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ASYMPTOTIC BEHAVIOUR OF THE PROBABILITY-WEIGHTED MOMENTS
AND PENULTIMATE APPROXIMATION

Jean Diebolt1, Armelle Guillou2 and Rym Worms3

Abstract. The P.O.T. (Peaks-Over-Threshold) approach consists of using the Generalized Pareto
Distribution (GPD) to approximate the distribution of excesses over a threshold. We use the probability-
weighted moments to estimate the parameters of the approximating distribution. We study the as-
ymptotic behaviour of these estimators (in particular their asymptotic bias) and also the functional
bias of the GPD as an estimate of the distribution function of the excesses. We adapt penultimate
approximation results to the case where parameters are estimated.
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1. Introduction

Nowadays, it seems common practice to use statistics to describe or even predict the average behaviour of
many different phenomena. However, that average behaviour is not the only interesting subject of research in
many situations. Indeed, in many problems of considerable interest, it is necessary to estimate the probability
of occurence of extreme values. For instance, one is often interested in the probability that the maximum
of n random variables exceeds a given threshold or, vice versa, one wants to determine a level such that the
exceedance probability is below a given small value. For example, a hydraulics engineer has to estimate the
necessary height of a dike such that the probability of a flooding in a given year is less than 10−4 (cf. [4]).
More precisely, extreme value theory discusses the conditions under which extremes from a random sample
X1, ..., Xn are attracted to a nondegenerate limit distribution when the sample size n increases to infinity.
This condition seems reasonable when a statistical analysis is based solely on the extremes from the given
sample. Here we assume that the random variables Xi (i = 1, ..., n) are independent and identically distributed
with common distribution function F . We require that the properly centred and normed sample maxima
Xn,n = max{X1, ..., Xn} converges in distribution to a non-degenerate limit. Gnedenko (see [11]) showed that
this limit distribution is necessarily of extreme value type, i.e. for some γ ∈ R there exists sequences of constants
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σn > 0 and αn ∈ R such that

lim
n→∞P

(
Xn,n − αn

σn
≤ x

)
−→ Hγ(x) (1)

for all continuity points of the extreme value distribution function Hγ , defined as

Hγ(x) =

{
exp
(
− (1 + γx)−

1
γ

)
, for γ 6= 0 and 1 + γx > 0

exp(− exp(−x)), for γ = 0 and x ∈ R.

The distribution function F is said to belong to the maximum domain of attraction of Hγ . The real-valued
parameter γ is referred to as the extreme value index (EVI) of F . Most common continuous distribution functions
satisfy this weak condition. Distributions with γ > 0 are called heavy-tailed, as their tail F̄ typically decays
slowly as a power function. Examples in this Fréchet class are the Pareto, Burr, Student’t, α-stable (α < 2) and
loggamma distributions. The Gumbel class of distributions with γ = 0 encompasses the exponential, normal,
lognormal, gamma and classical Weibull distributions, the tail of which diminishes exponentially fast. Finally,
the Weibull class consists of distributions with γ < 0, which all have a finite right endpoint s+(F ) := sup{x :
F (x) < 1}. Examples in this class are the uniform and reverse Burr distributions.

The problem of estimating the so-called extreme value index γ, which determines the behaviour of the
underlying d.f. F in its upper tail, has received much attention in the last twenty years. An extensive motivation
of this estimation problem can be found in [10]. More recently, de Haan and Rootzén (see [15]) demonstrated how
to use an estimate of γ to construct estimators of extreme quantiles. Nevertheless, the generalized extreme value
distribution is appropriate when the data consist of a set of maxima. However, there has been some criticism
of this approach, because using only maxima leads to the loss of information contained in other large sample
values in a given period. This problem is remedied by considering several of the largest order statistics instead
of just the largest one, that is considering all values larger than a given threshold. The differences between these
values and a given threshold are called excesses over the threshold. Denote by Fu(x) := P(X − u ≤ x|X > u)
the distribution of the excesses of X over u, given that u is exceeded, and with Gγ,σ the Generalized Pareto
Distribution (GPD) defined, for all x ≥ 0, by

Gγ,σ(x) =

1−
(
1 +

γx

σ

)− 1
γ

, for γ 6= 0 and 1 + γx/σ > 0,

1− exp
(
−x

σ

)
, for γ = 0.

Pickands’ and Balkema and de Haan’s result (see [17] and [1]) on the limiting distribution of excesses over a
high threshold states that condition (1) holds if and only if

lim
u→s+(F )

sup
0<x<s+(F )−u

∣∣∣Fu(x) −Gγ,σ(u)(x)
∣∣∣ = 0

for some positive scaling function σ(u) depending on u.
Thus, if, for some n, one fixes a high threshold un and selects from a sample X1, ..., Xn only those observations

Xi1 , ..., XiNn
that exceed un, a GPD with parameters γ and σn = σ(un) is likely to be a good approximation for

the distribution Fun of the Nn excesses Yj := Xij − un, j = 1, ..., Nn. This is called the Peaks-Over-Threshold
(P.O.T.) method.

As for the generalized extreme value (GEV) distribution, quite a number of techniques have been proposed to
fit a GPD Gγ,σ to the excesses Y1, ..., YNn . Maximum Likelihood Estimation (MLE, see [19]) of the Generalized
Pareto Distribution has previously been considered in the literature, but Hosking and Wallis (see [16]) showed,
using computer simulation, that, Maximum Likelihood Estimation, although asymptotically the most efficient
method, does not clearly display its efficiency even in samples as large as 500, and that, in such cases, estimators
derived by the method of probability-weighted moments are more reliable. This motivates in particular the fact
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that, in this paper, we use this last mentioned method (PWM) in order to estimate the parameters γ and σn.
Nevertheless, note that, in a forthcoming paper, we will derive the more general conditions on the estimators
under which our results hold. These PWM estimators, denoted by γ̂n and σ̂n (see Sect. 2.1 for definitions), are
based on the empirical distribution function of the excesses

An,un(x) =
1

Nn

Nn∑
j=1

I{Yj≤x}.

