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EULER CHARACTERISTICS FOR p-ADIC LIE GROUPS
by Burr TOTARO

Lazard [23] found definitive results about the cohomology of p-adic Lie groups
such as GL,Z, with coefficients in vector spaces over Q ,. These results, applied to the
image of a Galois representation, have been used many times in number theory. It
remains a challenge to understand the cohomology of p-adic Lie groups with integral
coeflicients, and especially to relate the integral cohomology of these groups to the
cohomology of suitable Lie algebras over the p-adic integers Z,. In this paper, we
do enough in this direction to compute a subtle version of the Euler characteristic,
arising in the number-theoretic work of Coates and Howson ([14], [13]), for most of
the interesting p-adic Lie groups.

The Euler characteristics considered in this paper have the following form. Let
G be a compact p-adic Lie group with no p-torsion. Let M be a finitely generated
Z,-module on which G acts, and suppose that the homology groups Hi(G, M) are
finite for all 7. They are automatically O for : sufficiently large [27]. Then we want to
compute the alternating sum of the p-adic orders of the groups H/(G, M):

X(G, M):= ) _(~1)'ord,[H{(G, M)},

where ord (¢):=a. These Euler characteristics determine the analogous Euler charac-
teristics for the cohomology of G with coefficients in a discrete “cofinitely generated”
Z,-module such as (Q,/Z,)"; see section 1 for details. If the module M is finite, Serre
gave a complete calculation of these Euler characteristics in [29].

The first result on these Euler characteristics with M infinite is Serre’s theorem
that x(G, M)=0 for any open subgroup G of GLyZ, with p > 5, where M =(Z,)? with
the standard action of G [29]. This is the fact that Coates and Howson need for their
formula on the Iwasawa theory of elliptic curves ([14], [13]). In fact, Serre’s paper [29]
and the later paper by Coates and Sujatha [15] prove the vanishing of similar Euler
characteristics for many p-adic Lie groups other than open subgroups of GL,Z,, but
only for groups which are like GLyZ, in having an abelian quotient group of positive
dimension. For example, it was not clear what to expect for open subgroups of SLyZ,.

We find that the above Euler characteristic, for sufficiently small open subgroups
of SLyZ,, is equal to O for all p+3 and to —2 for p=3. We also compute the Euler
characteristic of these groups with coefficients in a representation of SLy other than
the standard one: it is again 0 except for finitely many primes p. The phenomenon
simplifies curiously for larger groups (say, reductive groups of rank at least 2), as the
following main theorem asserts: the Euler characteristic is 0 for all primes p and all



170 : BURT TOTARO

representations of the group for which it makes sense. The proof of this theorem is
completed at the end of section 9.

Theorem 0.1. — Let p be any prime number. Let G be a compact p-adic Lie group of
dimension at least 2, and let M be a finitely generated Z,-module with G-action. Suppose that the
homology of the Lie algebra 9o, of G acting on M ® Q 15 O; this 15 equivalent to assuming that
the homology of any sufficiently small open subgroup Go acting on M is finite, so that the Euler
characteristic X(Go, M) 15 defined. (For 9o, reductive, this assumption 1s equivalent to the vanishing
of the comvariants of gq, on M ® Q .) Then the Euler characteristics %(Go, M) are the same for
all sufficently small open subgroups Go of G (that is, all open subgroups contained in a certain
neighborhood of 1).

The common value of these Euler characteristics is O if every element of the Lie algebra gq,
has centralizer of dimension at least 2 (example: gq, reductive of rank at least 2). Otherwise, there
is an element of g, whose centralizer has dimension 1 (example: gq, =51,Q ), and then we give
an explicit formula for the common value of the above Euler characteristics; in particular, this common
value s not O for some chowce of the module M.

Remarks. — 1) The dimensions of centralizers play a similar role in the case of
finite coefficient modules: if G i1s a compact p-adic Lie group with no p-torsion, then
x(G, M)=0 for all finite p-torsion G-modules M if and only if every element of G has
centralizer of dimension at least 1, by Serre [29], Corollary to Theorem C.

2) There are simple sufficient conditions for G to be “sufficiently small” that
X(G, M) is equal to the value which we compute. For example, if M is a faithful
representation of G, it suffices that G should act trivially on M/p if p is odd and
on M/4 if p=2. In fact, for the most natural p-adic Lie groups, we can avoid this
assumption completely: Corollary 11.6 shows that (G, M)=0 for all compact open
subgroups G of a reductive algebraic group of rank at least 2 when p is big enough.
In particular, such groups G (including SIL,Z,, for example) need not be pro-p groups.

3) It is somewhat surprising that Euler characteristics of this type are the same
for all sufficiently small open subgroups, given that G has dimension at least 2. Other
types of Euler characteristics tend instead to be multiplied by r when passing from G
to a subgroup H of finite index 7. Of course, these two properties are the same when
the Euler characteristics of G and H are both 0.

4) The theorem is false for G of dimension 1. In this case, for a given module
M as above, G has an open subgroup isomorphic to Z, such that

X2y, M) =32y, M) + n dimM ® Q)

for all n > 0. That is, the Euler characteristics for open subgroups need not attain a
common value when G has dimension 1.

The key to the proof of Theorem 0.1 1s to relate the homology of p-adic
Lie groups to the homology of Lie algebras. Lazard did so for homology with Q,
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coefficients. There is more to be discovered about the relation between group homology
and Lie algebra homology without tensoring with Q,, but at least we succeed in
showing that the Euler characteristic of a p-adic Lie group (of dimension at least 2) is
equal to the analogous Euler characteristic of some Lie algebra over Z,. The proof in
sections 8 and 9 sharpens Lazard’s proof that the group and the Lie algebra have the
same rational cohomology, giving an explicit upper bound for the difference between
the integral cohomology of the two objects. We compute these Euler characteristics for
Lie algebras in sections 3 to 7, using in particular Kostant’s theorem on the homology
of the “upper-triangular” Lie subalgebra of a semisimple Lie algebra over a field of
characteristic zero [22]. Sections 1 and 2 give some preliminary definitions and results.

The rest of the paper goes beyond Theorem 0.1 in several directions. First,
using the general results we have developed on the integral homology of p-adic Lie
groups, Theorem 10.1 computes the whole homology with nontrivial coefficients of
congruence subgroups, not just the Euler characteristic. Section 11 extends the earlier
arguments to prove the vanishing of Euler characteristics for many p-adic Lie groups
which are not pro-p groups, namely open subgroups of a reductive group of rank at
least 2. The proof uses that for sufficiently large prime numbers p, all pro-p subgroups
of a reductive algebraic group are valued in the sense defined by Lazard. A sharper
estimate of the primes p with this property is given in section 12, using the Bruhat-Tits
structure theory of p-adic groups. Finally, section 13 shows that the results of section 11
on vanishing of Euler characteristics do not extend to open subgroups of SL,Z,.

I am grateful for John Coates’s questions about these Euler characteristics.
Jean-Pierre Serre, Ottmar Venjakob, and the referee made useful suggestions on the
exposition.
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1. Homology vs. cohomology

The main results of this paper are about the homology of groups or Lie algebras
with coefficients in finitely generated Z,-modules. We will explain here how to deduce
analogous results for cohomology, or for coefficients in a module of the form (Q,/Z,)".

Throughout the paper, a Lie algebra g over a commutative ring R is always
assumed to be a finitely generated free R-module. We use Cartan-Eilenberg [11],
Chapter XIII, as a reference for the homology and cohomology of Lie algebras. The
homology of a Lie algebra g depends on the base ring R as well as on g, but (as is
usual) we will not indicate that in the notation. One relation between homology and
cohomology for Lie algebras is the naive duality:

Lemma 1.1. — For any g-module M and any imjective R-module 1, there s a canonical
isomorphism

Homg (Hy(g, M), I) = Hi(g, Homg (M, T)).

Typical cases are I=R, when R is a field, and 1=Q,/Z,, when R=Z,. Also,
there is a canonical Poincaré duality isomorphism for any g-module M ([11], p. 288):

Lemma 1.2.

Hi(ga I\/D = H”_i(ga N g ®R M)

Either of these lemmas can be used to translate the results of this paper about
Lie algebras from homology to cohomology.

A reference for the homology of profinite groups G is Brumer [9]. For a prime
number p, let Z,G denote the completed group ring of G over the p-adic integers,

ZPG = hg_n ZP[G/U] >

where U runs over the open normal subgroups of G. Define a pseudocompact Z,G-
module to be a topological G-module which is an inverse limit of discrete finite
p-torsion G-modules. The category of pseudocompact Z,G-modules is an abelian
category with exact inverse limits and enough projectives. So we can define the
homology groups H.(G, M) of a profinite group G with coefficients in a pseudocompact
Z,G-module M as the left derived functors of the functor Ho(G, M) =Mg := M/I(G)M,
where 1(G) =ker(Z,G — Z,). We have

H{(G, M) =lim H(G/U, M/IUM),



EULER CHARACTERISTICS FOR p-ADIC LIE GROUPS 173

where U runs over the open normal subgroups of G ([9], Remark 1, p. 455).
Furthermore, the category of pseudocompact Z,G-modules is dual, via Pontrjagin
duality

M* = Homcont(M) QP/Zﬁ))

to the category of discrete p-torsion G-modules ([9], Proposition 2.3, p. 448). The
category of discrete p-torsion G-modules has enough injectives, and the cohomology of
a profinite group G with coefficients in such a module can be defined as a right derived
functor [28]. As a result, the homology theory of profinite groups G with coefficients
in pseudocompact Z,G-modules is equivalent to the better-known cohomology theory
with coefficients in discrete p-torsion G-modules, via Pontrjagin duality:

Lemma 1.3.
H{(G, M)* =H'(G, M").

So the main results of this paper, about Euler characteristics associated to the
homology of a p-adic Lie group with coefficients in a finitely generated Z,-module, are
equivalent to statements about the cohomology of such a group with coefficients in a
discrete “cofinitely generated” Z,-module such as (Q,/Z,)".

2. Euler characteristics for Lie algebras

This section discusses some simpler situations where Euler characteristics can be
shown to vanish. Most of the results and definitions here will be needed for the later
results on Euler characteristics for p-adic Lie groups.

A simple fact in this direction is that a compact connected real Lie group G,
viewed as a real manifold, has Euler characteristic 0 unless the group is trivial, in
which case the Euler characteristic is 1. This fact can be reformulated as a statement
about Euler characteristics in Lie algebra homology, by E. Cartan’s theorem that

H.(G, R)=H.(g, R)

for a compact connected Lie group G with Lie algebra g over the real numbers [10].
There is a much more general vanishing statement about Euler characteristics of Lie
algebras, as follows.

Proposition 2.1. — Let g be a finite-dimensional Lie algebra over a field k, and let M be a
Sfinite-dimensional representation of g. Then the Euler characteristic

x(8, M):= D dim Hy(g, M)

is equal to 0 if g £0, and to the dimension of M if g =0.
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Progof. — For g=0, Ho(g, M)=M and the higher homology is 0. For g £0, we
consider the standard complex which computes the Lie algebra homology H.(g, M)
([11], p. 282):

— N'g &M — g&M —M — 0,

where
A A Ax)@m= > (=1 A A A .. A2)® xim
+ 3 (D[, K] A B A e ABA CAXGA  AX) @ m
iy
for x,...,x, € g and m € M. Since g and M are finite-dimensional, this is a bounded

complex of finite-dimensional vector spaces. The basic fact about Euler characteristics
is that, in this situation, the Euler characteristic of the homology of this complex (that
is, of H,(g, M)) is equal to the alternating sum of the dimensions of the vector spaces
in the complex. Thus, if we let n be the dimension of g, the Euler characteristic is

i(——l)i (") dim M,
i=0 t

which i1s 0 for n >0. O

The same argument applies to the homology of Lie algebras over a discrete
valuation ring I' with coefficients in a I'module of finite length, as the following
proposition says. We have in mind the case of a Lie algebra over the p-adic integers
Z, acting on a finite Z,-module. A Z,-module A is finite if and only if it has finite
length, and in that case

ord |A| = lengchpA.

Proposition 2.2, — Let g be a Lie algebra over a discrete valuation ring T, and let M be a
T-module of finite length on which g acts. Then the Euler characteristic

x(@, M):= 3 (1) lengthrHy(g, M)

is equal to 0 if g 0, and to lengthyM if g =0.

Progf. — For any g-module M, the homology groups H.(g, M) are the homology
of the standard complex

- ANg®rM—->grM —-M — 0.

For M of finite length, as we assume, this is a bounded complex of I'modules of finite
length. So the basic fact about Euler characteristics says that the Euler characteristic
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X(g, M) is equal to the alternating sum of the lengths of the I''modules in the complex,
which is 0 for g 0 by the same calculation as in the proof of Proposition 2.1. O

We now consider a more subtle situation, which is essentially the main topic
of this paper. Let g be a Lie algebra over a discrete valuation ring T, the case of
interest being '=Z,. Let M be a finitely generated I'-module on which g acts, and
suppose that H.(g, M) ® F=0, where F is the quotient field of I'. Then the homology
groups Hj(g, M) are I'modules of finite length, and we can try to compute the Euler
characteristic

X(g3 M) = Z(_l)l lengthl"Hi(gﬁ M)

In this situation, the standard complex which computes H,(g, M),
— ANgrM—g®rM—M — 0,

does not consist of I'-modules of finite length, and so the basic fact about Euler
characteristics is not enough to determine x(g, M).

We do, however, have the following results on “independence of M” and
“independence of g.” For part (2), we need to define relative Lie algebra homology for
Lie algebras h C g and a g-module M. Namely, let H.(g, h; M) be the homology of the
mapping cone of the map of chain complexes C.(h, M) — C.(g, M) which compute
the homology of  and g. Then there is a long exact sequence

Hj(h: I\/D - I_Ij(g: M) - Hj(ﬂ) b:M) - H'—l(b, M)

Proposition 2.3. — Let g be a Lie algebra over a discrete valuation ring T'. Let F be the
quotient field of T.

1) Suppose g £0. Let M, and My be g-modules, finitely generated over T, which become
womorphic afler tensoring with F. Then H.(g, M) ® F =0 if and only if H.(g, My) ® F =0,
and if either condition holds then

X(g) Ml) :X(g) MQ)

2) Suppose that g has rank at least 2 as a free T-module. Let M be a g-module which is
Sfinitely generated over T. Let by C g be an open Lie subalgebra, meaning a Lie subalgebra such that
the T-module g/b has finite length. Then the relative Lie algebra homology groups H.(g, b; M) have
Sfinite length as T-modules, and the corresponding Euler characteristic ¥(g, h; M) is 0. It follows that
H.(g, M) ® F =0 #f and only if H.(h, M) @ F =0, and if either condition holds then

x(@, M)=x(h, M).

The assumption that g has rank at least 2 as a free Imodule is essential
in statement (2). Indeed, for the Lie algebra g=2Z, acting on a finitely generated



176 BURT TOTARO

Z,-module M such that the space of coinvariants of g on M ® Q, is 0 (so that these
Euler characteristics are defined), x(¢"g, M) is equal to x(g, M) + » dimM ® Q ), not
to x(g, M). A general calculation of ¥(g, M) for g isomorphic to Z, can be found in
Proposition 6.1.

Proof. — Since H.(g, M) ® F=H.,(g, M ® F), we have the first part of statement
1). Furthermore, we can multiply a given g-module isomorphism M; @ F — My, ® F by
a suitable power of a uniformizer m of T to get a g-module homomorphism M; — M,
which becomes an isomorphism after tensoring with F. That is, the kernel and cokernel
have finite length. Then 1) follows from Proposition 2.2.

