@article{AIHPC_1989__6_5_331_0, author = {Rabinowitz, Paul H.}, title = {Periodic and heteroclinic orbits for a periodic hamiltonian system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {331--346}, publisher = {Gauthier-Villars}, volume = {6}, number = {5}, year = {1989}, mrnumber = {1030854}, zbl = {0701.58023}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1989__6_5_331_0/} }
TY - JOUR AU - Rabinowitz, Paul H. TI - Periodic and heteroclinic orbits for a periodic hamiltonian system JO - Annales de l'I.H.P. Analyse non linéaire PY - 1989 SP - 331 EP - 346 VL - 6 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1989__6_5_331_0/ LA - en ID - AIHPC_1989__6_5_331_0 ER -
Rabinowitz, Paul H. Periodic and heteroclinic orbits for a periodic hamiltonian system. Annales de l'I.H.P. Analyse non linéaire, Tome 6 (1989) no. 5, pp. 331-346. http://www.numdam.org/item/AIHPC_1989__6_5_331_0/
[1] On the Periodic Nonlinearity and Multiplicity of Solutions, Nonlinear Analysis, T.M.A. (to appear). | MR | Zbl
,[2] Multiple Periodic Solutions of Conservative Systems with Periodic Nonlinearity, preprint. | MR
and ,[3] Generalizations of the Poincaré-Birkhoff Theorem, preprint. | MR
,[4] Multiple Critical Points of Periodic Functional and Some Applications, International Center for Theoretical Physics Tech. Rep. IC-86-191,
,[5] Forced Second Order Conservative Systems with Periodic Nonlinearity, Analyse Nonlineaire (to appear). | Numdam | Zbl
,[6] Multiple Solutions of the Periodic Boundary Value Problem for Some Forced Pendulum-Type Equations, J. Diff. Eq., Vol, 52, 1984, pp. 264-287. | MR | Zbl
and ,[7] A Mountain Pass Theorem, J. Diff. Eq., Vol. 60, 1985, pp. 142- 149. | MR | Zbl
and ,[8] Extensions of the Mountain Pass Theorem, Univ. of Minnesota Math. Rep. 83-150.
and ,[9] On a Class of Functionals Invariant Under a Zn Action, Trans. A.M.S. (to appear). | Zbl
,[10] Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Reg. Conf. Ser. No. 56, Amer. Math. Soc., Providence, RI, 1986. | MR | Zbl
,[11] The General Problem of Instability of a Motion, ONTI, Moscow- Leningrad, 1935.
,[12] Instability of Equilibrium in a Potential Field, Russian Math. Surveys, Vol. 36, 1981, pp. 238-239. | MR | Zbl
,[13] On the Instability of Equilibrium in a Potential Field, Russian Math. Surveys, Vol. 36, 1981, pp. 257-258. | MR | Zbl
,