@article{RSMUP_1995__93__153_0, author = {Giannoni, Fabio and Jeanjean, Louis and Tanaka, Kazunaga}, title = {Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {153--176}, publisher = {Seminario Matematico of the University of Padua}, volume = {93}, year = {1995}, mrnumber = {1354356}, zbl = {0845.58031}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1995__93__153_0/} }
TY - JOUR AU - Giannoni, Fabio AU - Jeanjean, Louis AU - Tanaka, Kazunaga TI - Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1995 SP - 153 EP - 176 VL - 93 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1995__93__153_0/ LA - en ID - RSMUP_1995__93__153_0 ER -
%0 Journal Article %A Giannoni, Fabio %A Jeanjean, Louis %A Tanaka, Kazunaga %T Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems %J Rendiconti del Seminario Matematico della Università di Padova %D 1995 %P 153-176 %V 93 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1995__93__153_0/ %G en %F RSMUP_1995__93__153_0
Giannoni, Fabio; Jeanjean, Louis; Tanaka, Kazunaga. Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems. Rendiconti del Seminario Matematico della Università di Padova, Tome 93 (1995), pp. 153-176. http://www.numdam.org/item/RSMUP_1995__93__153_0/
[1] Homoclinics for second order conservative systems, in Partial Differential Equations and Related Subjects (ed. M. MIRANDA), Pitman Research Note in Math. Ser. (1992). | MR | Zbl
- ,[2] Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, 89 (1993), pp. 177-194. See also Multiplicité des orbites homoclines pour des Systèmes conservatifs, C. R. Acad. Sci. Paris, 314 (1992), pp. 601-604. | Numdam | MR | Zbl
- ,[3] F. GIANNONI, Homoclinic orbits on compact manifolds, J. Math. Anal. Appl., 157 (1991), pp. 568-576. | MR | Zbl
-[4] Homoclinics for Lagrangian systems on Riemannian manifolds, Dyn. Sys. Appl., 1 (1992), pp. 341-368. | MR | Zbl
,[5] Existence and multiplicity of homoclinic orbits for singular potentials on unbounded domains, Proc. Roy. Soc. Edinburgh (to appear). | Zbl
,[6] A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. | MR | Zbl
- - ,[7] Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. | MR | Zbl
- ,[8] On the existence of homoclinic orbits on Riemannian manifolds, Ergodic Theo. Dyn. Sys., 14 (1994), pp. 103-127. | MR | Zbl
,[9] On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian system, Nonlinear Diff. Eq. Appl., 1 (1994), pp. 1-46. | MR | Zbl
- ,[10] K. WYSOCKI, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian system, Math. Ann., 288 (1990), pp. 483-503. | MR | Zbl
-[11] Existence of connecting orbits in a potential well, Dyn. Sys. Appl. (to appear). | MR | Zbl
,[12] Calculus of variations in the large and classical mechanics, Russ. Math. Surv., 40 (1985), pp. 37-71. | MR | Zbl
,[13] The embedding problem for Riemannian manifolds, Ann. Math., 63 (1956), pp. 20-63. | MR | Zbl
,[14] Semi-Riemannian Geometry with Applications to Relativity, Academic Press. (1983). | Zbl
,[15] Morse theory on Hilbert manifolds, Topology, 2 (1963), pp. 299-340. | MR | Zbl
,[16] Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré: Analyse Non Linéaire, 6 (1989), pp. 331-346. | Numdam | MR | Zbl
,[17] Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburg, 114 (1990), pp. 33-38. | MR | Zbl
,[18] K. TANAKA, Some results on connecting orbits for a class of Hamiltonian system, Math. Zeit., 206 (1991), pp. 473-499. | MR | Zbl
-[19] Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., 209 (1992), pp. 27-42. | MR | Zbl
,[20] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré: Analyse Non Linéaire (to appear). | Numdam | MR | Zbl
,[21] Homoclinic orbits in compact hypersurface in R2N of restricted contact type, preprint. | Zbl
,[22] Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré: Analyse Non Linéaire, 7 (1990), pp. 427-438. | Numdam | MR | Zbl
,[23] Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits, J. Diff. Eq., 94 (1991), pp. 315-339. | MR | Zbl
,[24] A note on the existence of multiple homoclinic orbits for a perturbed radial potential, Nonlinear Diff. Eq. Appl. (to appear). | MR | Zbl
,