Penultimate approximation for the distribution of the excesses
ESAIM: Probability and Statistics, Tome 6 (2002), pp. 21-31.

Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution H γ ; it is well-known that F u (x), where F u is the d.f of the excesses over u, converges, when u tends to s + (F), the end-point of F, to G γ (x σ(u)), where G γ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for γ>-1, a function Λ which verifies lim us + (F) Λ(u)=γ and is such that Δ(u)=sup x[0,s + (F)-u[ |F ¯ u (x)-G ¯ Λ(u) (x/σ(u))| converges to 0 faster than d(u)=sup x[0,s + (F)-u[ |F ¯ u (x)-G ¯ γ (x/σ(u))|.

DOI : 10.1051/ps:2002002
Classification : 60G70, 62G20
Mots-clés : generalized Pareto distribution, excesses, penultimate approximation, rate of convergence
@article{PS_2002__6__21_0,
     author = {Worms, Rym},
     title = {Penultimate approximation for the distribution of the excesses},
     journal = {ESAIM: Probability and Statistics},
     pages = {21--31},
     publisher = {EDP-Sciences},
     volume = {6},
     year = {2002},
     doi = {10.1051/ps:2002002},
     mrnumber = {1888136},
     zbl = {0992.60056},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2002002/}
}
TY  - JOUR
AU  - Worms, Rym
TI  - Penultimate approximation for the distribution of the excesses
JO  - ESAIM: Probability and Statistics
PY  - 2002
SP  - 21
EP  - 31
VL  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2002002/
DO  - 10.1051/ps:2002002
LA  - en
ID  - PS_2002__6__21_0
ER  - 
%0 Journal Article
%A Worms, Rym
%T Penultimate approximation for the distribution of the excesses
%J ESAIM: Probability and Statistics
%D 2002
%P 21-31
%V 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps:2002002/
%R 10.1051/ps:2002002
%G en
%F PS_2002__6__21_0
Worms, Rym. Penultimate approximation for the distribution of the excesses. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 21-31. doi : 10.1051/ps:2002002. http://www.numdam.org/articles/10.1051/ps:2002002/

[1] A. Balkema and L. De Haan, Residual life time at great age. Ann. Probab. 2 (1974) 792-801. | MR | Zbl

[2] C.M. Goldie, N.H. Bingham and J.L. Teugels, Regular variation. Cambridge University Press (1987). | MR | Zbl

[3] J.P. Cohen, Convergence rates for the ultimate and penultimate approximations in extreme-value theory. Adv. Appl. Prob. 14 (1982) 833-854. | MR | Zbl

[4] R.A. Fisher and L.H.C. Tippet, Limiting forms of the frequency of the largest or smallest member of a sample. Proc. Cambridge Phil. Soc. 24 (1928) 180-190. | JFM

[5] M.I. Gomes, Penultimate limiting forms in extreme value theory. Ann. Inst. Stat. Math. 36 (1984) 71-85. | MR | Zbl

[6] I. Gomes and L. De Haan, Approximation by penultimate extreme value distributions. Extremes 2 (2000) 71-85. | MR | Zbl

[7] M.I. Gomes and D.D. Pestana, Non standard domains of attraction and rates of convergence. John Wiley & Sons (1987) 467-477. | MR | Zbl

[8] J. Pickands Iii, Statistical inference using extreme order statistics. Ann. Stat. 3 (1975) 119-131. | MR | Zbl

[9] J.-P. Raoult and R. Worms, Rate of convergence for the Generalized Pareto approximation of the excesses (submitted). | Zbl

[10] R. Worms, Vitesse de convergence de l'approximation de Pareto Généralisée de la loi des excès. Preprint Université de Marne-la-Vallée (10/2000). | Zbl

[11] R. Worms, Vitesses de convergence pour l'approximation des queues de distributions Ph.D. Thesis Université de Marne-la-Vallée (2000).

Cité par Sources :