A teacher's note on no-arbitrage criteria
Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 149-152.
@article{SPS_2001__35__149_0,
     author = {Kabanov, Yuri and Stricker, Christophe},
     title = {A teacher's note on no-arbitrage criteria},
     journal = {S\'eminaire de probabilit\'es de Strasbourg},
     pages = {149--152},
     publisher = {Springer - Lecture Notes in Mathematics},
     volume = {35},
     year = {2001},
     mrnumber = {1837282},
     zbl = {0982.60032},
     language = {en},
     url = {http://www.numdam.org/item/SPS_2001__35__149_0/}
}
TY  - JOUR
AU  - Kabanov, Yuri
AU  - Stricker, Christophe
TI  - A teacher's note on no-arbitrage criteria
JO  - Séminaire de probabilités de Strasbourg
PY  - 2001
SP  - 149
EP  - 152
VL  - 35
PB  - Springer - Lecture Notes in Mathematics
UR  - http://www.numdam.org/item/SPS_2001__35__149_0/
LA  - en
ID  - SPS_2001__35__149_0
ER  - 
%0 Journal Article
%A Kabanov, Yuri
%A Stricker, Christophe
%T A teacher's note on no-arbitrage criteria
%J Séminaire de probabilités de Strasbourg
%D 2001
%P 149-152
%V 35
%I Springer - Lecture Notes in Mathematics
%U http://www.numdam.org/item/SPS_2001__35__149_0/
%G en
%F SPS_2001__35__149_0
Kabanov, Yuri; Stricker, Christophe. A teacher's note on no-arbitrage criteria. Séminaire de probabilités de Strasbourg, Tome 35 (2001), pp. 149-152. http://www.numdam.org/item/SPS_2001__35__149_0/

[1] Dalang R.C., Morton A., Willinger W. Equivalent martingale measures and no-arbitrage in stochastic securities market model. Stochastics and Stochastic Reports, 29 (1990), 185-201. | MR | Zbl

[2] Delbaen F. The Dalang-Morton-Willinger theorem. Preprint.

[3] Harrison M., Pliska S. Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and their Applications, 11, (1981), 215-260. | MR | Zbl

[4] Jacod J., Shiryaev A.N. Local martingales and the fundamental asset pricing theorem in the discrete-time case. Finance and Stochastics, 2 (1998), 3, 259-273. | MR | Zbl

[5] Kreps D.M. Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Economics, 8 (1981), 15-35. | MR | Zbl

[6] Kabanov Yu M., Kramkov D.O. No-arbitrage and equivalent martingale measure : a new proof of the Harrison-Pliska theorem. Probab. Theory its Appl., 39 (1994), 3, 523-527. | MR | Zbl

[7] Rogers L.C.G. Equivalent martingale measures and no-arbitrage. Stochastics and Stochastic Reports, 51 (1994), 41-51. | MR | Zbl

[8] Schachermayer W. A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insurance: Math. Econ., 11 (1992), 1-9. | MR | Zbl

[9] Shiryaev A.N. Essentials of Stochastic Mathematical Finance. World Scientific, 1999. | MR | Zbl

[10] Stricker Ch. Arbitrage et lois de martingale. Annales de l'Institut Henri Poincaré. Probab. et Statist., 26 (1990), 3, 451-460. | Numdam | MR | Zbl

[11] Yan J.A. Caractérisation d'une classe d'ensembles convexes de L1 et H1. Séminaire de Probabilité XIV. Lect. Notes Math., 784 (1980), 220-222. | Numdam | MR | Zbl