It is of course very important to measure the error between F̄un := 1 − Fun (unknown) and its estimator
Ḡγ̂n,σ̂n := 1 − Gγ̂n,σ̂n . This error can be splitted into two parts: an approximation error and an estimation
error. The first one, also called bias of approximation, is justified by the fact that the distribution of the excesses
over un is only approximated by a GPD, which implies a systematic error studied in [20]. Since the distribution
of the excesses over un is Fun and not Gγ,σn , the error due to the estimation of (γ, σn) is also divided into an
approximation error due to the bias of approximation and a random term due to fluctuations.

Note that Nn follows a binomial distribution B(n, 1 − F (un)). We suppose, in all the sequel that, n(1 −
F (un)) → ∞ as n → ∞, that is Nn → ∞ in probability. In such a case, Nn

n(1−F (un)) → 1 in probability as
n →∞.

Let
F ∗

un
(y) = Fun(σny) and A

∗
n,un

(y) = An,un(σny)
for all y ∈ R+. We will study the asymptotic behaviour of γ̂n and σ̂n and more specifically the difference

F̄un(x)− Ḡγ̂n,σ̂n(x)

where γ̂n and σ̂n are the PWM estimators introduced by Hosking and Wallis (in [16]). Note that the main
difference with Drees (see [7]) is that we consider the estimation of the two parameters γ and σn simultaneously.

In what follows, we suppose that F is twice differentiable and that its inverse F−1 exists. Let V and A be
two functions defined as

V (t) = F̄−1(e−t) and A(t) =
V ′′(ln t)
V ′(ln t)

− γ.

We suppose the following first and second order conditions:

lim
t→+∞A(t) = 0, (2)

and
A is of constant sign at ∞ and there exists ρ ≤ 0 such that |A| ∈ RVρ. (3)

Under these assumptions, it is proved in [20] (Th. 1.4, p. 43) that as un → s+(F )

F̄un (σny) − Ḡγ(y) = anDγ, ρ(y) + o(an), as n → +∞, (4)

for all y, when
σn := σ(un) = V ′ (V −1(un)

)
, an := A

(
eV −1(un)

)
Ḡγ(y) := 1−Gγ, 1(y),

and

Dγ,ρ(y) :=

C0,ρ(y), if γ = 0,

Cγ,ρ

(
1
γ

ln(1 + γy)
)

, if γ 6= 0,

where
Cγ,ρ(y) := e−(1+γ)yIγ,ρ(y) and Iγ,ρ(y) :=

∫ y

0

eγu

∫ u

0

eρsdsdu.
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We assume also that
lim

n→∞
√

n (1− F (un)) an = λ ∈ R. (5)

This is equivalent to suppose that
√

Nnan tends to λ in probability, as n →∞.
The main result of this paper is the following. When ρ is equal to 0, the error due to the fact that F̄un is

replaced by Ḡγ̂n,σ̂n is of smaller order than the same error in the case ρ 6= 0. This result is closely linked (see
Sect. 2.5 for further comments) to the penultimate approximation for the distribution of the excesses established
in [21] (Gomes and de Haan in [13], generalizing [3, 12] and [14], studied penultimate approximation for the
distribution of the maximum). At first sight, it can appear a bit strange since it is well known that, if we
consider only the problem of the estimation of the index γ, the smaller |ρ|, the more difficult it is to estimate
the index. This problem of bias in the estimation of the index has been widely studied recently in the literature
and justified in particular the work on regression model by Feuerverger and Hall (see [9]) and Beirlant et al.
(see [2]). This paper proves that, on the contrary, if we consider the problem of the estimation of the tail
distribution, we do not need to construct asymptotically unbiased estimators, which is essential in the other
estimation problem.

The remainder of our paper is organized as follows. In Section 2, we introduce the PWM estimators of
Hosking and Wallis and study their asymptotic properties, from which we derive the asymptotic normality
of (γ̂n, σ̂n). Then, we establish our functional result and adapt penultimate approximation results to the case
where the parameters are estimated by the PWM estimators. In Section 3, we provide some simulated examples
in order to illustrate our main result. Finally, in Section 4, we describe the formalism used. The details of the
proofs are postponed to the Appendix.

2. Probability-weighted moments estimators

2.1. Definitions

Define, as in [16], the two first probability weighted moments of the GPD by,

µ0(γ, σ) =
∫ ∞

0

xdGγ, σ(x) and µ1(γ, σ) =
∫ ∞

0

x (1−Gγ, σ(x)) dGγ, σ(x). (6)

Note that

µ0(γ, σ) =
∫ ∞

0

(1−Gγ, σ(x)) dx and µ1(γ, σ) =
∫ ∞

0

1
2

(1−Gγ, σ(x))2 dx. (7)

When γ < 1,

µ0(γ, σ) =
σ

1− γ
and µ1(γ, σ) =

σ

2(2− γ)
, (8)

so that

γ = 2 − µ0(γ, σ)
µ0(γ, σ) − 2µ1(γ, σ)

and σ =
2 µ0(γ, σ)µ1(γ, σ)

µ0(γ, σ) − 2µ1(γ, σ)
· (9)

If we now replace µ0(γ, σ) and µ1(γ, σ) by their empirical moment estimators, one obtains the probability-
weighted moments estimators γ̂n and σ̂n defined as:

γ̂n = 2 − µ̂0,n

µ̂0,n − 2µ̂1,n
and σ̂n =

2 µ̂0,nµ̂1,n

µ̂0,n − 2µ̂1,n
, (10)
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where

µ̂0,n =
∫ ∞

0

xdAn, un(x) = σn

∫ ∞

0

y dA
∗
n, un

(y) = σn

∫ ∞

0

[
1 − A

∗
n, un

(y)
]
dy (11)

and

µ̂1,n =
∫ ∞

0

1
2

[1 − An, un(x)]2 dx = σn

∫ ∞

0

1
2
[
1 − A

∗
n, un

(y)
]2 dy. (12)

As mentioned in the Introduction, Hosking and Wallis give formulae for the approximate standard errors of
these estimators. They compare their approach to the MLE approach and come to the conclusion that in case
γ ≥ 0 the method of probability-weighted moments offers a viable alternative. In the sequel, we note

µ0 = µ0(γ, 1) and µ1 = µ1(γ, 1).