Since H.(g, M) ® F=H.(g ® F, M ®F), the vanishing of H.(g, h; M) ® F follows
from the isomorphism h ® F = g ® F. So the I'modules H,(g, h; M) have finite
length, and the Euler characteristic %(g, h; M) is defined. Furthermore, Proposition
2.2 shows that x(g, M) =X(H, Mios) =0, and so %(g, h; Miors) = 0. Therefore, to show
that x(g, h; M) =0, it suffices to show that x(g, h; M/M,,s) = 0. That is, we can assume
that the finitely generated I'-module M is free.

The map of chain complexes C.(h, M) — C.(g, M) associated to the inclusion
h C g has the form (A*h) r M — (A*g) ®r M. Since M is a finitely generated free
I'module, this map is injective. So the relative Lie algebra homology H.(g, h; M) is
the homology of the cokernel complex C.(g, h; M) of this map. Here Cj(g, h; M) is a
I'mmodule of finite length with

length;-Gy(g, h; M) = lengthr(V(g)/N (b)) rankM
= (;’ - 11)1engthr(g /b) rank M,

where n denotes the rank of the Lie algebras g and § as free I'-modules. The formula
for length(N(g)/~N (h)) which I have used here applies to any inclusion of a free T-
module § of rank 7 into another, g, of the same rank. It follows from the special case

where g/h = I'/n. That special case can be proved by writing out a basis for N/(g)/N().
Since C.(g, h; M) is a bounded complex of I'-modules of finite length, we have

x@, b; M) =x(C.(g, B; M))
= Z(— 1)/ (;’ : :) length(g/h) rank-M

=0,

using the assumption that the dimension 7 of g is at least 2.
The statements in Proposition 2.3(2) about the homology of g and § follow from
those about H.(g, h; M) by the long exact sequence before the proposition. O

The following definition makes sense thanks to Proposition 2.3.
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Definition 2.4. — Let go, be a Lie algebra of dimension at least 2 over Q. Let Mg ,
be a finite-dimensional gq ,-module such that H.(gq > Mq,) =0. Define Ysn(gg,, Mq,) to be the
Euler characteristic (g, M) for any integral models g and M of go , and Mg, That 15, g is a
Lie algebra over Z, and M is a g-module, finitely generated as a Z,-module, such that tensoring up
to Q, gues the Lie algebra gq, and its module Mq .

A slight extension of this definition is sometimes useful. Let K be a finite
extension of the p-adic numbers, with ring of integers ox. Let g, be a Lie algebra
over ok, and let M, be a finitely generated ox-module on which g,  acts. Suppose
that H. (g, , M, ) ®,, K=0. Then we can define an Euler characteristic, extending our
earlier definition for Lie algebras over the p-adic integers, by

X(@ac> Mo) = [K 1 Q171 3 (=1)7 ord,|H(g , My ).
J

This rational number does not change if we tensor the Lie algebra g, and the module
M, with o, for some larger p-adic field L, as a result of the flatness of o, over ok.
Also, for a Lie algebra of rank at least 2 as an ox-module, Proposition 2.3 shows that
this number only depends on the Lie algebra and its module after tensoring with K,
so we have an invariant Xsn(gx, Mk). Combining this with the previous observation
shows that the following invariant is well defined.

Definition 2.5. — Let 9g, be a Lie algebra of dimension at least 2 over the algebraic closure
of Q,, and let MQ,, be a finite-dimensional g@-moa’ule such that H*(QQ,,’ MQ—p) =0. Define
Xﬁn(gap, MQ[)) to be the rational number (8., , M, ) for any models of gg, and MQ/) over the
ring of integers ox of some fimite extension K of Q ,.

3. Reductive Lie algebras in characteristic zero

The following lemma is a reformulation of the basic results on the cohomology
of reductive Lie algebras in characteristic zero, due to Chevalley-Eilenberg [12] and
Hochschild-Serre [20]. By definition, a finite-dimensional Lie algebra g over a field
K of characteristic zero is called reductive if g, viewed as a module over itself, is a
direct sum of simple modules. Equivalently, g is the direct sum of a semisimple Lie
algebra and an abelian Lie algebra. Beware that if g is reductive but not semisimple,
finite-dimensional g-modules are not all direct sums of simple modules, contrary to
what the name “reductive” suggests.

Lemma 3.1. — Let g be a reductive Lie algebra over a field K of characteristic zero. Then
any finite-dimensional g-module M splits canonically as a direct sum of modules all of whose simple
subquotients are isomorphic. Also, if the space My of coinvariants or the space M® of invarants 1s 0,
then H*(g, M) and H.(g, M) are 0.
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Proof. — Let g be a reductive Lie algebra over a field K of characteristic zero.
Hochschild and Serre ([20], Theorem 10, p. 598), extending Chevalley and Eilenberg,
showed that if M is a nontrivial simple g-module of finite dimension, then H*(g, M) = 0.
I will only describe the proof for g semisimple. In that case, the Casimir operator in
the center of the enveloping algebra Ug acts by 0 on the trivial module K, and by a
nonzero scalar on every nontrivial simple module M; so

H*(g, M) = Ext}, (K, M) = 0.

In particular, for g reductive and a nontrivial simple g-module M, H'(g, M) =0,
which says that there are no nontrivial extensions between the trivial g-module K and
a nontrivial simple g-module. So every finite-dimensional g-module M splits canonically
as the direct sum of a module with all simple subquotients trivial and a module with
all simple subquotients nontrivial.

Therefore, if M is a finite-dimensional g-module with M;=0 or M?=0, then
all simple subquotients of M are nontrivial, and so H*(g, M)=0 by Hochschild and
Serre’s theorem. The analogous statement for homology follows from naive duality,
Lemma 1.1, which says that

Hl(g ) M)* = Hl(g ) M*))

where M* denotes the dual of the vector space M. Finally, the splitting of any finite-
dimensional g-module as a direct sum of modules all of which have the same simple
subquotient follows from the vanishing of Ext;(S,, Se)=H'(g, Homg (S;, Sg)) for any
two non-isomorphic simple modules S; and S,. That vanishing follows from what we
have proved about the vanishing of cohomology, since

H'(g, Homy (81, S))=Hom(S,, Sy)
=0. m|

4. The case of abelian Lie algebras

Let K be a finite extension of the field of p-adic numbers, with ring of integers
ox. We will show that the Euler characteristics we consider are 0 for any abelian Lie
algebra over ox of rank at least 2 as an og-module. (They are not 0 for a Lie algebra
of rank 1 as an og-module, as I mentioned after the statement of Proposition 2.3.)
This is the first step in a sequence of generalizations, the next step being Theorem 5.1
which proves the same vanishing for all reductive Lie algebras of rank at least 2.

Proposition 4.1. — Let Yy be an abelian Lie algebra of the form (ok)” for some r > 2. Let M
be a finitely generated ox-module with Y-action such that My @ K =0. Then the homology groups
H.(h, M) are finite and the resulting Euler characteristic (b, M) (defined in section 2) s 0.
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Progf. — At first let h=(og)" for any r. Let hx =h ®,, K. For any b, -module M,
finitely generated over ok, such that the coinvariants of hx on Mg are 0, Lemma 3.1
shows that H.(hx, Mk)=0. It follows that Hj(h, M) is a finite og-module for all ;.

Now suppose that h has rank 7 > 2 as an ogx-module; we want to show that
x(H, M)=0. By Definition 2.5, which only makes sense for a Lie algebra of dimension
at least 2, it is equivalent to show that xﬁn(hQ—p, M@) =0, given that Map)hap =0. By
Lemma 3.1, the assumption (MQ,,)‘TE =0 implies that M@ is an extension of nontrivial

simple bgp-modules; so it suffices to show that xﬁn(b@, MQP) =0 for a nontrivial simple
bap-module M@. Since hg, is abelian, such a module has dimension 1 by Schur’s
lemma. Changing the definition of the original Lie algebra b, we know that there is
some p-adic field K and some models  and M over ok for b@,, and the l-dimensional
module MQP, and we are done if we can show that x(h, M) =0.

Since h has rank 7 > 2 as an ogx-module, there is a Lie subalgebra [ C b of rank
r— 1 which is a direct summand as an og-module and which acts nontrivially on M.
Since M has rank 1 over ok, it follows that the coinvariants of | on M®XK are 0. So the
homology groups H.(I, M) are finite as shown above. Consider the Hochschild-Serre
spectral sequence

E; = H(h/1, Hy(, M)) = Hi (b, M),

where /1 = og. We have x(h/[, N)=0 for any finite h/I-module N, by Proposition 2.2,
and so this spectral sequence shows that x(h, M)=0. (This concluding argument
is a version for Lie algebras of the argument in Coates-Sujatha about the Euler
characteristic of a p-adic Lie group which maps onto Z, [15].) O

5. The case of reductive Lie algebras

The rank of a reductive Lie algebra over a field K of characteristic zero is
defined to be the dimension of the centralizer of a general element; the standard
definition is equivalent ([6], Ch. VII, sections 2 and 4). The rank does not change
under field extensions. For example, for the Lie algebra gx of a reductive algebraic
group G over K, the rank of gk is the rank of G over the algebraic closure of K.

Theorem 5.1. — Let g be a Lie algebra over Z, such that gq, is reductive of rank at
least 2. Let M be a finitely generated Z,-module with g-action such that the comvariants of g,
on Mg, are 0. Then the homology groups H.(g, M) are finite and the resulting Euler characteristic

x(g, M) is equal to 0.

The optimal generalization of this statement is Theorem 7.1, which proves the
same vanishing for all Lie algebras over Z, in which every element has centralizer of
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dimension at least 2. See section 6 for the calculation of Euler characteristics, which
are sometimes nonzero, for reductive Lie algebras of rank 1.

Proof. — We will prove the analogous statement for Lie algebras g over the
ring of integers ok of any finite extension K of Q,, not just over Z,. The homology
groups H,(g, M) are finitely generated ox-modules. Since we assume that (Mk)y, =0,
Lemma 3.1 gives that H,(gx, Mk) =0, and so the homology groups H.(g, M) are in
fact finite og-modules. Thus, since g has rank at least 2 as an og-module, the Euler
characteristic Xg,(gx , Mk) is defined by Definition 2.4, and we want to show that it is
0. Since this Euler characteristic is unchanged under finite extensions of K, according
to Definition 2.5, we can extend the field K so as to arrange that the reductive Lie
algebra gx has a Borel subalgebra bgx defined over K ([6], Ch. VIII, section 3). By
Lemma 3.1 again, the assumption that (Mg)y, =0 implies that Mg is an extension of
nontrivial simple gg-modules, so it suffices to show that ¥z, (gx , Mk)=0 when Mg 1is
a nontrivial simple gg-module.

Let ug be the commutator subalgebra of the Borel subalgebra bk, so that

bx/ug = K’ where r is the rank of g. We are assuming that r is at least 2. Let g
and M be models over og, which we take to be finitely generated free as ox-modules,
for gx and Mg. Our goal is to show that (g, M)=0. Let b=gNbg and u=g Nug;
these are Lie subalgebras of g over ox. The quotient Lie algebra b/u is isomorphic to
(ok)’, where 7 is at least 2.

To analyze H.(g, M), we use two spectral sequences, both of homological type
in the sense that the differential d, has bidegree (—r, r — 1). First, there is the spectral
sequence defined by Koszul and Hochschild-Serre for any subalgebra of a Lie algebra,
which we apply to the integral Borel subalgebra b C g ([20], Corollary to Theorem 2,
p- 594):

E, =H(b, M ®, Akg/b)) = Hu(g, M).

In fact, Hochschild and Serre construct the analogous spectral sequence for cohomo-
logy rather than homology, and only over a field, but the same construction works
for the homology of Lie algebras over a commutative ring R when (as here) the
inclusion b C g is R-linearly split. Next we have the Hochschild-Serre spectral sequence
associated to the ideal u C b:

E; =H,b/u, Hu, M ®, A\ (g/b))) = Hij(b, M ®, Ag/b)).

Combining these two spectral sequences gives a formula for the Euler characteristic
x(g, M) which is correct if the right-hand side is defined (that is, if the homology
groups of b/u acting on the modules shown are finite):

x(@, M)= > (=17 x(b/u, Hu, M ® A¥g/b))).

Jik
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Since b/u = o¢ with 7 > 2, Proposition 4.1 says that the Euler characteristic
X(b/u, N) is defined and equal to O for any finitely generated ox-module N with b/u-
action such that (Nk),/, =0. So to show that (g, M)=0, as we want, it suffices to
prove the following statement, which fortunately follows from Kostant’s theorem [22].

Proposition 5.2. — Let g be a reductive Lie algebra over a field K of characteristic zero
which has a Borel subalgebra b defined over K, and let w be the commutator subalgebra of b. Let
M be a nontrivial simple g-module. Then

H.(u, M @k A"(9/6)), ), =0.

Proogf — When we extend scalars from K to its algebraic closure, the g-module
M becomes a direct sum of nontrivial simple modules. So it suffices to prove the
proposition for K algebraically closed. In this case, the center of g acts on M by
scalars, and acts trivially by conjugation on g/b and on u. If the center of g acts
nontrivially on M, then it acts nontrivially by scalars on H,(u, M ® A*(g/b)), and so
the coinvariants of b/u (which includes the center of g) on these groups are 0. Thus we
can assume that the center of g acts trivially on M. Then, replacing g by its quotient
by the center, we can assume that the Lie algebra g is semisimple. In this case, there is
a canonical simply connected algebraic group G over K with Lie algebra g. Let B be
the Borel subgroup of G with Lie algebra b, and let U C B be its unipotent radical.
Choosing a maximal torus T C B, we define the negative roots to be the weights of
T acting on u.

Kostant’s theorem, which can be viewed as a consequence of the Borel-Weil-Bott
theorem, determines the weights of the torus B/U = T acting on H,(u, M) for any
simple g-module M in characteristic zero [22]. The result is that the total dimension
of H,(u, M) is always equal to the order of the Weyl group W. More precisely, let
A € X(T)=Hom(T, G,) be the highest weight of M, in the sense that all other weights
of M are obtained from A by repeatedly adding negative roots. Then, for any weight
U, the p-weight subspace of Hj(u, M) has dimension 1 if there is an element w € W
such that j is the length of w and p=w-A; otherwise the p-weight subspace of Hju, M)
is 0. Here the notation w - A refers to the dot action of W on the weight lattice X(T):

w'x::w(?"-'_p)_p)

where p denotes half the sum of the positive roots ([21], p. 179).

Since the weights of T occurring in u are exactly the negative roots, the weights
occurring in A*(u) are exactly the sums of some set of negative roots. It follows easily
that the set S of weights occurring in A*(u) is invariant under the dot action of W on
the weight lattice X(T).

Clearly the intersection of S with the cone X(T)" of dominant weights is the
single weight 0. So if A is any nonzero dominant weight, then A is not in S. Since S
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is invariant under the dot action of W on X(T), it follows that (W-A) NS is empty. By
Kostant’s theorem, as stated above, it follows that for any nontrivial simple g-module
M, the T-module H,(u, M) has no weights in common with A*(u).

The weights of T that occur in the B-module g/b are the negatives of those that
occur in the B-module u. So the previous paragraph implies that

H.(u, M® gy = (H.(u, M) ® Wy
=0
for any weight B occurring in A*(g/b). Since the simple B-modules are the 1-dimen-

sional B/U-modules, the B-module A*(g/b) has a filtration with graded pieces the
weights p as above. It follows that

H.(u, M ® A\*(g/b))s/u =0.

