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Abstract

We give a new proof of the classical Dalang-Morton-Willinger theorem.
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1. Introduction. The Dalang-Morton-Willinger theorem asserts, for a discrete-time
model of security market, that there is no arbitrage if and only if the price process is a
martingale with respect to an equivalent probability measure. This remarkable result
sometimes is referred to as the First Fundamental Theorem of mathematical finance,
[9]. A simple statement suggests a simple proof and many attempts were made to find
a such one, cf. [1], [10], [8], [6], [7], [4], [2]. Various aspects were investigated in details
and the theorem was augmented by additional equivalent conditions revealing its
profound difference from the Harrison-Pliska theorem [3] which is the same criterion
but for the model with finite Q. Unfortunately, all existing proofs are too cumbersome
for lecture courses. This note is a new attempt to provide a concise proof which uses
only results from the standard syllabus.
2. No-arbitrage criteria. Let (S~, .~’, P) be a probability space equipped with a
finite discrete-time filtration (0t), t = 0, ..., T, = .~’, and let S = (St) be an
adapted d-dimensional process. Let RT :== {~ : ~ = H ~ ST, H E ~} where P is the
set of all predictable d-dimensional processes (i.e. Ht is 0t-1-measurable) and

T

t=i

Put AT := RT-L+; AT is the closure of AT in probability, L+ is the set of non-negative
random variables.

Theorem 1 The following conditions are equivalent:
(a) AT ~ L+ _ {0~~
(b) AT n L.°~ = {0~ and AT = AT;
(c) A~ ~ L.°~ _ {0~;
(d) there is a probability P rv P with dP/dP E L°° such that S is a P-martingale.
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In the context of mathematical finance this model corresponds to the case where
the "numeraire" is a traded security, S describes the evolution of prices of risky
assets, and H ~ ST is the terminal value of a self-financing portfolio. Condition (a) is
interpreted as the absence of arbitrage; it can be written in the obviously equivalent
form RT n L+ = {o} (or H . ST > 0 ~ H . ST = 0). We include in the formulation
only the basic equivalences: various other ones known in the literature can easily be
deduced from the listed above.

If Q is finite then AT is closed being a polyhedral cone in a finite-dimensional
space. For infinite 0 the set Al may be not closed, see an example in [8], while RT
is always closed (this can be checked in a similar way as the implication (a) =~ (b) in
the proof below). .
3. Auxiliary results. The following observation is elementary.

Lemma 2 Let r~n E be such that r~ := lim inf  oo. Then there are
E LO(Rd) such that for all w the sequence of is a convergent subsequence of

the sequence of 

Proof. Let To := 0. Define the random variables Tk := inf{n >  
Then k0 := is in and supk|k0|  oo. Working further with the sequence
of T~y we construct, applying the above procedure to the first component, a sequence
of ~1 with convergent first component and such that for all w the sequence of 
is a subsequence of the sequence of Passing on each step to the newly created
sequence of random variables and to the next component we arrive to a sequence with
the desired properties. D
Remark. The above claim can be formulated as follows: there exists an increasing
sequence of integer-valued random variables o~~ such that converges a.s.

For the sake of completeness, we recall the proof of the well-known result due to
Kreps and Yan, [5], [11].

Lemma 3 Let K ~ -L+ be a closed convex cone in L1 such that K ~ L+ _ ~0}.
Then there is a probability P N P with dP / dP E L°° such that E~  0 for all ~ E K.

Proof. By the Hahn-Banach theorem for any x e L+, x ~ 0, there is Zx E L°° such
that Ezx03BE  Ezxx for all 03BE E K. It follows, since K is a cone, that Ezx03BE  0 for
all ~ E K. Since K contains all negative random variables, Zx > 0 and Ezxx > 0.
Normalizing, we assume that zx  1. The Halmos-Savage theorem asserts that the
family of measures contains a countable equivalent subfamily i E N}
(i.e., both vanish on the same sets). Put p :== ~ and x := Then 
for all i and, hence, E zxx = 0 for all x E L+. Thus, x = 0 (otherwise we would have
Ezxx > 0) and the measure P :== cpP with c = 1/E/? meets the requirements. D
Remark. The Halmos-Savage theorem is simple and the reference can be replaced
by its proof which is as follows. Consider the larger family where y are convex
combinations of zx. Then ess can be attained on an increasing sequence of

Clearly, is a countable equivalent subfamily of ~yP} and it is a convex
envelope of a countable family we are looking for.
4. Proof of Theorem 1. (a) =~ (b) To show that AT is closed we proceed by
induction. Let T = 1. Suppose that Hn10394S1 - rn ~ 03B6 a.s. where Hl is 00-measurable
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and rn E -L~_. It is sufficient to find 00-measurable random variables Hf which are
convergent a.s. and rk E L0+. such that k10394S1 - k ~ 03B6 a.s. convergent.

Let S~2 E Fo form a finite partition of S~. Obviously, we may argue on each Qi
separately as on an autonomous measure space (considering the restrictions of random
variables and traces of a-algebras). .

Let Bi := lim inf|Hn1|. On the set 03A91 := {H1  00} we can take, using Lemma 2,
F0-measurable Hf such that Hf(w) is a convergent subsequence of Hl (cv) for every
w; r~ are defined correspondingly. Thus, if 01 is of full measure, the goal is achieved.

On 03A92 := {H1= ~} we put G? := |and hn1 := and observe that

--~ 0 a.s. By Lemma 2 we find 00-measurable Gl such that is a

convergent subsequence of for every w. Denoting the limit by Gi, we obtain
that 10394S1 = 1 where 1 is non-negative, hence, in virtue of (a), 10394S1 = 0.

As 0, there exists a partition of S~2 into d disjoint subsets ~’o
such that 0 on Define Hl := Hi - where := Hni1/i1 on 03A9i2.
Then Hn10394S1 = Hn10394S1 on 03A92. We repeat the entire procedure on each 03A9i2 with the
sequence Hi knowing that Hl i = 0 for all n. Apparently, after a finite number of
steps we construct the desired sequence.

Let the claim be true for T - 1 and let --~ ~ a.s. where H~
are 0t-measurable and r’~ E L+. By the same arguments based on the elimination
of non-zero components of the sequence Hi and using the induction hypothesis we
replace Hf and rn by Ht and r~ such that fIf converges a.s. This means that the

problem is reduced to the one with T 2014 1 steps.
(b) =~ (c) Trivial.
(c) ~ (d) Notice that for any random variable ~ there is an equivalent probability

P’ with bounded density such that r~ e (e.g., one can take P’ = 
Property (c) (as well as (a) and (b)) is invariant under equivalent change of probability.
This consideration allows us to assume that all St are integrable. The convex set

AT := AT n L1 is closed in L1. Since A~, n L~_ == ~0~, Lemma 3 ensures the existence
of P N P with bounded density and such that E~  0 for all ~ E AT, in particular,
for ç == ±Ht0394St where Ht is bounded and 0t-1-measurable. Thus, = 0.

(d) =~ (a) Let ~ E AT n L) i.e. 0  ~  H ~ ST. As = 0, we obtain

by conditioning that EH . ~ ST = 0. Thus, ~ = 0. ~

Acknowledgement. The authors are grateful to H.-J. Engelbert and H. von Weizsacker
who indicated that Lemma 2 allows to avoid measurable selection arguments.
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