We are going to study the asymptotic behaviour of (γ̂n, σ̂n/σn) as n → +∞. Note that Drees (in [7]) has
already studied the asymptotic behaviour of γ̂n using a different approach.

2.2. Asymptotic behaviour of µ̂0,n and µ̂1,n

Theorem 1. Under assumptions (2, 3) with −1 < γ < 1/2, and if

lim
n→∞

√
n (1− F (un)) an = λ, λ ∈ R, as n → +∞, (13)

we have, for almost all sequences kn → +∞, conditionally on Nn = kn,

√
kn


µ̂0,n

σn
− µ0

µ̂1,n

σn
− µ1

 d−→ N (λC, Γ) ,

where

Γ =


1

(1 − γ)2(1− 2γ)
1

2(1− γ)2(2 − γ)
1

2(1− γ)2(2 − γ)
1

(2 − γ)2(3− 2γ)

 and C =


1

(1 − γ)(1− γ + |ρ|)
1

2(2− γ)(2− γ + |ρ|)

 .

Moreover, if λ = 0, then
µ̂0,n

σn
− µ0

µ̂1,n

σn
− µ1

 = anC + o(an) +
1√
kn

(
ξ0
n

ξ1
n

)
+ OP

(
1
kn

)
,

where

(
ξ0
n

ξ1
n

)
converges in distribution to a N (0, Γ) distribution.

Proof.

• We need the following lemma which will be proved in Appendix 5.1.
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Lemma 1.

(1) We have ∫ ∞

0

(
F̄ ∗

un
(y) − Ḡγ(y)

)
dy =

an

(1− γ)(1− γ + |ρ|) + o(an) . (14)

(2) Moreover, we have

1
2

∫ +∞

0

[
(F̄ ∗

un
(y))2 − (Ḡγ(y))2

]
dy =

an

2(2− γ)(2− γ + |ρ|) + o(an) . (15)

• Write

µ̂0,n

σn
− µ0 =

∫ ∞

0

(
1− A

∗
n, un

(y)
)

dy −
∫ ∞

0

(1−Gγ(y)) dy. (16)

Let αkn be the uniform empirical process based on kn i.i.d. random variables uniformly distributed on [0, 1].
Then, conditionally on Nn = kn, we have

A
∗
n, un

− F ∗
un

d=
1√
kn

αkn ◦ F ∗
un

. (17)

Therefore, it follows that

µ̂0,n

σn
− µ0

d=
∫ ∞

0

(
F̄ ∗

un
(y)− Ḡγ(y)

)
dy − 1√

kn

∫ ∞

0

αkn

(
F ∗

un
(y)
)

dy. (18)

Lemma 1 yields ∫ ∞

0

(
F̄ ∗

un
(y) − Ḡγ(y)

)
dy =

an

(1− γ)(1− γ + |ρ|) + o(an). (19)

In order to study the second term in the right-hand side of (18), we need the following lemma established in
Einmahl and Mason (see [8]).

Lemma 2. On a rich enough probability space, there exist a sequence of probabilistically equivalent versions α̃n(.)
of the uniform empirical process αn(.) and a fixed Brownian bridge B such that, for all ν satisfying 0 ≤ ν < 1/4,
we have

sup
1/n≤ t≤ 1− 1/n

nν |α̃n(t) − B(t)|
(t(1− t))1/2− ν

= OP (1). (20)

Let α̃n be such a processus for which we can apply (20). We prove in Appendix 5.2 that for γ < 1/2,∫∞
0 α̃kn

(
F ∗

un
(y)
)
dy converges in probability to

∫ 1

0 hγ(t) dB(t), where

hγ(t) =


t−γ − 1

γ
if γ 6= 0,

ln (1/t) if γ = 0.

(21)

It follows that

µ̂0,n

σn
− µ0

d=
an

(1− γ)(1− γ + |ρ|) + o(an) +
1√
kn

ξ0
n, (22)



ASYMPTOTIC BEHAVIOUR OF THE PWM ESTIMATORS 225

where

ξ0
n

P−→ −
∫ 1

0

hγ(t) dB(t).

• Now, similarly we have

µ̂1,n

σn
− µ1 =

∫ +∞

0

1
2
(
1− A

∗
n, un

(y)
)2 dy −

∫ +∞

0

1
2

(1−Gγ(y))2 dy

d=
∫ +∞

0

1
2

(
F̄ ∗

un
(y)− 1√

kn

αkn

(
F ∗

un
(y)
))2

dy − 1
2

∫ +∞

0

(1−Gγ(y))2 dy

d=
1
2

∫ +∞

0

((
F̄ ∗

un
(y)
)2 − (Ḡγ(y)

)2) dy − 1√
kn

∫ +∞

0

F̄ ∗
un

(y)αkn

(
F ∗

un
(y)
)

dy

+
1

2kn

∫ +∞

0

(
αkn

(
F ∗

un
(y)
))2 dy.

We are going to study separately the three terms of the last equality.
Lemma 1 yields

1
2

∫ +∞

0

((
F̄ ∗

un
(y)
)2 − (Ḡγ(y)

)2) dy =
an

2(2− γ)(2− γ + |ρ|) + o(an).