Since we are in characteristic zero, it is equivalent to say that the coinvariants of the
Lie algebra b/u are 0. This proves Proposition 5.2 and hence Theorem 5.1. O

6. Euler characteristics for Z, and sl,Z,

Since Theorem 5.1 proves the vanishing of the Euler characteristic we are
considering for reductive Lie algebras of rank at least 2, it is natural to ask what
happens in rank 1. If g is a Lie algebra over Z, such that go , is reductive of rank 1,
then og, is isomorphic to Qp or 5[2_Q_p. In this section, we determine the Euler
characteristic for all representations of such a Lie algebra g. In particular, for the
irreducible representation of sl,Z, of a given highest weight, the Euler characteristic is 0
for all but finitely many prime numbers p. For example, for the standard representation
M=(Z,)? of g=sl,Z,, the Euler characteristic x(g, M) is 0 for p$3 and —2 for
p=3.

Let us first compute Euler characteristics for a Lie algebra g over Z, such that
9g, =Q,. Clearly g is isomorphic to Z,.

Proposition 6.1. — Let g be the Lie algebra of rank 1 as a Z,-module with generator x. Let
M be a finitely generated Z,-module with g-action. Then the homology groups H.(g, M) are finite
if and only if x € End(M) s invertible on M ® Q ,. If this is so, then

X(@, M) =ord,(det.»)

where we view x as an endomorphism of M @ Q 5.

Progf. — The only homology groups for g = Z, acting on M are Hy(g, M)=M,
and H,(g, M), which is isomorphic to M® ®z, g by Poincaré duality (Lemma 1.2). For




EULER CHARACTERISTICS FOR p-ADIC LIE GROUPS 183

any g-module M, these two groups tensored with Q, are 0 if and only if M®Q ), =0
and M ® Q,)° =0, which means precisely that x is invertible on M ® Q.

Suppose that the g-module M is a finitely generated Z,-module and that x is
vertible on M ® Q,. To prove that (g, M) =ord (detx), it suffices to prove it when
M is a finitely generated free Z,-module. Indeed, we have x(g, N)=0 for every finite
g-module N by Proposition 2.2, so that

X(g3 I\/D = X( > Mtors) + X(g’ M/Mtors)
= X(g > M/Mtors)-

Given that M is a finitely generated free Z,-module, with x invertible on M ® Q ,, we
have M* C M ® Q,)* =0, and so Hi(g, M)=0. Thus

X(g, M) = OrdleO(g) M)l
= ord, [M/xM]|
= ordp detx. O

Now let g be a Lie algebra over Z, such that gg, = 5[2611' It follows that g9, is
isomorphic either to 5,Q , or to the Lie algebra sl,D =[D, D] C D over Q, associated
to the nontrivial quaternion algebra D over Q ,. In any case, Definition 2.5 shows that,
since dim g > 2, the integer ¥(g, M) (assuming H.(g, M) ® Q,=0) only depends on
the module MQ;» for s1,Q . Since 5[2Q—_P is semisimple over a field of characteristic
zero, every finite-dimensional 5lgqp-module is a direct sum of simple modules. The
simple modules are the symmetric powers S"V@ of the standard module VQ—[) :Qj,
a > 0, and Lemma 3.1 shows that H*(ﬁlggp, Sav@):o if and only if a > 0. So we

only need to compute the Euler characteristic Xﬁn(ﬁlgqp, S"Vaﬁ) for the integers a > 0.
The answer is:

Proposition 6.2. — For any prime number p and any positive integer a,
Xﬁn(ﬁlgqp, S“V—Qp) = 2(ord,a — ord,(a + 2)).

Thus, for a given a > 0, this Euler characteristic is 0 for almost all prime
numbers p, in particular for all p >a+ 2.

Proof. — By Definition 2.5, it suffices to compute the Euler characteristic for a
single model over Z, of the Lie algebra and the module. We will compute y(sl,Z,, SV)
where V =(Z,)* is the standard representation of slyZ,. It is possible to compute the
homology groups of slyZ, acting on S’V explicitly, but the actual homology groups
are considerably more complicated than the Euler characteristic. We will therefore use
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another approach which gives the simple formula for the Euler characteristic more
directly.

We will imitate, as far as possible, the proof of Theorem 5.1 that these Euler
characteristics are O for reductive Lie algebras of rank at least 2. The difference is
that for an abelian Lie algebra over Z, of rank at least 2 as a Z,-module, the Euler
characteristic is 0 when it is defined (Proposition 4.1), whereas this is not true for the
Lie algebra Z,. We can instead use Proposition 6.1 to compute Euler characteristics
for the Lie algebra Z, explicitly.

Let g=slbZ, and M =5V, where a > 0. Let b be the subalgebra of upper-
triangular matrices in g, and u the subalgebra of strictly upper-triangular matrices in
g. Using the spectral sequences

By =Hb, M ®z, AX(g/b)) = Hislg, M)
and
E; = H(b/u, Hu, M @z, A¥g/b))) = Hajb, M @z, A¥(g/0)),

we derive a formula for the Euler characteristic y(g, M) which is correct if the right-
hand side is defined (that is, if the homology groups of b/u acting on the modules
shown are finite):

20, M)= > (1) x(b/u, Hiu, M @z, A'(g/b))).
Jk

Here b/u, u, and g/b all have rank 1 as Z,-modules, so the sum runs over 0 <j, k< 1.
A moment’s calculation shows that u C slyZ, acts trivially on g/b, so that the formula
can be rewritten as:

2@, M)= D (=17 x(b/u, Hiu, M) @z, A\'(g/b)).
7k

By Kostant’s theorem (as in the proof of Proposition 5.2), the homology groups
Hj{u, M) ®z, Q, are l-dimensional, and the standard generator

1 0
H=(p )
of the Lie algebra b/u = Z, acts on Ho(u, M) ® Q, by multiplication by —a and on
H,(u, M)®@Q, by multiplication by a+2, where M =8°V. Also, the generator H of b/u

acts on g/b = Z, by multiplication by —2. As a result, using that a > 0, Proposition 6.1
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shows that the Euler characteristics in the previous paragraph’s formula are defined,
and gives the following result:

x(g, M) = ordp(—a) — ordp(—a -2)— ordp(a +2)+ ordp(a)
=2(ord,a —ord (a+2)). O

7. Euler characteristics for arbitrary Lie algebras

In this section we show that for any Lie algebra g over Z, in which the centralizer
of every element has dimension at least 2, the Euler characteristic (g, M) is 0 whenever
it is defined (Theorem 7.1). Conversely, for any Lie algebra g over Z, in which the
centralizer of some element has dimension 1, we compute %(g, M) here whenever it is
defined, in particular observing that this Euler characteristic is nonzero for some M
(Theorem 7.4).

Theorem 7.1. — Let g be a Lie algebra over Z, such that the centralizer of every element
has dimension at least 2. Then the Euler characteristic x(g, M) is O whenever it 1s defined, that s,
Jor all finitely generated Z,-modules M with g-action such that H,(g, M) ® Q, =0.

Progf. — The Lie algebra gg, obtained by tensoring g with Q, clearly also has
the property that the centralizer of every element has dimension at least 2. Its structure
is described well enough for our purpose by the following lemma.

Lemma 1.2. — Let g be a Lie algebra over a field K of characteristic zero such that the
centralizer of every element has dimension at least 2. Then g satisfies at least one of the following
three properties.

1) g maps onto a semisimple Lie algebra ¢ of rank at least 2.

2) g maps onto a semisimple Lie algebra v of rank 1 with some kernel u, and there is an
element x € g whose image spans a (1-dimensional) Cartan subalgebra Yy in ¢ and whose centralizer
i u s not 0.

3) g maps onto a 1-dimensional Lie algebra v =Y with some kernel u, and there is an element
x € g whose image spans ) and whose centralizer in u s not 0.

Proof. — The quotient of g by its maximal solvable ideal, called the radical rad(g),
is semisimple ([4], Ch. 5, section 2 and Ch. 6, section 1). If v:=g/rad(g) has rank at
least 2 then we have conclusion (1). Suppose it has rank 1. Then there is an element x
in g whose image spans a Cartan subalgebra b in t, these being 1-dimensional. Since
a Cartan subalgebra in a semisimple Lie algebra is its own centralizer, the centralizer
of x in g is contained in the inverse image of h in g, an extension of h by u:=rad(g).
Since the centralizer of x in g has dimension at least 2, the centralizer of x in u is
not 0, thus proving (2).
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Otherwise, g/rad(g) is 0, which means that g is solvable. Since the centralizer of
0 in g has dimension at least 2, g is not 0, and so it maps onto a l-dimensional Lie
algebra h in some way. Let u be the kernel. Let x be any element of g whose image
spans h. Since the centralizer of x in g has dimension at least 2, the centralizer of x
in u is not 0, and we have conclusion (3). O

To prove Theorem 7.1, it suffices to show that x(g, M)=0 if gg, satisfies any of
the three conditions of Lemma 7.2. We first need the following lemma.

Lemma 7.3. — Let g be a Lie algebra over a field K of characteristic zero which maps
onto a reductive Lie algebra v. Let u be the kernel. If M is a finite-dimensional g-module such
that H.(g, M) =0, then H.(t, H.(u, M)) =0. In particular, the coinvariants of v on H.(u, M)
are 0.

Proof. — Consider the Hochschild-Serre spectral sequence

E; = Hir, Hu, M)) = Ha (g, M).

We are assuming that the E, term of the spectral sequence is 0, and we want to show
that the Ey term is also 0. Let / be the smallest integer, if any, such that Hy(r, H(u, M))
is not 0. The differential 4, in the spectral sequence has bidegree (—r,r — 1), so all
differentials are 0 on this group since they would map to homology in negative degrees.
Moreover, Lemma 3.1 shows that all the homology groups of the characteristic-zero
reductive Lie algebra t acting on H;u, M) are O for j </ So no differentials in the
spectral sequence can go into or out of Hy(r, H(u, M)), contradicting the assumption
that the E,, term of the spectral sequence is 0. So in fact Hy(r, Hju, M)) is O for all j,
and by Lemma 3.1 again it follows that the whole E; term of the spectral sequence is
0. O

We now prove Theorem 7.1 for go, satisfying condition (1) in Lemma 7.2. Let
ug, be the kernel of go, — tq,. Let t be the image of the integral Lie algebra g in
tQ,, and let u be the intersection of g with ug,. It follows from Lemma 7.3 that the
integral Hochschild-Serre spectral sequence,

H.(r, H.(u, M)) = H.(g, M),

has finite E, term, and in particular that the coinvariants of tg, on Hiu,M)® Q,
are 0 for all ;. Since tg, is reductive of rank at least 2, Theorem 5.1 says that the
Euler characteristic x(r, H{u, M)) is O for all ;. Then the spectral sequence implies that
x(@, M)=0.

Cases (2) and (3) can be treated at the same time. In both cases, go, maps onto
a reductive Lie algebra to, of rank 1 with some kernel ug,, and there is an element
x of g whose image in tg, spans a Cartan subalgebra ho, and whose centralizer in
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ug, is not 0. Let ¢ be the image of the integral Lie algebra g in tg, and let u be the
kernel of g mapping to tq,.
By the Hochschild-Serre spectral sequence for the extension of v by u, we have

BM)Z Y xfe, Hiu, M)

provided that the right-hand side makes sense. We are assuming that H,(gq ,»Mg,)=0.
By Lemma 7.3, it follows that H,(rq,, H.(ug,, Mg,)) =0, which means that the right-
hand side in the above formula does make sense. Moreover, by Proposition 2.3(1),
for a finitely generated Z,-module N with t-action such that H,(xq,, Ng,)=0, the
Euler characteristic ¥(t, N) only depends on Ng, as an tg -module (since t has rank
at least 1 as an og-module). In fact, it only depends on the class of Ng in the
Grothendieck group Rep. (tq,) of tg,-modules with all simple subquotients nontrivial.
(This works even for t of rank 1 as an ox-module, so that Proposition 2.3(2) does not
apply, because we are fixing v C tg, and only considering the dependence of these
Euler characteristics on N.)
Thus we have a well-defined homomorphism

X :Repy (rg,) = Z,

and the above formula for x(g, M) says that y(g, M) is the image of the alternating sum
X(ug,, Mg,), as an element of Rep, (tq,), under this homomorphism. So Theorem
7.1 is proved if we can show that the element X(ug,, Mg,) is 0 in the Grothendieck
group Rep, (tq,). Since this Grothendieck group injects into the usual Grothendieck
group Rep(rg,), it suffices to show that X(ug,, Mg,) is 0 in the latter group. The
Grothendieck group of tq, injects into that of the Cartan subalgebra ho, C 1o,
spanned by the given element x € gg, so it suffices to show that y(ug,, Mg ) is 0 in
Rep(Q ).

But here we can use the standard complex that defines Lie algebra homology to
see that

Xug,, Mg,) = O (-1y N ug, Mo,
J
in the representation ring Rep(Q ,x). We are given that x has nonzero centralizer in

ug,, s0 ug, is equal in the representation ring of Q ,x to 1+V for some representation
V. The operation

A_ V= Z J/\J

takes a representation V to an element of the corresponding Grothendieck group,
transforming sums into products. Since A_;1=0, it follows that A_jug,=0 in
Rep(Q ). Therefore y(ug,, Mg,)=0 in Rep(Q ,x), as we needed. O
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Theorem 7.4. — Let g be a Lie algebra over Z, which contains an element with centralizer of
dimension 1. There is a formula (below) for the Euler characteristic X(g, M) whenever it is defined,
that is, for all finitely generated Z,-modules M with g-action such that H.(g, M) ® Q, =0. It is
nonzero for some M.

Progf. — The structure of gg, is described by the following lemma.

Lemma 7.5. — Let g be a Lie algebra over a field K of characteristic zero which contains an
element with centralizer of dimension 1. Then g satisfies at least one of the following two properties.

1) g maps onto a 1-dimensional Lie algebra by with some kernel u, and there is an element
x € g whose image spans Yy and whose centralizer in u s 0.

2) g maps onto a semisimple Lie algebra v of rank 1 with some kernel u, and there is an
element x € g whose tmage spans a (1-dimensional) Cartan subalgebra Yy in v and whose centralizer
i u s 0.

Progf. — Since the dimension of the centralizer is upper-semicontinuous in the
Zariski topology on g, the general element of g has centralizer of dimension 1.

If g is solvable, then it maps onto a l-dimensional Lie algebra h with some
kernel u. Let x be a general element of g in the sense that the image of x spans h and
the centralizer of x in g has dimension 1. Then the centralizer of x in u is 0, proving
statement (1).

Otherwise, g maps onto some nonzero semisimple Lie algebra t. If ¢ has rank at
least 2, then every element of t has centralizer of dimension at least 2 in t. It follows
that the linear endomorphism ad x of g has rank at most dim(g) — 2 for all x € g. So
every x has centralizer of dimension at least 2 in g, contrary to our assumption. So t
has rank 1. Let x be a general element of g in the sense that the image of x spans a
(1-dimensional) Cartan subalgebra h of t and the centralizer of x in g has dimension 1.
Then we have statement (2). O

In fact, we need to strengthen Lemma 7.5 to say that, in both cases (1) and
(2), any element of g whose image spans § has centralizer in u equal to 0. This is
a consequence of Lemma 7.6, as follows. (In case (2), we apply Lemma 7.6 with g
replaced by the inverse image of b in g.)

