Pisa. | Numdam | Zbl

[D4] S. Dineen, Bounding subsets of a Banach space (to appear). | Zbl

[DS] J. Dieudonne, L. Schwartz, La dualité dans les espaces (F) et (LF), Annales de l'Institut Fourier, Grenoble, t. 1 (1949), 61-101. | EuDML | Numdam | MR | Zbl

[GJ] L. Gillman, M. Jerison, Rings of continuous functions, Van Nostrand, Princeton (1960). | MR | Zbl

[Gr] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasiliensis Mathematicae, v. 3 (1954), 57-122. | MR | Zbl

[Gr2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs of American Mathematical Society, n° 16 (1955). | MR | Zbl

[G] C.P. Gupta, Malgrange's theorem for nuclearly entire functions of bounded type on a Banach space, Thesis, University of Rochester (1966). Reproduced in Notas de Matematica, n° 37 (1968), Instituto de Matematica Pura e Aplicada, Rio de Janeiro. | MR | Zbl

[H] J. Horvath, Topological vector spaces and distributions, v. 1., Addison-Wesley, Mass. (1966). | MR | Zbl

[Hr] L. Hörmander, Introduction to complex analysis in several variables, Van Nostrand, Princeton (1966). | MR | Zbl

[L] P. Lelong, Fonctions et applications de type exponentiel dans les espaces vectoriels topologiques, C.R.A.c Paris 169 (1969). | MR

[M1] A. Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, Journal d'Analyse Mathématique, v. 11 (1963), 1-164. | MR | Zbl

[M2] A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Mathematische Annalen, v. 163 (1966), 62-88. | EuDML | MR | Zbl

[Mt] M.C. Matos, Holomorphic mappings and domains of holomorphy, Thesis, University of Rochester (1970). | Zbl

[N1] L. Nachbin, Topological vector spaces of continuous functions, Proc. Nat. Acd. Sci. USA. v. 40 (1954), 471-4. | MR | Zbl

[N2] L. Nachbin, Lectures on topological vector spaces, Lecture note, University of Rochester (1963).

[N3] L. Nachbin, Lectures on the theory of distributions, University of Rochester (1963), Reproduced by Universidade do Recife (1964) ; North-Holland Publishing Company (1970). | Zbl

[N4] L. Nachbin, On the topology of the space of all holomorphic functions on a given open subset, Indagationes Mathematicae, Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, Series A 70 (1967), 366-368. | MR | Zbl

[N5] L. Nachbin, On spaces of holomorphic functions of a given type, Proceedings of the Conference on Functional Analysisis, University of California at Irvine (1966), 50-60. Thompson Book Company (1967). | Zbl

[N6] L. Nachbin, Topology on spaces of holomorphic mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, v. 47 (1969), Springer-Verlag, Berlin. | MR | Zbl

[N7] L. Nachbin, Convolution operators in spaces of nuclearly entire functions on a Banach space, Proceedings of the Symposium on Functional Analysis and Related Fields, University of Chicago (1969), Springer-Verlag, Berlin (in press). | Zbl

[N8] L. Nachbin, Holomorphic functions, domains of holomorphy and local properties, North-Holland Publishing Company (1970). | MR | Zbl

[N9] L. Nachbin, Concerning holomorphy types for Banach spaces, Studia Mathematica, Proceedings of the Colloquim on Nuclear Spaces and Ideals in Operator Algebras held in Warsaw, Poland, June 18-25, 1969.

[NG] L. Nachbin, C.P. Gupta, On Malgrange's theorem for nuclearly entire functions (to appear).

[Nr] P. Noverraz, Fonctions plurisousharmonique et analytiques dans les espaces vectoriels topologiques complexes, Annales de l'Institut Fourier, Grenoble, 19,2 (1969), 419-493. | EuDML | Numdam | MR | Zbl

[P] H.R. Pitt, A note on bilinear forms, Journal London Math. Society, v. 11 (1936), 174-180. | JFM | Zbl

[R] H.P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp (µ) to Lr (v), Journal of Functional Analysis 4 (1969), 176-214. | MR | Zbl

[T] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York and London (1967). | MR | Zbl

[Z] M.A. Zorn, Characterization of analytic functions in Banach spaces, Annals of Mathematics, 12 (1945), 585-593. | MR | Zbl

Cité par Sources :