The same proof as in Appendix 5.2, shows that for γ < 1/2,
∫ +∞
0 F̄ ∗

un
(y) α̃kn

(
F ∗

un
(y)
)
dy converges in probability

to
∫ 1

0
kγ(t)dB(t), where

kγ(t) = − t1−γ

1 − γ
· (23)

We prove in Appendix 5.3 that

1
kn

∫ +∞

0

(
α̃kn

(
F ∗

un
(y)
))2 dy = OP

(
1
kn

)
·

Therefore, it follows that

µ̂1,n

σn
− µ1

d=
an

2(2− γ)(2 − γ + |ρ|) + o(an) +
1√
kn

ξ1
n + OP

(
1
kn

)
, (24)

where

ξ1
n

P−→ −
∫ 1

0

kγ(t) dB(t). (25)

Finally, as limn→∞
√

n(1 − F (un)) an = λ and Nn/(n(1 − F (un))) P→ 1, it follows that, conditionally on
Nn = kn,

√
kn


µ̂0,n

σn
− µ0

µ̂1,n

σn
− µ1

 = λ

(
c0

c1

)
+

(
ξ0
n

ξ1
n

)
+ oP (1), (26)
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where

(
c0

c1

)
=


1

(1− γ)(1− γ + |ρ|)
1

2(2− γ)(2− γ + |ρ|)

 (27)

and

(
ξ0
n

ξ1
n

)
d−→
(

Y0

Y1

)
=

 −
∫ 1

0

hγ(t) dB(t)

−
∫ 1

0

kγ(t) dB(t)

 which is a N (0, Γ) distribution, (28)

with

Γ =

(
Var(Y0) Cov(Y0, Y1)

Cov(Y0, Y1) Var(Y1)

)

=


1

(1− γ)2(1− 2γ)
1

2(1− γ)2(2 − γ)
1

2(1− γ)2(2 − γ)
1

(2− γ)2(3− 2γ)

 .

(29)

�

2.3. Asymptotic behaviour of γ̂n and σ̂n

Corollary 1. Under the same assumptions as Theorem 1, if we suppose moreover that4

n (1− F (un)) an →∞ as n → +∞, (30)

then, for almost all sequences kn → +∞, we have, conditionally on Nn = kn, that

√
kn

 γ̂n − γ

σ̂n

σn
− 1

 d−→ N (λB, Σ),

where

Σ =
1

(1− 2γ)(3− 2γ)

(
(1− γ)(2 − γ)2(1− γ + 2γ2) (2− γ)(2− 6γ + 7γ2 − 2γ3)
(2− γ)(2− 6γ + 7γ2 − 2γ3) 7− 18γ + 11γ2 − 2γ3

)

and

B =


(2− γ)(1− γ)

(1− γ + |ρ|)(2− γ + |ρ|)
|ρ|

(1− γ + |ρ|)(2− γ + |ρ|)

 . (31)

4This condition is trivial in the case λ 6= 0.
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Moreover, if λ = 0, then

√
kn

 γ̂n − γ

σ̂n

σn
− 1

− anB
d−→ N (0, Σ).

Proof. Define the mapping Ψ, from R
2
+ ∩ {(a, b) ∈ R

2 : a > 2b} into ]−∞, 1[×R+, by

Ψ(a, b) =
(

2− a

a− 2b
,

2ab

a− 2b

)
·

Then,

(γ, 1) = Ψ (µ0, µ1)

and (
γ̂n,

σ̂n

σn

)
= Ψ

(
µ̂0,n

σn
,

µ̂1,n

σn

)
·

The proof of Theorem 1 implies (see (26, 27) and (28)) that, conditionally on Nn = kn,
µ̂0,n

σn

µ̂1,n

σn

 d=

(
µ0

µ1

)
+ an

(
c0

c1

)
+

1√
kn

(
ξ0
n

ξ1
n

)
+ o(an) + OP

(
1
kn

)

d=

(
µ0

µ1

)
+

(
αn

βn

)
.

(32)

A Taylor expansion yields γ̂n − γ

σ̂n

σn
− 1

 = DΨ(µ0, µ1)

(
αn

βn

)
+

1
2

(αn βn)D2Ψ (µ0, µ1)

(
αn

βn

)

+ o(a2
n) + OP

(
an

kn

)
+ OP

(
1
k2

n

)
,

where

DΨ(µ0, µ1) =
2

(2µ1 − µ0)2

(
µ1 −µ0

−2µ2
1 µ2

0

)
. (33)

Since limn→∞
√

n(1 − F (un)) an = λ and n(1− F (un))an →∞, we have

1
2

(αn βn)D2Ψ(µ0, µ1)

(
αn

βn

)
= OP

(
1
kn

)
·

Moreover,

DΨ(µ0, µ1)

(
αn

βn

)
= an

(
b0

b1

)
+

1√
kn

DΨ(µ0, µ1)

(
ξ0
n

ξ1
n

)
+ oP (an),
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where (
b0

b1

)
=

2
(2µ1 − µ0)2

(
µ1c0 − µ0c1

−2µ2
1c0 + µ2

0c1

)
(34)

and

DΨ(µ0, µ1)

(
Y0

Y1

)
is a N (0, Σ)distribution,

with

Σ = DΨ(µ0, µ1) Γ (DΨ(µ0, µ1))
T . (35)

Thus,

√
kn

 γ̂n − γ

σ̂n

σn
− 1

 d−→ N (λB, Σ), (36)

with B =

(
b0

b1

)
. �

2.4. Functional result

Theorem 2. Under the same assumptions as Corollary 1, for almost all sequences kn → +∞, we have,
conditionally on Nn = kn, that

(i) the process √
kn

(
F̄ ∗

un
(x) − Ḡγ̂n,σ̂n/σn

(x)
)

converges in distribution to

λB(x) + Z(x) ,

where
B(x) = Dγ, ρ(x) + L1(γ, ρ)

∂Gγ

∂γ
(x) + L2(γ, ρ)

∂Gγ

∂x
(x) (37)

with

L1(γ, ρ) =
(2− γ)(1− γ)

(1− γ + |ρ|)(2− γ + |ρ|) and L2(γ, ρ) = − x|ρ|
(1− γ + |ρ|)(2− γ + |ρ|) ,

and Z(x) is a centered Gaussian process equal to

∂Gγ

∂γ
(x)
∫ 1

0

`(1)
γ (t) dB(t) − x

∂Gγ

∂x
(x)
∫ 1

0

`(2)
γ (t) dB(t),

with

`(1)
γ (t) =

 (2 − γ)
(
2γ(2− γ)t + (1 − γ)2

) t−γ

γ
if γ 6= 0,

8t − 2 ln t if γ = 0,
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and

`(2)
γ (t) =

 − (2γ(2− γ)2t + (1− γ)3
) t−γ

γ(1− γ)
if γ 6= 0,

ln t − 8t if γ = 0.