Lemma 7.6. — Let g be a Lie algebra over a field K of characteristic zero which maps onto
a 1-dimensional Lie algebra Yy with some kernel u. If there is an element x of g whose image spans b
and whose centralizer in u s O, then every element y of g whose image spans by has centralizer in u
equal to 0. Moreover, for any such element y, the element A_yu =Y (—1Y A'w in the Grothendieck
group Rep(Ky) ws not 0.

Proof. — We first need the following elementary lemma.
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Lemma 7.7. — Let ay, ..., a, be elements of a field K of characteristic zero. Let S, be the
set of sums Y ;e a; € K for subsets 1 C {1, ...,n} of even order, and let Soaq be the analogous set
of odd sums, both sets being considered with multiplicities. Then Seyen =Soqa ¥ and only if a; =0
Jor some 1.

Proof. — If a;=0 for some i, then the bijection from the set of even subsets
of {1,...,n} to the set of odd subsets by adding or removing the element ¢ does not
change the corresponding sum of g’s. To prove the converse, we use the following
identity of formal power series:

(€ = 1) (" — D= (1 + o) o (0 + .02)

=X ... x, + terms of higher degree.

We can also write

n

(e"l _ 1) (L;cn _ 1): Z(_ l)n-—j E exl-l+...+x§_'

=0 ;. y
J 1<i) <...<i<n

Equating terms in degree n, we find that

Z(_l)”_j Z () oo T x) =nlxy o,

J=0 1<) <...<i<n

This is now an identity of polynomials with integer coefficients. Plugging in the values
a,...,a, € K, we find that the left-hand side is 0, since the set (with multiplicities) of
sums of an even number of the 4’s is equal to the corresponding set of sums for an
odd number of the g’s. So the right-hand side is 0. Since K has characteristic zero, 7!
is not 0 in K, and so one of the ¢’s is 0. O (Lemma 7.7)

We can now prove Lemma 7.6. Since we have an element x of g whose image
spans h and whose centralizer in u is 0, the eigenvalues of x on u (in a suitable
extension field of K) are all nonzero. By Lemma 7.7, the set with multiplicities of even
sums of the eigenvalues of x on u is not equal to the set of odd sums. Equivalently,
A_iu is not zero in the Grothendieck group Rep(Kx).

But the complex computing Lie algebra homology shows that the element
x(u) = 3 (—1)Hu, K) in Rep(h) can be identified with A_ju in Rep(Kx). The point is
that the exact sequence of Lie algebras 0 — u — g — h — 0 determines an action of
h on the homology of u, and hence an element y(u) of Rep(h), whereas we need to
choose an element x giving a splitting of the exact sequence in order to get an action

of Kx = on u itself and hence to define A_ju in Rep(Kx). Since A_ju is nonzero in
Rep(Kx), the element x(u) is nonzero in Rep(h). So A_ju is nonzero in Rep(Ky) for any
element y of g whose image spans §. By the easy direction of Lemma 7.7, it follows
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that the eigenvalues of y on u are all nonzero. Equivalently, the centralizer of y in u
is 0. O (Lemma 7.6)

We return to the proof of Theorem 7.4. If g has rank | as a Z,-module, then
the theorem follows from Proposition 6.1, so we can assume that g has rank at least 2
as a Z,-module. Let tg, =bg, in case (1). Then, in both cases (I) and (2) of Lemma
7.5, let ¢ be the image of the integral Lie algebra g in the reductive quotient to, and
let u be the kernel of g mapping to tq,.

Given a finitely generated Z,-module M with g-action such that
H.(g,M)®Q, =0, Lemma 7.3 shows that H,(r, H,(u, M)) ® Q, =0 and in particular
that the coinvariants of tg, on H.(u, M)®Q, are 0. Therefore the Euler characteristic
x(g, M) is given by the formula

QM)Z ) (e, Hiw, M)).

As in the proof of Theorem 7.1, let Rep,. ,(tq,) denote the Grothendieck group of
tq,-modules with all simple subquotients nontrivial. Then the above formula says that
x(g, M) is the image of the alternating sum x(ug,, Mg,), as an element of Rep, (rg,),
under a homomorphism

X : Rep, (tq,) — Z.

Now the Lie algebra tq, is either 1-dimensional or else semisimple of rank 1, so we
have computed the homomorphism ¥ : Rep, ,(tq,) — Z in Propositions 6.1 and 6.2.

Thus, to complete the calculation of x(g, M), it suffices to compute the element
X(ug,, Mg,) in Rep,,(tq,). As in the proof of Theorem 7.1, this Grothendieck
group injects into the usual Grothendieck group Rep(rg,), so it suffices to compute
X(ug,, Mg,) as an element of the latter group. We can choose a splitting of the Lie
algebra extension

0—+qu——>ngth?—>0,

since tq, is either 1-dimensional or semisimple. Given such a splitting, o acts on ug,.
We can then compute the element X(ug,, Mg,) in the Grothendieck group Rep(tg,)
using the definition of Lie algebra homology via the standard complex:

x(ug, Mg,)=(>_(~1)/ N ug, Mg,

= (/\—1 uQﬁ)MQp

in the representation ring Rep(tg ). In particular, we see that x(ug,, Mg)) and hence
X(g, M) only depend on ug ) and Mg , as tg p-modules.

We regard this as a calculation of x(g, M). To complete the proof of Theorem
7.4, we need to show that there is some g-module M, finitely generated over Z,, such
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that x(g, M) is defined but not equal to 0. We know that these properties only depend
on Mg, as a gg,-module. We will take M to be a representation of the quotient Lie
algebra t, in the notation we have been using, so that tg, is either l-dimensional or
else semisimple of rank 1. It is enough to find a representation M, of ¢, for some
finite extension K of Q, such that x(g,, , M,;) is not zero. Indeed, we can then view

M, as a representation of g over Z,. We have

H.(g, MOK) = H*(goK > MOK)

by inspection of the standard complex defining Lie algebra homology, and so x(g, M, )
is not zero, giving a representation of g over Z, with nonzero Euler characteristic as
we want.

We first consider case (1) of Lemma 7.5, where tq, has dimension 1. In this
case, I claim that there is an t, -module M,, which is free of rank 1 over ok, for
some finite extension K of Q,, such that x(g, , M,,) is defined and not 0; that will
prove the theorem in this case. Let x be an element of g which maps to a generator
of t=im(g — tq,), which is isomorphic to Z,. For a finite extension K of Q,, an
t,.-module of rank 1 is defined by an element b € ogx, which gives the action of the
generator x.

By the general description of how to compute x(g,, , M,,) which we have given,
we have

X(goK ) Mo )_ Z( l)] X(tOK s /\J uoK ® M"K)

Z (=1)7 ord, det(x | Nux ® M),

J

provided that x is invertible on Nugx ® Mk for all j. Here we are using Proposition 6.1.
We choose the p-adic field K to be any one which contains the eigenvalues ay, ..., a,
of x on u; these are all in the ring of integers ok, because u is a finitely generated
Z,-module. Then the eigenvalues of x on Nug ® Mg are the numbers

b+ai1 +...+a,}.,

for 1 <7 <... < < n. In particular, these eigenvalues are all nonzero, for all 0 <j < 7z
if we choose b outside finitely many values, as we now decide to do. Then x acts
invertibly on Nug ® Mk, and so the above formula for x(g,,. , M, ) is justified.

The above formula then gives, more explicitly:

X(gUK ) =ord H H (b + a; + ...+ af',‘)<_ 1)-7.

7=0 1< <...<i<n
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Let f(b) be the rational function of 4 in this formula, whose p-adic order is X(g., , My, ).
By Lemmas 7.5 and 7.6, we know that A_;u is not zero in the Grothendieck group
Rep(Q ,x). Equivalently, the set with multiplicities of even sums of a, ..., a, is not equal
to the set of odd sums, and so the rational function f () is not constant. The zeros and
poles of this rational function are in the ring of integers ox. Taking a & € ox which is
close but not equal to one of these zeros or poles, we can arrange that f(b) is not a
p-adic unit. That is, for the rank-1 g, -module M associated to b, X(g, , M) is not
0. As mentioned earlier, it follows that x(g, M,,) is not 0, where M, is viewed as a
Z,-module. Theorem 7.4 is proved in case (1) of Lemma 7.5.

We now prove Theorem 7.4 in case (2) of Lemma 7.5. Here gg, is an extension
of a semisimple Lie algebra tq, of rank 1 by another Lie algebra uq,. As mentioned
earlier, we can fix a splitting of this extension, and then tg, acts on ug,. Let bho,
be the Cartan subalgebra given by case (2) of Lemma 7.5. No matter which splitting
of the extension we have chosen, Lemma 7.6 shows that A-ug, is nonzero in the
Grothendieck group of hg,-modules. A fortiori, it is nonzero in the Grothendieck group
of tg,-modules.

We want to find a g-module M, finitely generated over Z,, such that x(g, M) is
defined and not 0. Let K be a finite extension of Q , such that tx is isomorphic to s[K.
It suffices to find a g, -module M, , finitely generated over ok, such that (g, , M)
is defined and not 0, in view of the isomorphism H.(g, M, ) = H.(g, , M, ). We will
take M, to be a module over the quotient Lie algebra t,  (the image of g, in tk). It
suffices to find an t, -module M, finitely generated over ok, such that (A'ux)Mk has
no trivial summands as an tg-module for all 0 < ¢z < # and (A_ug)Mk has nonzero
image under the homomorphism

X : Repy () = Z.

It is somewhat difficult to construct t, -modules, even though we know that rg
is isomorphic to sLK. (For example, let H, X, Y be the usual basis vectors for s[,Q ,.
Then the integral form of the Lie algebra sl,Q o which is spanned by H/2, X, and Y
has no action on (Zy)> which gives the standard representation of sl,Q , after tensoring
with Q,.) The obvious example of an t, -module is the adjoint representation t, ; by
taking symmetric powers of t, and decomposing over K, we find that for every m > 0,
there is an t, -module M, finitely generated over ok, such that Mk is a simple module
over tg = sl,K of highest weight 2m. We can get more if the rg-module ugx has a
summand with odd highest weight, since we know that ug comes from an t, -module
u, which is finitely generated over og. In that case, by tensoring u,, repeatedly with t,,
and decomposing over K (using the Clebsch-Gordan formula, as stated below), we find
that every simple tg-module comes from an v, -module which is finitely generated over
og. To sum up, let ¢ be 1 if the tg-module ug has a summand with odd highest weight,

and 2 otherwise; then we have shown that for every m > 0 there is an t, -module M,,,
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finitely generated over ok, such that My is a simple module over tx = sl,K of highest
weight ¢m.

We have thereby reduced to the following question. Let V be the standard
2-dimensional representation of slobK. Given that A_jux = 3 (—1)' A'ug is nonzero in
the representation ring Rep(sl;K), find an integer m > 0 such that (Aiug)S™V has no
trivial summands for 0 < ¢ < dim ug and (A_ ug)S™V has nonzero image under the
homomorphism

X : Rep, (LK) — Z.
The Clebsch-Gordan formula for representations of sLbK says that
SV - S'V=8""V+ 8TV + L+ 87V

for 0 < b < a. This makes it clear that for 0 < 7 < dim ug, (AiuK)S”"V has no trivial
summands for m sufficiently large. Now let j be the largest natural number such that
the multiplicity of S/V in A_jug is not zero; there is such a j, since A_jux is not 0.
If we can choose m such that j+ ¢m + 2 is divisible by a sufficiently large power of p,
then (A_jux)S™V has nonzero image under the homomorphism

X : Rep, (sLK) — Z,

by the Clebsch-Gordan formula together with the formula for that homomorphism in
Proposition 6.2:

X(8*V)=2(ord,a — ord,(a + 2)).

There is no trouble choosing such an m if p is odd. If p=2, we can do it
unless j is odd and ¢=2. But that cannot happen, since ¢=2 means that the highest

~

weights of rg = s[LK on ug are all even, which would imply that the weights j
occurring in A_jug were also even. So we can always find an m as needed, proving
Theorem 7.4. O

8. Filtered and graded algebras

In section 9, we will explain how to relate Euler characteristics for Lie algebras
over the p-adic integers to Euler characteristics for p-adic Lie groups. In this section
we develop the homological algebra needed for that proof. In particular, we need the
spectral sequence defined under various hypotheses by Serre ([26], p. II-17) and May
[24], relating Tor over a filtered ring to Tor over the associated graded ring We set
up the spectral sequence here under fairly weak hypotheses. We also need a relative
version of that spectral sequence.
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We begin with some general homological definitions. For any ring S, we have
the groups TorJ.S(A, B) for any right S-module A and left S-module B. Given a ring
homomorphism R — S, we can view A and B as R-modules as well and consider
the resulting Tor groups. Our first step is to define relative groups TorJS’R(A, B) in this
situation which fit into a long exact sequence

Tort(A, B) — Tor’(A, B) — Tor,” “(A, B) — Tor® (A, B).

To do this, let R, be a free resolution of A as a right R-module, and let S, be
a free resolution of A as a right S-module. Since R, is a complex of projective
R-modules, there is an R-linear homomorphism of chain complexes R, — S,,
unique up to homotopy, which gives the identity map from Hy(R.)=A to Hy(S.)=A.
This homomorphism determines a Z-linear homomorphism of chain complexes from
R, ®r B to S, ®s B. We define Tor,” (A, B) to be the homology of the mapping cone
of the map of chain complexes R, ®z B — S, ®sB. These groups Tor>'X(A, B) fit into
a long exact sequence as we wanted.

We now turn to the spectral sequence which relates Tor over filtered rings to
Tor over the associated graded ring. We will need to modify this spectral sequence to

apply to the above relative Tor groups. The proof below is essentially Serre’s argument
in [26], p. 1I-17.

Proposition 8.1. — Let Q be a complete filtered commutative ring, Q=Q° D Q' D ..., with
gr Q noetherian. Let R be a complete filtered Q-algebra, R=R° D R' D ..., with gr R nght
noetherian. Let A be a complete filtered right R-module with gr A finitely generated over gr R, and
let B be a complete filtered left R-module with gr B finitely generated as a gr Q-module (not just
as a gr R-module). Then there is a spectral sequence

E; =Torf " (gr A, gr B)gegree i = Tory (A, B).

i+ +]

This s a homological spectral sequence, meaning that the differential d, has bidegree (—r, r— 1) for
r> 1. The groups Tor™(A, B) are finitely generated Q-modules, complete with respect to a filtration
whose associated graded groups are the Eo, term of the spectral sequence.

In our applications, Q will be Z,, and gr A and gr B will both be finitely gene-
rated gr Q-modules. We state Proposition 8.1 under the above weaker (asymmetrical)
assumptions only because the proof happens to work that way.

Proof. — Since gr R is noetherian and gr A is finitely generated over gr R, there
is a resolution G, of the graded module gr A over gr R by finitely generated free
graded modules. We will use completeness of R and A to lift G, to a filtered free
resolution R, of the filtered module A over R. Serre’s Lemma V.2.1.1, p. 545 in [23],
is closely related, but we will prove what we need directly. For each ¢ > 0, let R; be a
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filtered free R-module with generators in degrees so that gr R; = G;. The surjection

Go — gr A lifts to a filtered R-linear map Ry — A by freeness of Ry. It is surjective,
by the following lemma.

Lemma 8.2. — Let f: A — B be a homomorphism of filtered abelian groups, A =A° D
Al D ... and B=B" D B! O .... Suppose that A is complete (A — imA/A" is an isomorphism),

B is separated (B — UimB/B" is injective) and gr A — gr B is surjective. Then A — B s
surjective and B s complete.

