@article{AIHPC_1993__10_5_561_0, author = {S\'er\'e, \'Eric}, title = {Looking for the {Bernoulli} shift}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {561--590}, publisher = {Gauthier-Villars}, volume = {10}, number = {5}, year = {1993}, mrnumber = {1249107}, zbl = {0803.58013}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1993__10_5_561_0/} }
Séré, Éric. Looking for the Bernoulli shift. Annales de l'I.H.P. Analyse non linéaire, Tome 10 (1993) no. 5, pp. 561-590. http://www.numdam.org/item/AIHPC_1993__10_5_561_0/
[B] A Variational Proof of a Sitnikov-Like Theorem, preprint, Scuola Normale Superiore. | MR
,[C-L] A Remark on the Homoclinic Orbits for Hamiltonian Systems, research report of Peking University.
and ,[CZ-E-S] A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Mathematische Annalen, Vol. 288, 1990, pp. 133-160. | MR | Zbl
, and ,[CZ-R]1 Homoclinic Orbits for Second Order Hamiltonian Systems Possessing Superquadratic Potentials, preprint, Sissa. | MR
and ,[CZ-R]2 Homoclinic Type Solutions for a Semilinear Elliptic PDE on Rn, preprint, Sissa.
and ,[E] Convexity Methods in Hamiltonian Systems, Springer Verlag, 1989. | Zbl
,[H-W] First Order Elliptic Systems and the Existence of Homoclinic Orbits in Hamiltonian Systems, Math. Annalen, Vol. 288, 1990, pp. 483-503. | MR | Zbl
and ,[LI]1 On - Δu = k (x) u5 in R3, preprint, Rutgers University.
,[LI]2 On Prescribing Scalar Curvature Problem on S3 and S4, preprint, Rutgers University. | MR
,[LS] The Concentration-Compactness Principle in the Calculus of Variations, Revista Iberoamericana, Vol. 1, 1985, pp. 145-201. | EuDML | MR | Zbl
,[M] Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, 1973. | MR | Zbl
,[O] Séminaire d'Orsay, Travaux de Thurston sur les surfaces, Astérisque, Vol. 66-67, Société Mathématique de France. | Numdam | Zbl
[S] Existence of Infinitely Many Homoclinic Orbits in Hamiltonian Systems, Math. Zeitschrift, Vol. 209, 1992, p. 27-42. | EuDML | MR | Zbl
,[T] Homoclinic Orbits in a First Order Superquadratic Hamiltonian System: Convergence of Subharmonics, preprint, Nagoya University. | MR | Zbl
,[W] Global Bifurcations and Chaos, Applied Mathematical Sciences, Vol. 73, Springer-Verlag. | MR | Zbl
,