Moreover, if λ = 0, then √
kn

(
F̄ ∗

un
(x) − Ḡγ̂n,σ̂n/σn

(x)
)− anB(x)

converges in distribution to Z(x);
(ii) when ρ = 0, the bias B(x) (in (37)) is equal to 0.

Remark 1. B(x) is called the functional approximation error, it contains the approximation error between
F̄ ∗

un
(x) and Ḡγ(x) (see (4)) and the approximation error due to the estimation of the unknown parameters γ

and σn.

Proof. (i) Write

F̄ ∗
un

(x) − Ḡγ̂n
(σnx/σ̂n) = F̄ ∗

un
(x)− Ḡγ(σnx/σ̂n) + Ḡγ(σnx/σ̂n)− Ḡγ̂n

(σnx/σ̂n), (38)

with
F̄ ∗

un
(x)− Ḡγ(σnx/σ̂n) = F̄ ∗

un
(x)− Ḡγ(x) + x

(
σn

σ̂n
− 1
)

∂Gγ

∂x (x) + OP

(
1

kn

)
= anDγ,ρ(x)− x

(
σ̂n

σn
− 1
)

∂Gγ

∂x (x) + oP (an)

and

Ḡγ(σnx/σ̂n)− Ḡγ̂n
(σnx/σ̂n) = (γ̂n − γ)

∂Gγ

∂γ
(σnx/σ̂n) + OP

(
1
kn

)
·

The result follows from the facts that, on the first hand (see Cor. 1),

γ̂n − γ = anb0 +
η0

n√
kn

+ oP (an) and
σ̂n

σn
− 1 = anb1 +

η1
n√
kn

+ oP (an),

with (
b0

b1

)
given by (34) and

(
η0

n

η1
n

)
d−→ DΨ(µ0, µ1)

(
Y0

Y1

)
,

and, on the other hand (see (28) and (33)),

DΦ(µ0, µ1)

(
Y0

Y1

)
=

2
(2µ1 − µ0)2


∫ 1

0

(µ1hγ(t)− µ0kγ(t)) dB(t)∫ 1

0

(−2µ2
1hγ(t) + µ2

0kγ(t)
)

dB(t)



=


∫ 1

0

`(1)
γ (t) dB(t)∫ 1

0

`(2)
γ (t) dB(t)

 .
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(ii) When γ = 0, it is easy to check that Dγ, ρ(x) =
x2

2
e−x = −∂Gγ

∂γ
(x) |γ=0, whereas if γ 6= 0, Iγ, 0(x) =

−eγx − 1− γxeγx

γ2
and hence Cγ,0(x) = e−(1+γ)x 1 + γxeγx − eγx

γ2
. Therefore, as for γ = 0,

Dγ, 0(x) = Cγ, 0

(
1
γ

ln (1 + γx)
)

= −∂Gγ

∂γ
(x). (39)

Taking ρ = 0 in (37) and using the fact that Dγ, 0(x) = −∂Gγ

∂γ
(x), we derive that B(x) = 0, which is not the

case if ρ < 0. �

Let us give now some comments concerning this theorem:

• this result means that, in case ρ = 0, the error due to the fact that F̄ ∗
un

(x) is replaced by Ḡγ̂n,σ̂n/σn
(x)

is of smaller order than the error made when one takes γ̂n in order to estimate γ. As noticed in the
Introduction, this result is surprising taking into account the fact that in the case of the estimation of
the index γ, the bias goes up when ρ tends to 0;

• the second order parameter ρ is zero for many usual distributions in the Gumbel domain of attraction
(γ = 0): e.g. the normal, lognormal, gamma and classical Weibull distributions. Hence, our result
applies to all these distributions;

• this result is closely linked to penultimate approximation established in [21], which is developed in the
next section.

2.5. Penultimate approximation

It is established in [21] (Th. 1) that penultimate approximation is only possible in the case ρ = 0. That is,
F ∗

un
(x) is approximated by Gγ+an(x) rather than by Gγ(x). When ρ is zero, it is proved in [21] (Th. 3) that

under some additional conditions (satisfied by many usual distributions), when γ > −1,

F̄un(σny)− Ḡγ+an(y) = bnDγ(y) + o(bn) as n → +∞, (40)

where bn = o(an) is defined by

bn = eV −1(un)A′
(
eV −1(un)

)
(41)

and

Dγ(y) =


C0(y) if γ = 0,

Cγ

(
1
γ

ln (1 + γy)
)

if γ 6= 0,

where

Cγ(y) = e−(1+γ)yMγ(y) and Mγ(y) =
1
2

∫ y

0

u2eγu du. (42)

The same proof as for Corollary 1 shows that the error made by replacing γ + an by γ̂n is equal to

γ2 − 3γ + 3
2− γ

bn + o(bn),

where bn is given by (41).
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Now a similar demonstration as the one for Theorem 2 implies that, in the case ρ = 0, the functional
approximation error (analogous of B), which is of smaller order that an, becomes

bn

(
Dγ(x) +

γ2 − 3γ + 3
2− γ

∂Gγ

∂γ
(x) − γ − 1

2− γ
x

∂Gγ

∂x
(x)
)

+ o(bn),

which is equal to

bn
xe−x

2

(
1 − 3x

2
+

x2

2

)
+ o(bn),

when γ = 0.