Proof (repeated from [23], Prop. 1.2.3.13, p. 415). — For any 4 € limB/B", we can
use surjectivity of gr A — gr B to define an element a € limA/A", step by step, which
maps to b in imB/B". That is, limA/A" — limB/B" is surjective. Since A — LimA/A"
is an isomorphism, the map A — limB/B" is surjective. Therefore B — limB/B" is
surjective as well as injective, so B is complete. It also follows that A — B is surjec-
tive. O

We continue the proof of Proposition 8.1. By Lemma 8.2, the lift Ry — A is
surjective. Suppose, inductively, that we have defined an exact sequence of filtered
R-modules

R—.—-2Ry—A—-0
which lifts the exact sequence
G —..—=Gy—=grA—0.

Let Kj=ker(R; — Rj_;) for 0 < j < ¢, with its filtration as a submodule of R;,
and let K_; =A with its given filtration. Then the natural map gr R; — gr K;_; is
surjective; this is clear for :=0, and for : > 0 it follows from injectivity of the map
gr K;_| — gr R;_; and surjectivity of the map

gr R; — ker(gr R;_; — gr R,_).
We have an exact sequence of filtered R-modules,
0—-K,—-R,—=K,_; —0.

Here K; has the filtration induced from R; by definition. Moreover, surjectivity of
gr R; — gr K,_; implies that the filtration of K;_; is also the one induced from R,
that is, that (R;)’ — (K,_;) is surjective for all j; use Lemma 8.2 to prove this, noting
that R; is complete since it is a finitely generated free filtered R-module. It follows that
the sequence

0—grK,—grR,—grK_, —0
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is exact. Since gr K;_; C gr R;_; by definition of the filtration on K, ;, it follows that
gr K; = ker(gr R; — gr R;_;). So we have a surjection gr R;;; — gr K;, which we can
lift to a filtered R-linear map R;;; — K. This map is surjective by Lemma 8.2. So
we have an exact sequence

Ri—-R—-..—2Ry—A—-0
of filtered R-modules, lifting the exact sequence
Gy —2G —..—2Gy—grA—0.

This completes the induction. Thus, we have shown that G, lifts to a filtered free
resolution R, of the complete filtered right R-module A.

In Proposition 8.1, we are also given a complete filtered left R-module B
with gr B finitely generated as a gr Q-module. Then R, ®g B is a filtered complex
of Q-modules, with homology equal to Torf(A, B). Its associated graded complex
is G, ®gr gr B, which has homology equal to Tor¥ Rgr A, gr B). We define the
spectral sequence of Proposition 8.1 to be the spectral sequence associated to the
filtered complex R, ®g B. The strong assumption on B is used to guarantee the
convergence of the spectral sequence of this filtered complex, via the following
lemma. O (Proposition 8.1)

Lemma 8.3. — Let Q=Q° D Q' D ... be a complete filtered ring with gr Q noetherian,
M.. a homological complex (meaning that d has degree —1) of complete filtered Q-modules with
gr M, fimitely generated over gr Q for each j € Z. Then the spectral sequence of this filtered complex
converges:

Eg =gr _iM,q.j = H,‘+jM,

This s a homological spectral sequence, meaning that the differential d, has bidegree (—r, r — 1) for
r> 0. The groups HM are finitely generated Q-modules, complete with respect to a filtration whose
associated graded groups are the E, term of the spectral sequence.

Proof. — We refer to Cartan-Eilenberg [11], Chapter XV, as a reference for
the spectral sequence of a filtered complex, although the gradings there (for a
cohomological complex) are the negatives of ours. For each ¢, j € Z, we have subgroups

1 2 2 1 0 —1
with E;=Z;/B;. Explicitly,

Z;: im({x € M;; tdx € M;;t’l} — gl”—iMiﬁ)
Bj=im({dx € M} : x € M ;1" } — gr M)
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Moreover, for each £ € Z, Eg) t—+ =8r M is a finitely generated module over gr Q, and

the B”s and Z”s are all submodules. Since gr Q is noetherian, the increasing sequence
of submodules

1 2
B*,k—* C B*,k—-* C..C gr Mk

eventually terminates. That is, all differentials into total degree k are O after the rth
term of the spectral sequence, for some 7 < oo depending on £. By the same statement
for k— 1, it follows that all differentials out of total degree £ are also O after some
point. So there is an r=7(k) < oo such that E, , ,=E,_..

Under the weaker assumption that for each ¢,j € Z there is an 7 such that all
differentials starting with d, are zero on Ej, together with completeness of the My’s,
Boardman shows that the filtration induced by each group M; on its subquotient
H;M is complete, with associated graded groups equal to the E,, term of the spectral
sequence, in [1], Theorem 7.1, the remark after it, and Theorem 9.2. Since gr H;M
is a subquotient of HM for each £ and gr Q is noetherian, gr H{M is a finitely
generated gr Q-module. It follows that H;M is a finitely generated Q-module. O

Now we set up the relative version of the above spectral sequence, the last
general homological result we need here. Let Q, R, A, B be as in Proposition 8.1.
Suppose that we also have a homomorphism R — S of complete filtered Q-algebras
such that gr S is noetherian and A and B are S-modules.

Proposition 8.4. — There s a spectral sequence

E; =Tor%> ¥ (gr A, gr Blucgree -i = Tor“(A, B).
Here the groups Torf’R(A, B) are finitely generated Q-modules, complete with respect to a filtration
whose associated graded groups are the Eo, term of the spectral sequence.

Progf. — Start with a graded finitely generated free resolution G. of gr A
as a gr R-module and a graded finitely generated free resolution H, of gr A as a
gr S-module. As in the definition of relative Tor groups, above, there is a graded
gr R-linear homomorphism G, — H,, unique up to homotopy, which gives the identity
map from Hy(G,)=gr A to Hy(H,)=gr A.

As in the construction of this spectral sequence for a single ring (Proposition
8.1), we can lift G, to a filtered free resolution R, of A as an R-module and H,
to a filtered free resolution S, of A as an S-module. The new point here, using
completeness again, is that the homomorphism G, — H, of complexes of graded
gr R-modules lifts to a homomorphism R, — S, of complexes of filtered R-modules.
(We can argue as in the proof of Proposition 8.1, or we can just refer to [23], Lemma
V.2.1.5, p. 548.) Then Torf’R(A, B) is defined as the homology of the mapping cone
of the map of chain complexes R, ® B — S, ®s B. This mapping cone is now a
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filtered complex, with associated graded complex being the mapping cone of the map
of chain complexes G, — H,. The homology of the latter mapping cone is therefore
Tor® > ¥ ®(gr A, gr B), and the spectral sequence we want is the usual spectral sequence
of a filtered complex. It converges in the required sense by Lemma 8.3. DO

9. Relating groups and Lie algebras

We now explain how the results so far about Euler characteristics for Lie algebras
over the p-adic integers imply analogous results for a large class of p-adic Lie groups,
what Lazard called p-valued groups. For example, the group GL,Z, is not of this type,
but any closed subgroup of the congruence subgroup ker(GL,Z, — GL,(Z/p)) for p
odd, or of ker(GL,Zy — GL,(Z/4)) for p=2, is p-valued. Groups of this type are in
particular torsion-free pro-p groups.

For completeness, we recall Lazard’s definition of p-valued groups. First ([23],
p- 428), define a filtration ® of a group G to be a function

o:G— (0, 00]
such that, for x, y € G,

o(y™") > min(e(), op))
o(~ ') > o) + o).

It follows in particular that Gy:={x € G : ©(x) > v} and Gy;:={x € G : ©(x) > v} are
normal subgroups of G. A filtered group G is said to be complete if G=1imG/Gy.
For a fixed prime number p, a filtration ® of a group G is called a valuation (and G
is called p-valued) if

o) <oo for all x+1 in G

o@x) > (p—1)"
o) = ox) + 1

for x € G ([23], p. 465). Then gr G:= @ Gy/Gy+ is a Lie algebra over the graded
ring T':=gr Z,=F,[n] with 7 in degree 1 ([23], pp. 464-465). The action of ® on
gr G corresponds to taking the pth power of an element of G. The Lie algebra gr G
is torsion-free, hence free, as a I'-module. The dimension of a p-valued group G is
defined to be the rank of the free I'-module gr G. In this paper, p-valued groups will
be assumed to be complete and of finite dimension. Such a group is automatically a
p-adic Lie group ([23], Theorem II1.3.1.7, p. 478).

Let v: Z, — [0, co] be the standard valuation, which we sometimes call ordp, SO
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that u(p) = 1. By definition, a valuation on a Z,-module M is a function w from M to
[0, oco] such that

w(x) <oo for all x+0 in M
w(x —y) > min(w(x), w())
) =v@) + w(x)
for a € Z, and x,y € M ([23], Def. 1.2.2.2, p. 409). We define a valuation on a
Q ,-vector space V to be a function w from M to (—oo, co] which satisfies the same
three properties; this definition generalizes to vector spaces over any p-adic field K

using the standard valuation »=ord, on K. A valuation on a Z,-module M extends to
a valuation on the vector space M ®z, Q, in a natural way, and we define

div M={x € M®z, Q, : w(x) > 0}.

w(ax

Let Sat M be the completion of div M with respect to the filtration w. A valued
Z,-module M is called saturated if the natural homomorphism M — Sat M is an
isomorphism. For a p-valued group G with valuation ®, we say that an action of G
on a valued Z,-module or Q ,-vector space M is compatible with the valuations if

w((g— 1)x) > o( g + wlx)
for g€ G and x € M.

Here is the basic theorem. Corollary 9.3 gives the main applications of this
statement.

Theorem 9.1. — Let G be a p-valued group. Suppose that the given valuation of G takes
rational values, and that G has dimension at least 2. Let M be a finitely generated free Z,-module
with G-action. Suppose that M admits a valuation with rational values, compatible with the valuation
of G, and that M s saturated for this valuation. The Lie algebra g, of G over Q, acts on
M® Q,; let g be any Lie algebra over Z,, such that § ® Q, =gq, and such that g acts on M.
Then the homology groups H.(G, M) are finite in all degrees if and only if the groups H.(g, M)
are finite in all degrees, and if this s so, then

(G, M)=x(g, M).

The proof relies on Proposition 2.3, which says that for a Lie algebra over a
discrete valuation ring I" whose rank as a I'module is at least 2, the Euler characteristics
we are considering do not change upon passage from one Lie algebra to an open Lie
subalgebra. The idea here is to think of both G and the Lie algebra g as “subgroups
of finite index” in the same thing, a ring which Lazard calls the saturation of the
group ring of G. We relate Tor groups over this ring to Tor groups over its associated
graded ring, which is essentially the universal enveloping algebra of a Lie algebra over
the polynomial ring T'=F,[r]. Once we reduce to a question about such Lie algebras,
we can apply Proposition 2.3, since T" is a discrete valuation ring as a graded ring.
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Progf. — Let G be a p-valued group. Let Z,G denote the completed group ring
of G,

Z,G =limZ,[G/U]

where U runs over the open normal subgroups of G. (Lazard uses the name Al G for
this ring.) Then the given valuation of G determines a complete filtration of the ring
Z,G which is also a valuation on Z,G as a Z,-module. The associated graded ring of
Z,G is the universal enveloping algebra of the Lie algebra gr G over the graded ring
I':=gr Z,=F,[r], by Theorem III.2.3.3, p. 471, in [23]. Explicitly, Lazard first defines
a filtration on the naive group ring Z,[G] as the infimum w of all filtrations of Z,[G]
as a Z,-algebra which satisfy

w(g—1)> 0y

for all g € G. He then identifies the completed group ring Z,G in the sense defined
above with the completion of Z,[G] with respect to this filtration.

If M is a finitely generated free Z,-module with G-action and with a valuation
compatible with that on G, then M is a filtered Z,G-module. To check this, observe
that M induces a filtration wy on the naive group ring Z,[G] by

wu(f)=inf [w(f(®)— w@].
xeM—{0}

Then the above filtration w on Z,[G] clearly satisfies w < wy, which says exactly that
M is a filtered Z,[G]-module. If M is a finitely generated free Z,-module with G-action
and a valuation compatible with that on G, then M is complete for its filtration and
hence is a filtered module over the completed ring Z,G.

Under the assumptions of Theorem 9.1, gr G and gr M are finitely generated
free T-modules with all degrees rational. So they are concentrated in degrees (1/¢)Z
for some positive integer e.

The spectral sequence of Proposition 8.1, applied to the Z,G-modules Z, and
M, has the form

Tor’* ST, gr M) = TorfPG(Z,,, M).

In that proposition, we assumed that the rings and modules were filtered by the
integers, but we can apply the proposition to filtrations in (1/¢)Z, as here, by rescal-
ing the filtrations. By Brumer ([9], Lemma 4.2, p. 455, and Remark 1, p. 452), the
homology of a compact p-adic Lie group G with coefficients in a pseudocompact
Z,G-module M is equal to Torff’G(Zp, M), since Z,G is noetherian by [23],
Prop. V.2.2.4, p. 550. So the spectral sequence can be rewritten as:

H.(gr G, gr M) = H.(G, M).
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Here the initial term is the homology of gr G as a Lie algebra over I'. Under our
assumptions, gr G and gr M are finitely generated free I'modules. This spectral
sequence also appears in the paper by Symonds and Weigel [31] in the case of
F,G-modules M.

We use the spectral sequence to compute the cohomology with nontrivial
coefficients of congruence subgroups in Theorem 10.1. It is strange that no such
direct relation is known between integral homology for p-adic Lie groups and for
Lie algebras over Z,; we have instead a relation between p-adic Lie groups and Lie
algebras over I'=F,[r].

There are many cases in which the spectral sequence can be used to compute
the Euler characteristic (G, M), assuming that the homology groups H.(G, M) are
finite. It does not work in the generality of our assumptions here, however, because it
is possible for H,(G, M) to be finite while H,(gr G, gr M) is not. For example, if G
is a p-valued open subgroup of SL,Z, and M =(Z,)" is the standard module, with the
standard valuations on G and M as in the proof of Corollary 9.3, then H,(G, M) is
always finite for n > 2, but H,(gr G, gr M) is finite if and only if p does not divide
n—1orn+l.

So we consider instead the more general spectral sequence of Proposition 8.4, for
the homomorphism Z,G — Sat Z,G of complete filtered rings, where the saturation
of a valued Z,-module such as Z,G is defined before the statement of Theorem 9.1.
Since M has a valuation compatible with the action of G, the ring div Z,G acts on
div M, compatibly with the filtrations, and so the completion Sat Z,G acts on Sat M.
Since we assume M is saturated, the action of Z,G on M extends to Sat Z,G.

For any valued Z,-module N, it is easy from the definition of Sat N to check
that

gr Sat N= (gr N ®Fp[7t] Fp[n, n_l] )degrees;O-

If the valuation on G takes integer values, then one can show that gr Sat Z,G is
the universal enveloping algebra of a Lie algebra over I'; in general, one can draw a
similar conclusion after extending scalars as follows.

We know that gr G is concentrated in degrees (1/¢)Z. Let K be a finite extension
of Q, with the same residue field F, such that the maximal ideal of the ring of integers
ok is generated by an element mx with valuation »(ng)=1/e. We have gr ox =F,[nk]
where mg has degree 1/e¢, and there is a natural inclusion gr Z,=F,[rn] C F,[nk].
The definitions of valued Z,-modules and their saturations extend to ox-modules in a
natural way. We therefore have

gr Sat oxG =(gr oxG ®F,,[nK] F,[nx, nﬁl])zo
=(gr Z,G QF, ] F,[nk, nﬁl] )30
=(Ulgr G) ®r,m Fy[mx, TCI_{I] )>0-
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Defining a graded Lie algebra s over F,[nk] by tensoring gr G up from F,[n] to
F,[nx], we can say that

gr Sat oxG=(Us QF, mg] Fy[nk, 7‘1;1] )>0-

Let t be the saturation of s, defined by
t= (s ®r, g Fplnx, 1 1)s0.

