The P.O.T. (Peaks-Over-Threshold) approach consists of using the Generalized Pareto Distribution (GPD) to approximate the distribution of excesses over a threshold. We use the probability-weighted moments to estimate the parameters of the approximating distribution. We study the asymptotic behaviour of these estimators (in particular their asymptotic bias) and also the functional bias of the GPD as an estimate of the distribution function of the excesses. We adapt penultimate approximation results to the case where parameters are estimated.
Mots-clés : extreme values, domain of attraction, excesses, generalized Pareto distribution, probability-weighted moments, penultimate approximation
@article{PS_2003__7__219_0, author = {Diebolt, Jean and Guillou, Armelle and Worms, Rym}, title = {Asymptotic behaviour of the probability-weighted moments and penultimate approximation}, journal = {ESAIM: Probability and Statistics}, pages = {219--238}, publisher = {EDP-Sciences}, volume = {7}, year = {2003}, doi = {10.1051/ps:2003010}, mrnumber = {1987787}, zbl = {1017.60060}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2003010/} }
TY - JOUR AU - Diebolt, Jean AU - Guillou, Armelle AU - Worms, Rym TI - Asymptotic behaviour of the probability-weighted moments and penultimate approximation JO - ESAIM: Probability and Statistics PY - 2003 SP - 219 EP - 238 VL - 7 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2003010/ DO - 10.1051/ps:2003010 LA - en ID - PS_2003__7__219_0 ER -
%0 Journal Article %A Diebolt, Jean %A Guillou, Armelle %A Worms, Rym %T Asymptotic behaviour of the probability-weighted moments and penultimate approximation %J ESAIM: Probability and Statistics %D 2003 %P 219-238 %V 7 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2003010/ %R 10.1051/ps:2003010 %G en %F PS_2003__7__219_0
Diebolt, Jean; Guillou, Armelle; Worms, Rym. Asymptotic behaviour of the probability-weighted moments and penultimate approximation. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 219-238. doi : 10.1051/ps:2003010. http://www.numdam.org/articles/10.1051/ps:2003010/
[1] Residual life time at a great age. Ann. Probab. 2 (1974) 792-801. | MR | Zbl
and ,[2] Tail index estimation and an exponential regression model. Extremes 2 (1999) 177-200. | MR | Zbl
, , and ,[3] Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. | MR | Zbl
,[4] On the estimation of the extreme-value index and large quantile estimation. Ann. Statist. 17 (1989) 1795-1832. | MR | Zbl
and ,[5] Estimation of extreme quantiles: Empirical tools for methods assessment and comparison. Int. J. Reliability Quality Safety Engrg. 7 (2000) 75-94.
, , and ,[6] On the use of Peaks over Threshold methods for estimating out-of-sample quantiles. Comput. Statist. Data Anal. (to appear). | MR | Zbl
and ,[7] A general class of estimators of the extreme value index. J. Statist. Plann. Inf. 66 (1998) 95-112. | MR | Zbl
,[8] Approximation to permutation and exchangeable processes. J. Theor. Probab. 5 (1992) 101-126. | MR | Zbl
and ,[9] Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist. 27 (1999) 760-781. | MR | Zbl
and ,[10] Asymptotic theory of extreme order statistics. Krieger, Malabar, Florida (1978). | MR | Zbl
,[11] Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44 (1943) 423-453. | Zbl
,[12] Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. | MR | Zbl
,[13] Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. | MR | Zbl
and ,[14] Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477. | MR | Zbl
and ,[15] On the estimation of high quantiles. J. Statist. Plann. Infer. 35 (1993) 1-13. | MR | Zbl
and ,[16] Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics 29 (1987) 339-349. | MR | Zbl
and ,[17] Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119-131. | MR | Zbl
,[18] Empirical Processes with Applications to Statistics. Wiley, New York (1986). | MR
and ,[19] Estimating tails of probability distributions. Ann. Statist. 15 (1987) 1174-1207. | MR | Zbl
,[20] Vitesses de convergence pour l'approximation des queues de distributions. Thèse de doctorat de l'Université de Marne-la-Vallée (2000).
,[21] Penultimate approximation for the distribution of the excesses. ESAIM: P&S 6 (2002) 21-31. | Numdam | MR | Zbl
,Cité par Sources :