Example. Let us consider the classical Weibull distribution function defined by

F̄ (x) = exp
(−xβ

)
, x ≥ 0,

with β > 0. For this distribution, γ = 0 and, when β 6= 1, we have V (t) = t1/β . Hence A(t) =
(

1
β
− 1
)

1
ln t

and the second order parameter ρ is equal to 0. This yields

σn =
1
β

u1−β
n

an =
(

1
β
− 1

)
u−β

n

bn =
(

1 − 1
β

)
u−2β

n .

Let kn = n(1 − F (un)) be the everedged number of excesses over un. It follows from the assumption√
n(1− F (un))an → λ that kn is of order (lnn)2.

3. Simulations

Next we report on a small sample study performed in order to illustrate our theoretical results. With this
aim, we consider 100 samples of size n = 500 drawn from a Burr(β, τ, λ) distribution, defined as

F̄ (x) := 1− F (x) =
(

β

β + xτ

)λ

, x > 0,

where β, λ, τ > 0.
Note that for such a distribution γ = 1

λτ and, if τ 6= 1, ρ = −1/λ. We choose kn = n/10 as suggested in [5]
and [6] and (β, τ, λ)=(1, 1

2 , 8); (1, 2
5 , 10) and (1, 1

3 , 12). For these models γ = 1
4 and ρ = − 1

8 , − 1
10 and − 1

12
respectively.

We take as explicit versions of µ̂0,n and µ̂1,n the following expressions (see [16] for the choice of µ̂1,n)

µ̂0,n =
1

Nn

Nn∑
i=1

Yi and µ̂1,n =
1

Nn

Nn∑
i=1

piYi,

where pi = 1− i−0,35
Nn

. For each distribution and each sample we compute the PWM estimators

γ̂j
n = 2− µ̂j

0,n

µ̂j
0,n − 2µ̂j

1,n

and σ̂j
n =

2µ̂j
0,nµ̂j

1,n

µ̂j
0,n − 2µ̂j

1,n

,
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for j = 1, . . . , 100, and we plot in Figure 1∣∣∣∣∣F̄un(x) − 1
100

100∑
j=1

Ḡγ̂j
n,σ̂j

n
(x)

∣∣∣∣∣.
From this figure it is clear that as ρ tends to 0, the quantity |F̄un(x)− 1

100

∑100
j=1 Ḡγ̂j

n,σ̂j
n
(x)| becomes small. This

Figure 1. Bias in the case of a Burr(1, 1
2 , 8) distribution (full line), of a Burr(1, 2

5 , 10) distri-
bution (dotted line) and of a Burr(1, 1

3 , 12) distribution (dashed line).

corroborate the theory obtained in this paper, and proves that if we are interested in the tail distribution, we
do not have to use asymptotically unbiased estimators, which is on the other hand essential in the case of the
estimation of an extreme value index.

4. Sketch of the formalism

We denote by T (F̄ ) a class of estimators of (γ, σ) such that for all γ in some interval and σ > 0,

T
(
Ḡγ, σ

)
=

(
T1

(
Ḡγ, σ

)
, T2

(
Ḡγ, σ

))
= (γ, σ) . (43)

We restrict our study to estimators T (F̄ ) satisfying (43) which are scale invariant for all F̄ in some large class
of distributions and all σ > 0,

T1

(
F̄
( •

σ

))
= T1

(
F̄
)

and T2

(
F̄
( •

σ

))
= σ T2

(
F̄
)
. (44)

If condition (44) is satisfied, then in particular for all γ and σ > 0,

T1

(
Ḡγ, σ

)
= T1

(
Ḡγ

)
= γ and T2

(
Ḡγ, σ

)
= σ T2

(
Ḡγ

)
= σ , thus T2

(
Ḡγ

)
= 1. (45)

Consequently

∂ T1

(
Ḡγ

)
/∂γ = 1 and ∂ T2

(
Ḡγ

)
/∂γ = 0. (46)
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We suppose moreover a form of Hadamard differentiability: there exist linear forms DT (Ḡγ), defined on a
suitable space, such that under assumption (5), we have

lim
n→+∞

T
(
F̄ ∗

un

) − T
(
Ḡγ

)
an

= DT
(
Ḡγ

)
[Dγ, ρ] , (47)

lim
n→+∞

√
Nn

(
T

(
F̄ ∗

un
+

1√
Nn

αNn

(
F ∗

un

)) − T
(
F̄ ∗

un

))
= DT

(
Ḡγ

) [
B ◦ Ḡγ

]
, (48)

in probability, and

lim
n→+∞

T
(
Ḡγ+an

) − T
(
Ḡγ

)
an

= DT
(
Ḡγ

) [∂Ḡγ

∂γ

]
· (49)

We defined σn as in the Introduction. Thus, denoting by (γb
n, σb

n) = T (F̄un) the values of γ and σ which could
be obtained by replacing Ḡγ,σn by the excesses distribution, we have(

γb
n − γ,

σb
n

σn
− 1

)
= T

(
F̄ ∗

un

) − T
(
Ḡγ

)
= an DT

(
Ḡγ

)
[Dγ, ρ] + o(an)

= an (L1(γ, ρ), L2(γ, ρ)) + o(an). (50)

This heuristic reasoning shows that the approximation error due to the estimation of the parameters γ and σn

is of order an. We can now infer, always heuristically, the principal term in the asymptotic expansion (in terms
of an) of F̄ ∗

un
− Ḡγb

n, σb
n/σn

, by calculating the first order approximation between Ḡγb
n, σb

n/σn
and Ḡγ, 1. This

principal term is the function denoted by B in Section 2.4 and called the functional approximation error. It
contains not only the approximation error between F̄ ∗

un
(x) and Ḡγ(x) (see (47)) but also the approximation

error due to the estimation of the unknown parameters γ and σn (see (50)). It is given by

B(x) = Dγ, ρ(x) + L1(γ, ρ)
∂Gγ

∂γ
(x) − L2(γ, ρ)x

∂Gγ

∂x
(x). (51)

In the special case ρ = 0, we find that L1(γ, 0) = 1 and L2(γ, 0) = 0 which imply that the function B is equal
to zero.