Since s is a graded free F,[nx]-module of rank 7, so is t. Since s is concentrated in
degrees (1/¢)Z and mg has degree 1/e, the generators of t are all in degree 0. Finally, t
is a Lie algebra over F,[nk] in an obvious way. It follows that gr Sat ok is the universal
enveloping algebra of t.

As a result, the spectral sequence of Proposition 8.4 has the form
Torl " Y*(F,[nk], gr M,.) = Tor™ %% %S(g, M,).

Again, in the proposition, we assumed that the filtrations were indexed by the integers,
but we can apply the proposition when the filtrations are indexed by (1/¢)Z, as here,
by rescaling the filtrations. In a somewhat simpler notation, we can rename the groups
in this spectral sequence as:

H.(t, 5;gr M,,) = H,(Sat oxG, G;M,,).

Here, for the augmented algebra Sat ox G over ok, we write H,(Sat ox G, M,, ) to mean
Tori’z‘t OKG(OK, M, ), by analogy with the definitions of group homology and Lie algebra
homology. The homomorphism of Lie algebras s — t over F,[nk] is an injection from
one free F,[nx]-module of finite rank to another, and the t-module gr M,, is also a free
F,[nx]-module of finite rank. Since G has dimension at least 2, the Lie algebras s and t
have rank at least 2 as free F,[n;]-modules. By Proposition 2.3, the relative Lie algebra
homology groups H,(t, s;gr M, ) are finite, and the resulting Euler characteristic is 0.
Then the above spectral sequence shows that the groups H.(Sat oxG, G;M,,) are
also finite and that the resulting Euler characteristic is 0. These groups are just the
analogous groups over Z, tensored up to ok, so we deduce the same conclusions for
the groups H,(Sat Z,G, G;M). So H,(G, M) is finite if and only if H,(Sat Z,G, M) is
finite; and if either condition holds, then

X(G7 M) = X(Sat ZpGa M)

To analyze the homology of Lie algebras over Z, by the above methods, which
as written apply to complete rings, we first need the following lemma.

Lemma 9.2. — Let g be a valued Lie algebra over Z,. That is, g is a filtered Lie algebra
over Z,, which s valued as a Z,-module. As always, assume that g is free of finite rank over Z,.
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For any complete filtered g-module M, we can view M as a module over the completion Ug" of the
unwersal enveloping algebra, and we have

~ H.(g, M)=H.(Ug", M).
Progf. — Let
— Ug ®z, \’g — Ug®z,9 — Ug = Z, = 0

be the standard resolution of Z, as a Ug-module. Clearly these modules are filtered
in a natural way. The point is that this is a resolution in the filtered sense, meaning
that not only this complex but also the subcomplexes of elements of filtration > v, for
all real numbers v, are exact. Indeed, the Z,-linear homotopies that prove exactness
of the standard complex are compatible with the filtrations (V.1.3.7, p. 545, in [23]).

It follows that these Z,-linear homotopies are defined on the completion of this
complex, and so this completion is exact. It clearly has the form

— Ug" ®z, Nlg — Ug" ®z, 8 — Ug" —Z,— 0.

So, for any Ug"-module M, H.(g, M) and H.(Ug", M) are computed by the same
complex

—>/\29®ZPM—>Q®ZPM—>M—>0. O

If g is a sufficiently small open Lie subalgebra over Z, of the Lie algebra of G
over Q,, then g inherits a valuation from G, and we have Sat Ug==Sat Z,G by the
proof of Theorem V.2.4.9, p. 562 in [23]. In particular, we have a homomorphism
from Ug" to Sat Z,G. As in the argument for groups, let og be an extension of Z,
such that a uniformizer mg has valuation 1/e. After tensoring up to ok, the graded
homomorphism associated to Ug" — Sat Z,G maps the universal enveloping algebra
of one graded Lie algebra over F,[nk], t:=gr g ®F, [ F,[nk], to that of another, the
saturation t of v as above. The Lie algebra homomorphism v — t is again an injection
from one finitely generated free F,[ng]-module to another. So the argument for groups
applies, again using that the dimension is at least 2, to show that H,(Ug", M) is finite
if and only if H,(Sat Z,G, M) is finite, and if either condition holds then

x(Ug", M) =x(Sat Z,G, M).

By Lemma 9.2, we can replace H,(Ug", M) in these statements by H.,(g, M).

Having related Euler characteristics for both the group G and the Lie algebra
g to those for Sat Z,G, we have the relation between g and G that we wanted. We
had to assume above that the Lie algebra g was sufficiently small, but that implies
the same result for any open Lie subalgebra over Z, of the Lie algebra of G over Q,
which acts on M, by Proposition 2.3. Theorem 9.1 is proved. O
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Corollary 9.3. — Let p be any prime number. Let G be a compact p-adic Lie group of
dimension at least 2, and let M be a finitely generated free Z,-module with G-action. Suppose that
the image of G in Aut(M) s sufficiently small in the sense that either (1) this image is a pro-p
group and p > rank(M) + 1, or else (2) G acts trivially on M/p if p is odd, or on M /4 of p=2.
Also assume that there is some faithful G-module (which could be M), finitely generated and free as
a Z,-module, which satisfies (1) or (2).

Let g be any Lie algebra over Z, such that g ® Q, is the Lie algebra go, of G and
such that g acts on M. Then the homology groups H.(G, M) are finite if and only if the groups
H.(g, M) are finite, and if either condition holds then

xX(G, M) =x(g, M).

Progf. — According to Theorem 9.1, it suffices to show that G has a valuation
and that M has a compatible valuation which is saturated, both taking rational values.
If M is faithful as well as satisfying (1) or (2), then Lazard constructed the required
valuations of G and M; we will recall his definitions in the following paragraphs. In
general, if there is some faithful module N which satisfies (1) or (2), then the minimum
of the filtrations of G associated to M and N is a valuation of G which is compatible
with the valuation of M, as we want. (To be precise, if M is not faithful, the filtration
of G associated to M alone satisfies all the properties of a valuation, as defined before
Theorem 9.1, except that it takes the value oo on the kernel of G — AutM). The
minimum just mentioned is a genuine valuation of G.)

For (2), we use the obvious integral valuations. That is, after choosing a basis for
M, G becomes a subgroup of GL,Z, whose image in GL,Z/p is trivial, and we define

od= min oz — )

1<i, j<n
for a € G and

w(x) = min y(x;)
1<ign

for x € M=(Z,)". The stronger assumption for p=2 is needed to ensure that ® is a
valuation of G (see the definition before Theorem 9.1).

In case (1), use the rational valuation of G defined in section III.3.2.7, pp. 484-
486, of [23]. We will generalize this construction to groups other than GL, in
Proposition 12.1. Namely, since G is a pro-p subgroup of GL,Z,, it is conjugate
to a subgroup of the Sylow p-subgroup Iw, C GL,Z, of matrices whose image in
GL,Z/p is strictly upper-triangular. (We call this subgroup Iw, since it is the pro-p,
or pro-unipotent, radical of an Iwahori subgroup of GL,Q,, the group of matrices
in GL,Z, whose image in GL,Z/p is non-strictly upper triangular.) So it is enough to
define valuations on the group Iw, and its standard module M = (Z,)". Since we assume
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n < p—1, there is a rational number o such that o > (p—1)"" and (n—1) o0 < 1—(p—1)"".
Choose such an o and a finite extension K of Q, with an element a € K such
that »(a@)=o. Let D denote the diagonal matrix d;=a"""3;; this differs from Lazard’s
definition by a constant factor, which makes no difference in defining the valuation
on Iw,. Namely, let w be the standard valuation of the algebra M,ox, w(X)= min »(x;),
and define a valuation of Iw, by

oX)=wD XD — 1),

Lazard shows that this is a valuation of Iw,. Similarly, let w be the standard valuation
on M =(Z,)", w(m)= minu(m,), and define a new valuation ' of M by

' (m) = w(D ™ "'m).

It is immediate that this valuation is compatible with that on G, in the sense defined
before Theorem 9.1. Also, from our choice of D, M is saturated for this valuation. O

Theorem 0.1 follows from Theorem 7.1, Theorem 7.4, and Corollary 9.3
when the G-module M is a free Z,-module. To include arbitrary finitely generated
Z,-modules M in Theorem 0.1, we use that (G, A)=0 for all p-adic Lie groups G
of positive dimension which are pro-p groups and all finite Z,G-modules A, by [28],
I.4.1, exercise (e).

10. Cohomology of congruence subgroups

In this section we show how to use the spectral sequence arising in the proof
of Theorem 9.1 to compute the whole homology with nontrivial coefficients of certain
congruence subgroups, not just an Euler characteristic. See Corollary 10.2 for the
special case of congruence subgroups of SL,Z,. In contrast to the results on Euler
characteristics, we need to assume that p does not divide n—1 or n+1 in Corollary 10.2.

Theorem 10.1. — Let g be a Lie algebra over Z,, M a finitely generated free Z,-module
on which g acts. Suppose that the homology groups H.(gr,, M,) are 0. Ths holds for example 1f
o, is semisimple, Mo, is a nontrivial simple g ,-module, and p does not divide the exgenvalue of
the Casimir operator, scaled to he in the Z,-algebra Ug, on Mg .

Let G, be the group defined by the Baker-Campbell-Hausdorff formula from the Lie algebra
p'e, where r> 1 if p is odd and v > 2 if p=2. Then the abelian group H(G,, M) s isomorphic
to the direct sum of ("")rank(M) copies of Z/p/, where n is the rank of g as a fiee Z,-module.
Also, Hi(p'g, M) s 1somorphic to the same group.
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Moreover, for any group H which acts compatibly on g and M, we have
H(G,, M) = @(—IY"J’(N‘% ©r, Mr,)
pu

in the Grothendieck group of finite p-torsion H-modules.

Progf. — Since r > 1 if p is odd and 7 > 2 if p=2, G, is a p-valued group
by Lazard [23], IV.3.2.6, pp. 518-519. The valuation is defined by: wx)=a if x € G,
corresponds to an element of p°g—p**'g. Since M is a g-module, the standard saturated
valuation on M, where w(x)=a if x € M lies in p°M — p**'M, is compatible with the
valuation of G,.

In the proof of Theorem 9.1, we defined a spectral sequence

H.(gr G,, gr M) = H.(G,, M).

Here gr G, is the Lie algebra n'gr g over I'=gr Z, =F,[r]. The complex for computing
the Lie algebra homology H.(n'gr g, gr M) has the form

—ngrgQrgrM—gr M — 0.
It can be identified in an obvious way with the complex defining H.(gr g, gr M),
—grgQrgrM—grM—0,

but with the differentials multiplied by n'.

Clearly the Lie algebra gr gQrF, is equal to gr, and gr MQrF), is equal to Mg,
We assumed that H.(gr,, Mg,) =0, and it follows that H.(gr g, gr M ®r F,) =0 (since
these homology groups are defined by the same complex). By the universal coefficient
theorem, using that H,(gr g, gr M) is a finitely generated I'-module, it follows that
H.(gr g, gr M)=0.

So the complex defining H.(gr G,, gr M) is obtained from an exact complex by
multiplying all the differentials by n". Since the I'modules in the complex are torsion-
free, multiplying by n" does not change the kernels, but the images are multiplied by
n’. Thus we have a canonical isomorphism

Higr G,, gr M) = ker(d) ®r '/,

where d;: Aigr g®rgr M — A"'gr g®rgr M is a differential in the complex defining
H.(gr g, gr M). By exactness of the latter complex, we have

i

ker(d)= Y (—1)7(Ngr g ®rgr M)
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in the Grothendieck group of finitely generated I'modules. So we know the rank of the
free I'-module ker(d)), and it follows that H(gr G,, gr M) is isomorphic to the direct
sum of (*]')rank(M) copies of I'/n’, where n is the rank of g as a free Z,-module.
This is a graded I'-module with generators in degree i7, as we see by going through
the above identifications. We can also describe these homology groups less precisely
but more canonically. Any group H which acts compatibly on g and M automatically
preserves the filtrations of g and M, so it acts on the above spectral sequence, and we
have

Higr G,, gr M)=r) (~1)7(Ngs, ®F, M)

j:O

in the Grothendieck group of finite H-modules.
The differentials d; in the spectral sequence

1
Ey‘ = Hi+j(gr Gn ar M)degree—i = Hi+j(Gn M)

have bidegree (—k, £k — 1). Since H;(gr G,, gr M) is concentrated in degrees from r to
i+ r— 1, the spectral sequence degenerates at E;. It follows that the abelian group
Hi{(G,, M) is isomorphic to the direct sum of (”:1)rank(l\/I) copies of Z/p'. Again, for
any group H which acts compatibly on g and M, it follows from the above results that

H(G,,M)=r) (- l)i_j(/\jGFp ®r, Mr,)
j=o

in the Grothendieck group of finite H-modules.
The proof of Theorem 9.1 gives a similar spectral sequence

H.(n'gr g, gr M) = H.(¢'g, M)

which degenerates by the same argument. So we get the same description of

H*(prg’ M) o

Corollary 10.2. — Let G, = ker(SL,Z, — SL,Z/{), where r > 1 if p is odd and r > 2 if
p=2. Let M =(Z,)" be the standard representation of G,. Suppose that pt(n—1) and pt(n+1).

Then the abelian group H{G,, M) is wsomorphic to the direct sum of ("21._2)71 copres of Z/p'.

Moreover, the group SL,Z/p" acts on H.(G,, M) in a natural way, and we have
H(G,, M) =1 _(—1y7(N'sl,F, ®, M)
j=0

in the Grothendieck group of finite p-torsion SL,Z/p -modules.
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Proof. — To deduce the first statement from Theorem 10.1, we need to check
that H,(sl,F,, Mg,)=0if pfn—1and ptn+1.

Let g be the Lie algebra sl,Z, with its standard module M =Z". The Casimir
operator ¢ in the center of the enveloping algebra Ugg acts on Mg by multiplication
by (n* — 1)/2n?, say by formula (25.14) in Fulton and Harris [17], p. 418. Writing out
¢ in terms of a basis for g=sl,Z shows that ¢ :=2n’c lies in the integral enveloping
algebra Ug. Clearly it acts by n — 1 on M. It is also clear that ¢ maps to an element
in the center of Ugr,, which acts by a nonzero scalar on Mg, if n”2—1%#0 (mod p),
that is, if pt(n— 1) and p t (n + 1). It follows that H.(gr,, Ms,)=0 if p t (n — 1) and
p1t(n+1), as claimed.

So Theorem 10.1 applies, and we have the computation of H.(G,, M) as
an abelian group. The theorem also computes H(G,, M) as an element in the
Grothendieck group Rep(SL,Z,) of finite p-torsion SL,Z,-modules, since SL,Z, acts
compatibly on sl,Z, and on Mgz,. Since Hi(G,, M) and the expression on the right
are in fact SL,Z/p’-modules, we deduce the same equality in the Grothendieck group
Rep(SL,Z/p) of finite p-torsion SL,Z/p"-modules, because the restriction map

Rep(SL,Z/p") — Rep(SL,Z,)

is injective. Indeed, Rep(SL,Z/p") = Rep(F,[SL,Z/#]) is detected by restriction to cyclic
subgroups of order prime to p by Brauer [16], and these all lift to SL,Z, since the
kernel of SL,Z, — SL,Z/p" is a pro-p group. O

11. Euler characteristics for p-adic Lie groups which are not pro-p groups

Here at last we prove the vanishing of the Euler characteristics we have been
considering for some p-adic Lie groups such as SL,Z, which are not pro-p groups. See
Corollary 11.6 for some more explicit consequences of the following theorem.

