@article{PMIHES_1999__90__169_0, author = {Totaro, Burt}, title = {Euler characteristics for $p$-adic {Lie} groups}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {169--225}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {90}, year = {1999}, mrnumber = {2002f:22032}, zbl = {0971.22011}, language = {en}, url = {http://www.numdam.org/item/PMIHES_1999__90__169_0/} }
Totaro, Burt. Euler characteristics for $p$-adic Lie groups. Publications Mathématiques de l'IHÉS, Tome 90 (1999), pp. 169-225. http://www.numdam.org/item/PMIHES_1999__90__169_0/
[1] Conditionally convergent spectral sequences. In Homotopy invariant algebraic structures (Baltimore, 1998), ed. J.-P. Meyer, J. Morava, and W. S. Wilson, AMS (1999), 49-84. | Zbl
,[2] Mackey functors and related structures in representation theory and number theory. Habilitation-Thesis, Universitat Augsburg (1995). Also at : http://www.math.uni-augsburg.de/~boltje/publications.html
,[3] Groupes réductifs. Publ. Math. IHES 27 (1965), 55-150. | EuDML | Numdam | MR | Zbl
and ,[4] Groupes et algèbres de Lie. Chapitre 1. Hermann (1960). | Zbl
,[5] Groupes et algèbres de Lie. Chapitres 4, 5, et 6. Hermann (1968).
,[6] Groupes et algèbres de Lie. Chapitres 7 et 8. Diffusion C.C.L.S. (1975).
,[7] Groupes réductifs sur un corps local, I : Données radicielles valuées. Publ. Math. IHES 41 (1972), 5-251. | EuDML | Numdam | MR | Zbl
and ,[8] Groupes réductifs sur un corps local, II : Schémas en groupes. Existence d'une donnée radicielle valuée. Publ. Math. IHES 60 (1984), 5-184. | EuDML | Numdam | MR | Zbl
and ,[9] Pseudocompact algebras, profinite groups and class formations. J. Alg. 4 (1966), 442-470. | MR | Zbl
,[10] Sur les invariants intégraux de certains espaces homogènes. Ann. Société Pol. de Math. 8 (1929), 181-225. | JFM
,[11] Homological algebra. Princeton University Press (1956). | MR | Zbl
and ,[12] Cohomology theory of Lie groups and Lie algebras. Trans. AMS 63 (1948), 85-124. | MR | Zbl
and ,[13] Fragments of the GL2 Iwasawa theory of elliptic curves without complex multiplication. In Arithmetic theory of elliptic curves (Cetraro, 1997), ed. C. Viola, Lecture Notes in Mathematics 1716, Springer (1999). | Zbl
,[14] Euler characteristics and elliptic curves II. J. Math. Soc. Japan, to appear. | Zbl
and ,[15] Euler-Poincaré characteristics of abelian varieties. C. R. Acad. Sci. Paris 329 (1999), 309-313. | MR | Zbl
and ,[16] Methods of representation theory, v. 2. John Wiley (1987). | MR | Zbl
and ,[17] Representation theory. Springer (1991). | MR | Zbl
and ,[18] Riemann-Roch algebra. Springer (1985). | MR | Zbl
and ,[19] Idempotent formula for the Burnside algebra with applications to the p-subgroup complex. Ill. J. Math. 25 (1981), 63-67. | MR | Zbl
,[20] Cohomology of Lie algebras. Ann. Math. 57 (1953), 591-603. Also in J.-P. Serre, Œuvres, Springer (1986), v. 1, 152-164. | MR | Zbl
and ,[21] Representations of algebraic groups. Academic Press (1984). | MR | Zbl
,[22] Lie algebra homology and the generalized Borel-Weil theorem. Ann. Math. 74 (1961), 329-387. | MR | Zbl
,[23] Groupes analytiques p-adiques. Publ. Math. IHES 26 (1965), 389-603. | Numdam | MR | Zbl
,[24] The cohomology of restricted Lie algebras and of Hopf algebras. J. Alg. 3 (1966), 123-146. | MR | Zbl
,[25] Catégories tannakiennes. Lecture Notes in Mathematics 265, Springer (1972). | MR | Zbl
,[26] Algèbre locale. Multiplicités. Lecture Notes in Mathematics 11, Springer (1965). | MR | Zbl
,[27] Sur la dimension cohomologique des groupes profinis. Topology 3 (1965), 413-420. | MR | Zbl
,[28] Cohomologie galoisienne. Lecture Notes in Mathematics 5, 5th edition, Springer (1994). | MR | Zbl
,[29] La distribution d'Euler-Poincaré d'un groupe profini. In Galois representations in arithmetic algebraic geometry (Durham, 1996), ed. A. Scholl and R. Taylor, Cambridge University Press (1998), 461-493. | MR | Zbl
,[30] Regular elements of semi-simple algebraic groups. Publ. Math. IHES 25 (1965), 49-80. | Numdam | MR | Zbl
,[31] Cohomology for p-adic analytic groups. To appear in New horizons in pro-p groups, ed. M. du Sautoy, D. Segal, and A. Shalev, Birkhauser.
and ,[32] Reductive groups over local fields. In Automorphic forms, representations, and L-functions (Corvallis, 1977), ed. A. Borel and W. Casselman, AMS (1979), 29-69. | MR | Zbl
,