5. Appendix

5.1. Proof of Lemma 1

5.1.1.

Our aim is to prove that∫ ∞

0

F̄ ∗
un

(y)− Ḡγ(y)
an

dy converges to
1

(1− γ)(1 − γ + |ρ|) , as n →∞. (52)

We only treat the case5 γ > 0.
Since

Ḡγ(y) = Ḡ0

(
1
γ

ln (1 + γy)
)

and
F̄ ∗

un
(y) = Ḡ0

(
V −1(un + σny)− V −1(un)

)
,

5The cases γ = 0 and γ < 0 are similar.
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the left-hand side of (52) becomes

∫ ∞

0

F̄ ∗
un

(y) − Ḡγ(y)
an

dy =
1
an

∫ ∞

0

exp
(
V −1(un)− V −1(un + σny)

)
dy

− 1
an

∫ ∞

0

exp
(
− 1

γ
ln (1 + γy)

)
dy.

Taking s equal to V −1(un+σny)−V −1(un) in the first (resp. ln (1 + γy)/γ in the second) term of the right-hand
side of the preceding formula, we obtain

∫ ∞

0

F̄ ∗
un

(y) − Ḡγ(y)
an

dy =
1
an

∫ ∞

0

e−s

(
V ′ (s + V −1(un)

)
V ′ (V −1(un))

− eγs

)
ds.

It is well-known (see (1.22) in [20]) that under (2) and (3),

lim
n→+∞

1
an

(
V ′ (s + V −1(un)

)
V ′ (V −1(un))

− eγs

)
= eγs

∫ s

0

eρt dt,

and for all ε > 0 and n sufficiently large,

e−s

an

∣∣∣∣∣V ′ (s + V −1(un)
)

V ′ (V −1(un))
− eγs

∣∣∣∣∣ ≤ C e(γ+ε−1)s

∫ s

0

eρt dt, for some constant C > 0. (53)

Since ρ ≤ 0, the right-hand side of (53) is integrable for ε sufficiently small and γ < 1/2. Then the result follows
by applying Lebesgue dominated convergence.

5.1.2.

Since limy→+∞ y
(
F̄ ∗

un
(y)
)2 = 0, for γ < 1

2 , it follows by integration by parts that the quantity of interest
can be written as

1
2

∫ +∞

0

((
F̄ ∗

un
(y)
)2 − (Ḡγ(y)

)2) dy =
∫ +∞

0

y F̄ ∗
un

(y) dF ∗
un

(y) −
∫ +∞

0

y Ḡγ(y) dGγ(y).

We are going now to prove that

1
an

(∫ ∞

0

y F̄ ∗
un

(y) dF ∗
un

(y) −
∫ ∞

0

y Ḡγ(y) dGγ(y)
)

converges to
1

2(2− γ)(2− γ + |ρ|) , as n →∞.

Again we only treat the case γ > 0. Write∫ ∞

0

y F̄ ∗
un

(y) dF ∗
un

(y) −
∫ ∞

0

y Ḡγ(y) dGγ(y) =
∫ ∞

0

y
(
Ḡγ(y)− F̄ ∗

un
(y)
)

dḠγ(y)

+
∫ ∞

0

y F̄ ∗
un

(y) d
(
Ḡγ(y) − F̄ ∗

un
(y)
)
.

We study separately the two terms of the right-hand side.
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Similar computations as in Appendix 5.1.1 prove that∫ ∞

0

y
(
Ḡγ(y)− F̄ ∗

un
(y)
)

dḠγ(y) =
∫ ∞

0

e−s V
(
s + V −1(un)

)− un

V ′ (V −1(un))
dBun(s)

+
∫ ∞

0

e−2s

(
V
(
s + V −1(un)

)− un

V ′ (V −1(un))
− eγs − 1

γ

)
ds,

where

Bun(s) = Ḡ0(s) − Ḡ0

(
1
γ

ln

(
1 + γ

V
(
s + V −1(un)

)− un

V ′ (V −1(un))

))
,

and similarly ∫ ∞

0

y F̄ ∗
un

(y) d
(
Ḡγ(y) − F̄ ∗

un
(y)
)

= −
∫ ∞

0

e−s V
(
s + V −1(un)

)− un

V ′ (V −1(un))
dBun(s).

Consequently it follows that

1
an

(∫ ∞

0

yF̄ ∗
un

(y) dF ∗
un

(y)−
∫ ∞

0

yḠγ(y) dGγ(y)
)

=
∫ ∞

0

e−2s

an

(
V
(
s + V −1(un)

)− un

V ′ (V −1(un))
− eγs − 1

γ

)
ds.

It is well-known (see (1.23) in [20]) that under (2) and (3),

lim
n→+∞

1
an

(
V
(
s + V −1(un)

)− un

V ′ (V −1(un))
− eγs − 1

γ

)
=
∫ s

0

eγz

∫ z

0

eρt dt dz,

and, for all ε > 0 and n sufficiently large,

e−2s

an

[
V
(
s + V −1(un)

)− un

V ′ (V −1(un))
− eγs − 1

γ

]
≤ C e(ε−2)s

∫ s

0

eγz

∫ z

0

eρt dt dz.

The result now follows, once again, by applying Lebesgue dominated convergence.

5.2. Proof that
∫∞
0 α̃kn

(
F ∗

un
(y)
)
dy converges to

∫ 1
0 hγ(t) dB(t)

Write F̄ ∗
un

(y) = Ḡ0

(
V −1(un + σny) − V −1(un)

)
and take s equal to V −1(un + σny)− V −1(un) in order to

obtain that∫ ∞

0

α̃kn

(
F ∗

un
(y)
)

dy =
∫ ∞

0

α̃kn

(
1− e−s

) V ′ (s + V −1(un)
)

V ′ (V −1(un))
ds

=
∫ ∞

0

α̃kn(1 − e−s)

(
V ′ (s + V −1(un)

)
V ′ (V −1(un))

− eγs

)
ds +

∫ ∞

0

α̃kn(1− e−s)eγs ds. (54)

We study separately the two terms of the right-hand side of (54).