Theorem 11.1. — Let Go, be a connected reductive algebraic group whose rank over Q,is
at least 2, and let Mo, be a finite-dimensional Gq ,-module with no trivial summands. Let G be a
compact open subgroup of G(Q,) and let M be a G-invariant lattice in Mg . Suppose that there
is a Sylow p-subgroup G, C G with a valuation and that M has a compatible saturated valuation,
both taking rational values. Then the homology groups H.(G, M) are finite and the resulting Euler
characteristic Y(G, M) s 0.

Progf. — Since Gg, is a reductive group in characteristic zero, representations
of Gg, are completely reducible, and so the assumption on Mg, implies that the
coinvariants of GQp on Mg , are 0. Since GQp is connected, it follows that the
coinvariants of its Lie algebra go, on Mg, are 0. It follows that H.(K, M) is finite for
all open subgroups K of G, by Lemma 3.1 and Lazard’s theorem that H,(K, M\)®Q ,
injects into H.(gq,, Mg,) ([23], V.2.4.10, pp. 562-563).
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For any finite group F, let a(Z,F) denote the Green ring, the free abelian group
on the set of isomorphism classes of indecomposable Z,F-modules that are finitely
generated and free over Z,. Conlon’s induction theorem says that for any finite group F,
there are rational numbers ax such that

2,= ) a«Z,[F/K]
K

in o(Z,G)®Q, where K runs over the set of p-hyperelementary subgroups of F, that is,
extensions of a cyclic group of order prime to p by a p-group ([16], Theorem 80.51).
In fact, although we do not need it here, there is an explicit formula for the rational
numbers ag, using Gluck’s formula for the idempotents in the Burnside ring tensored
with the rationals [19]:

1
Z,=) —— > IKuK, H)Z,[F/K].
H |Np(H)| KcH

Here the first sum runs over the conjugacy classes of p-hyperelementary subgroups
H C F, and p denotes the Mobius function on the partially ordered set of subgroups
of F. Boltje’s paper [2] uses Gluck’s formula for similar purposes in Proposition VI.1.2
and the remarks afterward. For example, for the group F=S3; and p=2, the above
formula gives the identity

Z,= — lZ253/1 +Z,yS3/((12)) + 22253/((123»-
2

Returning to the p-adic Lie group G, we know that there is an open normal
subgroup H of G contained in the given Sylow p-subgroup G,, for example the
intersection of the conjugates of G,. We apply Conlon’s induction theorem to the
finite group G/H to get an equality

Z,= > aZ,[G/K]

in the Green ring of G/H-modules, where K runs over the p-hyperelementary
subgroups of G containing H (that is, K is an extension of a cyclic group of order
prime to p by a pro-p group). If we multiply this equation by a suitable positive integer
and move terms with ag negative to the other side of the equation, it states the
existence of an isomorphism between two explicit G/H-modules, which we can view
as an isomorphism between the same groups viewed as G-modules.
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It follows that, for the given Z,G-module M and all j > 0, we have

H(G,M)= ) a«H(G, M ®z, Z,[G/K])
K
= Z aKHj(K, M)
K

This is an equality in the Grothendieck group tensored with Q of finite abelian groups
with respect to direct sums. It follows that

X(Ga M) = ZaKX(K> I\/I)
K

So, to show that the Euler characteristic ¥(G, M) is 0, it suffices to show that
XK, M)=0 for all open p-hyperelementary subgroups K of G. Since such a subgroup
satisfies all the properties we assumed of G, we can assume from now on that G is
itself p-hyperelementary. That is, the Sylow p-subgroup G, is normal in G and the
quotient group Z:=G/G, is cyclic of order prime to p, and we want to show that
X(G, M) =0.

The extension
1-G,—-G—-Z—1

splits, and so G is a semidirect product Z x G,. Also, H,(G, M) is equal to the
coinvariants of Z acting on H,(G,, M), and taking the coinvariants of Z is an exact
functor on Z,Z-modules. So it suffices to show that x(G,, M)=0 in Rep(Z), the
Grothendieck group of finite p-torsion Z-modules. We are given that M is a (Z x G,)-
module and that G, and M have compatible valuations. Replace the given valuation
of G, by the minimum of its conjugates under the action of Z on G,. This is again a
valuation of G,, now Z-invariant, and still compatible with the given valuation of M
since it is less than or equal to the original valuation of G,.

Let g be any Z-invariant Lie subalgebra over Z, of the Lie algebra go, such
that g ® Q,=gg . To see that one exists, start with any Z-invariant Z,-lattice in ggo 2
and then multiply it by a big power of p. Propositions 11.2 and 11.4 will imply that
X(G,, M)=0 in Rep(Z), thus proving Theorem 11.1.

Proposition 11.2. — In the above notation, we have %(g, M) =0 in the Grothendieck group
Rep(Z) of finite p-torsion Z-modules.

Progf. — Let g be a generator of the finite cyclic group Z. Since G=Zx G, is an
open subgroup of the connected reductive algebraic group G(Q,), g is an element of
finite order in G(Q,), hence a semisimple element. So g is contained in some maximal
torus Tg , not necessarily split. Over some finite extension K of Q,, Tk is contained
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in a Borel subgroup Bk. Therefore, when g acts on the Lie algebra gk, it acts trivially
on the Cartan subalgebra tx and maps the Borel subalgebra bx into itself. We will
show that x(g. , M, )=0 in the Grothendieck group of finite p-torsion Z-modules,
which implies the statement of the proposition.

Briefly, the proofs of Proposition 4.1 and Theorem 5.1 work Z-equivariantly. The
Z-equivariant analogue of Proposition 4.1 which we need is the following lemma.

Lemma 11.3. — Let Y be an abelian Lie algebra of the form (k)" for some r > 2. Let M
be a finitely generated ox-module with Y-action such that My ® K =0. Let Z be a group which
acts trivially on Yy and acts compatibly on M (in an obvious terminology, M s a (Z X B)-module).
Then the homology groups H.(h, M) are finite and the resulting Euler characteristic ¥(h, M) in the
Grothendieck group Rep(Z) of finite Z-modules s 0.

Proof. — First, we show that x(h, M) =0 in Rep(Z) for any abelian Lie algebra b
of rank at least 1 as an og-module and any finite (Z X h)-module M. Indeed, in Rep(Z),

x(b, M)= D (=1) A'h @y M
=rank() (1) A'h)M

=0-M
=0,

where the first equality follows from the complex that computes Lie algebra homology,
the second equality holds because Z acts trivially on b, and the third is because h has
rank at least 1 as an og-module.

Now suppose that h has rank at least 2 as an og-module and that M is finitely
generated over og, with My @ K=0. We know that the Z-modules H.(h, M) are
finite by the corresponding nonequivariant statement, Proposition 4.1. The previous
paragraph implies that the Euler characteristic ¢(h, M) in Rep(Z) only depends on the
(Z x bg)-module Mg :=M ®,, K, so we can use the notation Xg,(hx , Mk):=%(h, M) in
Rep(Z), generalizing Definition 2.4. Also, we can extend scalars as in Definition 2.5,
so it suffices to show that Xﬁn(bﬁp’ MQ,,)ZO in Rep(Z) for all (Z x b—dp)-modules Mﬁp
such that the coinvariants of th on M—Q-p are 0.

The simple (Z X th)-modules are l-dimensional by Schur’s lemma, and the
assumption that the coinvariants of b@,, on Map are 0 means that all the simple
subquotients of MQ as an bQ -module are nontrivial, by Lemma 3.1. So it suffices

to show that Xﬁn(pr, MQP): 0 in Rep(Z) for a 1-dimensional (Z x bqp)-module qu

which is nontrivial as an hg -module. That is, it suffices to show that y(h, M)=0 in
Q,

Rep(Z) for any abelian Lie algebra b of rank at least 2 over a p-adic ring of integers
ox and any (Z X h)-module M of rank 1 which is nontrivial as an h-module.
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Since h has rank at least 2 as an og-module, there is an og-submodule [ C §
such that b/l = og and [ acts nontrivially on M. Then

X, M= (1) x(b/1, H{L, N)).

Since Z acts trivially on b, it preserves [, and so this is an equality in Rep(Z). We have
arranged that Hy([, N) is a finite (Z X §/l)-module for all 7, so the individual terms in
this sum are 0 in Rep(Z) by the first paragraph of this proof. So ¥(h, M) =0 in Rep(Z)

as we want. O

To complete the proof of Proposition 11.2, we need to show that (g, , M, )=0
in Rep(Z). We know that M is a (Z x g, )-module and that Z acts trivially on a Cartan
subalgebra tx and preserves a Borel subalgebra bk containing tx. Then it is clear that
the following formula from the proof of Theorem 5.1 holds in Rep(Z):

X, M)= > (= 1)/ x(6/u, Hu, M ® AXg/b))).
g,k

We are assuming in Theorem 11.1 that the algebraic group Gg, has rank at least 2
over _Qp, so the Lie algebra gk has rank at least 2. That is, bg /ux has dimension at

least 2. Also, the group Z acts trivially on bg/ug = tg, so we can apply Lemma 11.3
to show that all the terms in this sum are 0 in Rep(Z). So x(g, M)=0 in Rep(Z). O
(Proposition 11.2)

Proposition 11.4. — In the notation defined before Proposition 11.2, we have ¥(g, M) =x(G,, M)
in the Grothendieck group of finite p-torsion Z-modules.

Progf. — Since the valuation of G, is Z-invariant, the proof of Theorem 9.1
works Z-equivariantly. The only point which is not obvious is that Proposition 2.3(2)
works Z-equivariantly, given that the Lie algebra g over a discrete valuation ring I in
the proposition has (g ®r F)* of dimension at least 2 over the field F=T[n"'], as the
following lemma asserts. That hypothesis will be valid for our Lie algebra gr G over
the graded discrete valuation ring I'=F,[r] because 9(22,, has dimension at least 2 over

Q. Indeed, since the reductive algebraic group Gq, has rank at least 2 over Q—:p,
every element of G(Q,) (in particular, a generator of the cyclic group Z C G(Q,)) has
centralizer of dimension at least 2.

Lemma 11.5. — Let T be a discrete valuation ring with uniformizer 7. Let g be a Lie algebra
over T which is a finitely generated free T'-module, and Yy C g a Lie subalgebra of the same rank as
a free T-module. Let M be a finitely generated free T'-module with g-action. Finally, let 7. be a group
which acts compatibly on g, b, and M such that the trivial Z-module over the fild F =T[n™']
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occurs with multiplicity at least 2 in ¢ ® F. Then the relative Lie algebra homology groups
H.(g, b; M) have finite length as T'-modules, and the corresponding Euler characteristic ¥(g, h; M)
s O wn the Grothendieck group of T'[Z]-modules of finite length over T.

Proof. — It suffices to consider the case where ng C h C g. We apply that special
case to the sequence of Z-invariant Lie subalgebras of g,

gOng+hDOnlg+hD ...,

which eventually equals b.

For ng C h C g, let B=g/h and A= ker(g/m — g/h). These are representations
of the group Z over the field I'/m which form an exact sequence

0—->A—g/n—B—0.

We compute that, in the Grothendieck group Rep(Z) of I'[Z]-modules of finite length
over I,

N g/Nb= 3 JNTA®, N B,
j=0

This is proved using a canonical filtration of the finite-length T-module A’ g/A'h with
quotients vector spaces over I'/m. It follows that, in Rep(Z),

D (=D N g/Nh= D (1 NTAN B)

7 J<i

=D (AN @A) J-1)'NB
6J

=F1(A)Fy(B),

where we define

Fi(A)= > (-1 A'A

1

FoA)= > (—1)iN'A.

i

The operations F; and F, take a representation A of Z over I'/n to an element of the
corresponding Grothendieck group. For A of dimension 7, the operation F,(A)= A_;(A)
is related to the top gamma operation ¥, (the top Chern class with values in K-theory)
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and Fy(A) is related to the operation y,_;, in the terminology of A-rings [18]. We do
not need that terminology, but only the elementary properties that

F/(A + B)=F,(A)F(B)
and
Fy(A + B) =F(A)Fy(B) + Fo(A)F,(B).

Also, Fi(1)=0, so F;(A+1)=0 for all representations A, and Fy(1)= — 1 and F5(2)=0,
so Fo(A + 2)=0 for all representations A.

The relative Lie algebra homology H.(g, h; M) is computed by a chain complex
with Z-action, with ith group equal to (A’ g/A'h) ®- M. From this it is immediate that
the I'-modules H.(g, h; M) have finite length. Moreover, the previous paragraph shows
that, in the Grothendieck group Rep(Z) of finite-length I'[Z]-modules,

x(@, B:M)= 3 (~1)(\'g/A b)) @r M
=F(A)F,(B)M/m,

where B=g/h and A= ker(g/n — g/b).

We are assuming that the trivial Z-module over the field F occurs with multiplicity
at least 2 in g @ F. It follows easily that the trivial Z-module over the field I'/n occurs
with multiplicity at least 2 in g/m. So it occurs either with multiplicity at least 1 in
A or with multiplicity at least 2 in B. By the properties of the operations F; and F
listed above, either F;(A)=0 or Fy(B)=0 in Rep(Z). So x(g, h; M) =0 in Rep(Z), as we
want. O (Lemma 11.5 and hence Proposition 11.4).

Theorem 11.1 follows from Propositions 11.2 and 11.4, together with the analysis
before Proposition 11.2. O

Corollary 11.6. — Let Gq, be a connected reductive algebraic group, of rank over Q, at
least 2. Suppose that p is greater than the dimension of some faithful Go -module plus 1. (For Gg,
semusimple, 1t suffices to assume instead the lower bound for p gwen in Proposition 12.1.) Let Mg,
be a Gq,-module with no trival summands. Let G be a compact open subgroup of G(Q,), and let
M be a G-invaniant Z,-lattice in Mg ,. Then the homology groups H.(G, M) are finite and the
resulting Euler characteristic (G, M) s 0.

Proof. — The bound on p in Proposition 12.1 will imply that any Sylow
p-subgroup G, of G admits a valuation, and that the vector space Mg , has a compatible
valuation. Let us now prove the same statements when p is greater than the dimension
of some faithful Gg,-module plus 1.

Let No, be a faithful Gg,-module with p >dim(Ng,) + 1. Since G is compact,
it preserves some Z,-lattice N in Ng . Any Sylow p-subgroup G, of G is a subgroup
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of some Sylow p-subgroup Iw, C GL(N). Since p > rank(N) + 1, the proof of Corollary
9.3 shows that Iw, has a valuation, which we can restrict to G,, and that N has a
compatible saturated valuation.

Since the group Gg, is reductive, any Gg,-module Mg, is a direct summand

of some direct sum of tensor products NS‘; ® (Naﬁ)‘x’b for a, b > 0, by [25], 11.4.3.2(a),
p- 156. The valuation of N induces a vector space valuation

w: Ng; ® (Ng )* — (00, 00],
which we can restrict to the subspace Mg,. Let
M, ={x € Mg, : w(x) > 0}.