• Note that ∫ ∞

0

α̃kn

(
1− e−s

)
eγs ds =

∫ 1

0

α̃kn(1 − t)
dt

t1+γ
(55)
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is well-defined. The right-hand side of (55) can be splitted into three terms as follows:

∫ 1

0

α̃kn(1 − t)
dt

t1+γ
=

∫ 1/kn

0

α̃kn(1− t)
dt

t1+γ
+
∫ 1−1/kn

1/kn

α̃kn(1 − t)
dt

t1+γ

+
∫ 1

1−1/kn

α̃kn(1− t)
dt

t1+γ
· (56)

- Let M >
√

2 and ε > 0. It follows from Jaeschke theorem (see Th. 1, p. 600, Chap. 16 in [18]) that there
exists n0 such that for all n ≥ n0 and t in ]0, 1[,

α̃kn(1− t) ≤ M
√

ln ln kn t(1− t), with probability > 1− ε.

Then we derive that∫ 1/kn

0

α̃kn(1− t)
dt

t1+γ
≤ M

√
ln ln kn

∫ 1/kn

0

√
t(1 − t)

dt

t1+γ
, with probability > 1− ε.

Since ∫ 1/kn

0

√
t(1− t)

dt

t1+γ
≤
∫ 1/kn

0

√
t

dt

t1+γ

and, for γ < 1
2 ,

√
ln ln kn

∫ 1/kn

0

√
t

dt

t1+γ
=
√

ln ln kn
k

γ− 1
2

n

1
2 − γ

→ 0 as kn → +∞,

we have ∫ 1/kn

0

α̃kn(1− t)
dt

t1+γ

P→ 0 as kn → +∞.

- Similarly, we can prove that ∫ 1

1−1/kn

α̃kn(1− t)
dt

t1+γ

P→ 0 as kn → +∞.

- Therefore, it remains to study the term∫ 1−1/kn

1/kn

α̃kn(1 − t)
dt

t1+γ
·

Let ν < 1
4 , M > 0 and ε > 0. Then, it follows from (20) that there exists n1 such that for all n ≥ n1 and

t ∈ [ 1
kn

, 1− 1
kn

],

α̃kn(1− t) ≤ B(1 − t) + Mk−ν
n (t(1− t))1/2−ν , with probability > 1− ε.
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Hence, ∫ 1−1/kn

1/kn

α̃kn(1− t)
dt

t1+γ
≤
∫ 1−1/kn

1/kn

B(1− t)
dt

t1+γ
+ Mk−ν

n

∫ 1−1/kn

1/kn

(t(1− t))1/2−ν dt

t1+γ
, (57)

with probability > 1− ε.
Since γ < 1

2 , the two integrals in the right-hand side converge according to the law of iterated logarithm for
the brownian motion.

Finally

lim
n→∞

∫ 1−1/kn

1/kn

α̃kn(1− t)
dt

t1+γ
≤
∫ 1

0

B(1 − t)
dt

t1+γ
+ oP (1).

The same computations can be applied in order to obtain the lower bound. Consequently

lim
n→∞

∫ 1−1/kn

1/kn

α̃kn(1− t)
dt

t1+γ
=
∫ 1

0

B(1− t)
dt

t1+γ
=
∫ 1

0

hγ(t)dB(t).

• It remains to prove that
∫∞
0

α̃kn(1 − e−s)(V ′(s + V −1(un))/V ′(V −1(un)) − eγs) ds tends to 0 in probability,
as n tends to +∞. We know that, under assumptions (2) and (3) (see Prop. 1.1 in [20]), for ε > 0 and n
sufficiently large ∣∣∣∣∣V ′ (s + V −1(un)

)
V ′ (V −1(un))

− eγs

∣∣∣∣∣ ≤ C |an|e(γ+ε)s

∫ s

0

eρt dt. (58)

Moreover, using Theorems 1 and 3 (p. 604 of [18]), there exist M > 0 and n0(ω) ∈ N almost surely finite such
that for n ≥ n0, s > 0 and δ > 0∣∣α̃kn

(
1− e−s

)∣∣ ≤ Me−s/2(ln kn)
1
2 + δ a.s. (59)

It follows from (58) and (59) that∫ ∞

0

∣∣α̃kn

(
1− e−s

)∣∣ ∣∣∣∣∣V ′ (s + V −1(un)
)

V ′ (V −1(un))
− eγs

∣∣∣∣∣ ds ≤ C |an|(ln kn)
1
2 + δ

∫ ∞

0

e(γ+ε− 1
2 )s

∫ s

0

eρt dt ds. (60)

Since γ < 1/2, one can choose ε sufficiently small in order to have γ + ε − 1/2 < 0. Moreover, an(ln kn)1/2 + δ

converges to 0 as n tends to +∞ under the assumptions.
Hence

∫∞
0

αkn(1− e−s)(V ′(s + V −1(un))/V ′(V −1(un)) − eγs) ds converges to 0 in probability.

5.3. Proof that 1
kn

∫+∞
0

(
α̃kn

(
F ∗

un
)(y)

))2 dy = OP

(
1

kn

)
Using the same methodology as in 5.2, we have∫ +∞

0

(
α̃kn

(
F ∗

un
(y)
))2 dy =

∫ +∞

0

(
α̃kn(1 − e−s)

)2(V ′ (s + V −1(un)
)

V ′ (V −1(un))
− eγs

)
ds

+
∫ +∞

0

(
α̃kn(1− e−s)

)2
eγs ds, (61)

with the first integral converging to zero in probability. Therefore we have to establish that∫ +∞

0

(
α̃kn(1− e−s)

)2 eγs ds = OP (1).
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Again this integral can be splitted into three terms. Following exactly the same lines as in 5.2 we can easily
prove that these terms tend to zero in probability, which achieves the proof.
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