Then w is a saturated valuation on M. Since the valuation of G, is compatible
with that of N, it is compatible with that of My. By Theorem 11.1, given that Mg,
has no trivial summand, we have (G, My)=0. To deduce that (G, M)=0 for all
G-invariant lattices M in MQp’ we use Serre’s theorem that x(G, A)=0 for all finite
Z,G-modules A, since G is an open subgroup of a connected algebraic group over Q,
of dimension greater than zero ([29], Corollary to Theorem C). O

For example, Corollary 11.6 implies that x(G, M)=0 for all open subgroups G
of SL,Z, when M =(Z,)" is the standard module, » > 3, and p >n+ 1.

12. Construction of valuations on pro-p subgroups of a semisimple group

In this section, we will improve the bound on p in Corollary 11.6, which says
that for p sufficiently large, the Euler characteristics are zero for all compact open
subgroups of a reductive group of rank at least 2. By the proof of Corollary 11.6, all
we need is to give a weaker sufficient condition on a group Gk so that every closed
pro-p subgroup of G(K) is p-valued. Proposition 12.1 will give such a weaker sufficient
condition when the group Gk is semisimple. It may be interesting for other purposes to
know that every closed pro-p subgroup of G(K) has a valuation; in particular, it follows
that G(K) has no p-torsion. The proof combines the Bruhat-Tits structure theory of
p-adic groups [32] with a generalization of Lazard’s construction of a valuation for
pro-p subgroups of GL,K (given in the proof of Corollary 9.3, above).

For the group SL,Q ,, the bound in Corollary 11.6 is optimal: every closed pro-p
subgroup of SL,Q , is p-valued if p > n+1. Indeed, if p=n+1 and n > 2, then the cyclic
group Z/p imbeds in SL,Z and hence in SL,Q,. For other groups, however, we can
do better. For example, let D be a division algebra of degree n (that is, of dimension 7%
over Q ,. Then the proof of Corollary 11.6 shows that every pro-p subgroup of SL;D is
p-valued if p > n?+1, but in fact p > n+1 is enough, as the following proposition gives,
using that SL;D becomes isomorphic to SL, over some unramified extension of Q ,.
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The need for an improvement in Corollary 11.6 is most apparent for the exceptional
groups. For example, Eg(Q,) has p-torsion if and only if p=2, 3, 5, 7, 11, 13, 19,
or 31 by [29], p. 492, but the proof of Corollary 11.6 shows only that every pro-p
subgroup of Eg(Q,) is p-valued (hence Eg(Q,) has no p-torsion) if p > 248 + 1. The
following proposition gives the optimal estimate that every pro-p subgroup of Eg(Q )
is p-valued if p > 30 + 1, since 30 is the Coxeter number of Eg.

To state a sharp bound even for non-split groups, we need to define a
generalization of the Coxeter number. Let Gk be an absolutely simple quasi-split
group over a field K. (Quasi-split means that Gx has a Borel subgroup defined over
K [3].) Such a group is described by its Dynkin diagram over the separable closure
K of K, of type A,, B,, G,, D,, E¢, E;, Eg, Fy, or Gy, together with an action of the
Galois group Gal(K/K) on the Dynkin diagram. That is, the Galois group maps into
the automorphism group of the Dynkin diagram, which has order 1 or 2, except that
the automorphism group of the Dynkin diagram D, is isomorphic to the symmetric
group S;. Equivalently, the Galois group acts on the root system, preserving the set
of positive roots. Let o, ..., 0, be the simple roots. We define the generalized Coxeter
number /(Gg) to be the maximum over all positive roots o= > 70, of the numbers
(1 + ¥ 7)|Gal(K/K)o, unless the Dynkin diagram is of type A, with n even and the
Galois action is nontrivial (so that the universal cover of Gk is a unitary group SU,, K
with n+ 1 odd); in that case, we define A(Gk) to be 2(n+1). If Gk is split, meaning that
the Galois action is trivial, then A(Gg) is the Coxeter number as defined in Bourbaki
[5], VL1, Proposition 31. Using the notation X, to denote a quasi-split group with
Dynkin diagram of type X, where the image of the Galois group has order :, we
tabulate the numbers #(Gk) below.

G HGi)

A, n+1

2A, 2n if n is odd
2A, 2(n+1)if n is even

B, 2n
C, 2n
'D, 2n—2
D, n
D, 12
D, 12
'Eg 12
2Fe 18
E; 18
Eg 30
F, 12

Gy 6
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Proposition 12.1. — Let Gk be a connected semisimple algebraic group over a p-adic field
K. Let ex be the absolute ramfication degree of K. By Steinberg [30], Gk becomes quasi-split over
some finite unramified extension E of K. Let E be any such extension. The universal covering of G
15 a product of restrictions of scalars of absolutely simple quasi-split groups Hyy over finite extensions
M of E. Suppose that

p > hHuey + 1

Jor all the simple factors Hyi, where h(Hw) s the generalized Coxeter number as lsted above.
Then every pro-p subgroup G, of the onginal group G(K) admits a valuation. Moreover, every
representation of the algebraic group Gy admits a valuation compatible with that of G,. Both
valuations take rational values.

Progf. — We first reduce to the case of a simply connected group. Let Gk — Gg
be the universal covering of the semisimple group Gk, and let Z be its kernel, which
is a finite subgroup of the center of Gk. From the above table, and the known centers
of the simple algebraic groups, we see that any prime number p that divides the order
of the center of a simply connected semisimple group is at most the maximum of the
Coxeter numbers of its simple factors over the algebraic closure. So our assumption on
p is more than enough to ensure that Z has order prime to p. By the exact sequence

Z(K) — G(K) — G(K) — H'(K, Z(K)),

where the groups on the ends are abelian groups in which every element has order
prime to p, we see that every pro-p subgroup of G(K) is the isomorphic image of
some pro-p subgroup of é(K) Also, any representation of Gk can be viewed as a
representation of Gk. So it suffices to prove the proposition with Gk replaced by Gx,
that is, for Gk simply connected.

For a simply connected semisimple group Gx over a p-adic field K, Bruhat and
Tits, generalizing earlier work by Iwahori-Matsumoto and Hijikata, defined a conjugacy
class of compact open subgroups of G(K), the Iwahori subgroups Iw. A convenient
reference is [32], 3.7. Write £ for the finite residue field of K. For example, the group
of matrices in SL,ox whose image in SL,k is upper-triangular is an Iwahori subgroup
of SL,K. Bruhat and Tits showed that every compact subgroup of G(K) is contained
in a maximal compact subgroup, and they classified the maximal compact subgroups
C. In particular, every maximal compact subgroup contains an Iwahori subgroup.
Moreover, using that Gk is simply connected, each maximal compact subgroup C is
an extension of the A-points of some connected group G(k) over the finite residue field
k by a pro-p group, by [32], 3.5.2. The inverse image of a Borel subgroup B(k) C G(k)
in G is an Iwahori subgroup, by [32], 3.7. Let Iw, denote the inverse image of a
Sylow p-subgroup U(k) C B(k) C G(k) in C; then Iw, is a pro-p group. We see that
Iw, is a Sylow p-subgroup of C. Also, all these subgroups Iw, in different maximal
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compact subgroups are conjugate in G(K), since they are all Sylow p-subgroups of
Iwahori subgroups. It is natural to call Iw, the pro-p radical of an Iwahori subgroup,
since it is normal in Iw and Iw/Iw, is a finite group of order prime to p. It follows that
any pro-p subgroup in the whole group G(K) is contained in some subgroup conjugate
to Iw,.

As a result, to prove the proposition, it suffices to define a valuation on one
subgroup Iw, C G(K), and to show that every representation of the algebraic group
Gk admits a valuation compatible with that on Iw,. Generalizing Lazard’s definition of
a valuation on Iw, C GL,K (given in the proof of Corollary 9.3, above), the idea is to
find an element a € G(L) for some finite extension L of K and a Chevalley group G,
extending G, such that a~'(Iw,)a is contained in the subgroup of elements g € G(or)
with ¢=1 (mod m) for some m € o, with ord,(m) > (p — 1)~!. Then, taking a faithful
representation V of G, , a~'(Iw,)a is contained in the subgroup of elements g € GL(V)
with g=1 (mod m) for some m € op with ord,(m) > (p — 1)~'. So the group a~'(Iw,)a
has the valuation

(g = ord,(g — 1) € (1 /er)Z.

Moreover, this valuation is compatible with the obvious valuation w on V. It follows
that Iw, C G(K) has a valuation defined by

o'(g) = o 'ga),
and this is compatible with the valuation of Vy, defined by
w (%) = w(a™ ' x).

Every representation of Gy, (in particular, any representation of Gk tensored up to L) is
a direct summand of a direct sum of tensor products of Vi, and Vi, by [25], 11.4.3.2(a),
p. 156. It follows that every representation of Gk has a valuation compatible with that
of Iw,, as we want. Thus, the proposition is proved if we can find an element a € G(L)
as above.

For this purpose, as mentioned in the proposition, we can choose a finite
unramified extension E of K such that Gg is quasi-split, by Steinberg [30], Corollary
10.2(a), applied to the maximal unramified extension of K. The original pro-p subgroup
Iw, of G(K) is contained in the analogous subgroup of G(E), so it suffices to prove the
same statement for Gg in place of Gk. Since Gg is simply connected and quasi-split,
it is a product of restrictions of scalars of absolutely simple quasi-split groups Hy over
finite extensions M of E, by [3], 6.21(ii). The pro-p subgroup Iw, of G(E) is the product
of the analogous subgroups for the simple factors, so it suffices to consider the simple
factors.
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That is, writing Gk in place of Hy, we are given an absolutely simple quasi-
split group Gk over a p-adic field K such that p > A(Gg)ex + 1. Write Iw, for the
pro-p radical of an Iwahori subgroup of G(K), as above. To prove the proposition, it
suffices to find an element a € G(L) for some finite extension L of K and a Chevalley
group G, extending Gy, such that a™'(Iw )a is contained in the subgroup of elements
x € Glor) with x=1 (mod m) for some m € o, with ord,(m) > (p — "

For Gk of type %A, with n even, so that Gk is the unitary group SU,, K
associated to a quadratic extension L/K, we defined A(Gg)=2(rn+ 1), while A(Gy) is the
Coxeter number of SL,; L, that is, n+ 1. The assumption that p > A(Gg)ex + 1 implies
that p > A(Gp)e, + 1. Thus, if we can prove the above statement for Gp, in place of
Gk, then the statement for Gk follows. So we can assume from now on that Gg is
not of type ?A, with n even. Equivalently, the relative root system ® of Gk (defined
below, or see Borel-Tits [3]) is reduced; that is, there is no root a such that 24 is also
a root. (If Gk 1is split, its relative root system is reduced. Otherwise, Gk is of type
2A0m,s 2Aom_1, °D,, 2Eg, *Dy, or ®Dy, and then the relative root system is of type BC,,
Co, By—1, F4, Gy, or Gy, respectively, of which only BC,, is non-reduced.)

To prove the above statement, we need a more explicit description of an Iwahori
subgroup of G(K), following [8], section 4. Let S be a maximal split torus in Gg. Since
Gk 1s quasi-split, the centralizer T of S is a maximal torus in Gk, and there is a Borel
subgroup B defined over K that contains T. Let ® C X*(S) be the set of roots of Gg
relative to S, and let U, C G(K) be the unipotent subgroup corresponding to a € ®.
We know that the root system @ is reduced because we have arranged that Gk is not
of type 2A, with n even.

Also, let K be the Galois extension of K which corresponds to the kernel of the
action of the Galois group Gal(K/K) on X*(T), let ® C X*(T) be the set of roots of Gg
relative to T, and let Uy C G(K) be the unipotent subgroup corresponding to o € ®.
We can choose isomorphisms xy : K — Uy, which satisfy the compatibility conditions
with the action of the Galois group Galg on ® needed to form a “Chevalley-Steinberg
system” by [8], 4.1.3. These define a valuation of the root datum (T(I~(), Uy :a € D),
meaning a set of functions @ : Uy — (—00, 00] satisfying certain properties, by

Q¥ (u)) = ord,u.

In particular, the subsets ﬂaJ:@&l([c, 00]) and fJa,H =4 ((c, 00]) are subgroups of
[NJa for all real numbers c.

The Chevalley system of the split group G determines a model G, of Gk over
the ring of integers o which is a Chevalley group; see [8], proof of 4.6.15. By the

construction, the obvious integral model 24, , = oz of Uy =K is a closed subgroup
of G, .
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The Chevalley-Steinberg system also determines a valuation of the root datum
(T, U, :a€ ®), by [8], 4.2. The definition is simplest in the case we need here, where
® is reduced. Namely, any element u of U, can be written uniquely as a product
v= %
oEA

where a runs over the set A of roots in @ that restrict to a, ordered in some fixed
way. The functions @, : U, — (—o00, oo] are defined by

Q1) = inf P (ua).

acA

Moreover, since ® is reduced, the Chevalley-Steinberg system of G(K) induces an
isomorphism

x,:L, — U,

for every root a € ®, where L, C K is the extension field of K corresponding to the
subgroup of Gal(K/K) which fixes some root o € ® that restricts to a. By [8], 4.2.2,
the valuation of U, is given in terms of this isomorphism by

Qu(x,(u)) = ord,u

for u € L,. Combining the two descrlptlons we can say that the subgroup Ua 0 C G(K)
is contained in the subgroup of G(K) generated by Uq, o for roots o € @ restricting
to a. Likewise, U, ¢+ C G(K) is contained in the subgroup of G(K) generated by
U, (qayeg)-! for Toots o € @ restricting to a, where ¢(0):= |Gal(K/K)o| = 1, 2, or 3. This

uses that L, is an extension of degree ¢(0) of K. We should add that the roots o, of ®
which restrict to a given element of @ form a single orbit under the Galois group, by
Borel and Tits [3], 6.4(2).

The reason for the above comments is that we can define an Iwahori subgroup
Iw of G(K) as the subgroup generated by the subgroups U, ( for all positive roots
a € ®, U, ¢+ for all negative roots a € ®, and the maximal compact subgroup H of
T(K), by [7], 6.4.2 and 7.2.6 (where we take x to be the origin of the affine space A
corresponding to the given valuation @). Since U, ¢ and U, ¢+ are pro-p groups, they
map trivially into the quotient group Iw/Iw,, of order prime to p. So the pro-p radical
Iw, of Iw is the subgroup of G(K) generated by the subgroups U, ¢ for positive roots
a€ ®, U, o+ for negative roots a € ®, and the maximal pro-p subgroup H, of T(K).
By the previous paragraph, it follows that Iw, is contained in the subgroup of G(K)
generated by fJa)o for positive roots o € @, Ga’(c(a)q()_l for negative roots o, € ®, and

the group H,:={x € TK):x=1 (mod )}
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Let o, ..., 0, be the simple roots of ®. We have assumed that p — 1 > A(Gg)e,
which means (since Gk is not of type 2A, with n even) that p — 1 > (1 + 3 7)e(0) for
all positive roots ae= Y 7,0, in ®. Equivalently, for all positive roots o= Y r;at;,

ZTZ‘ < | 1

p=1 doex p—1
It follows that there is an element x € X,(T) ® Q such that (x, a;) > 1/(p — 1) for all
the simple roots o; and (x, o) < (c(@)ex)™" — (p — 1)~! for all positive roots c.

We can find an element ¢ € T(L) for some finite extension L of K whose
absolute value is x € X, (T) ® Q. (We identify a cocharacter of T, f: G,, — T, with
| f()|.) It follows that a'(Iw,)a is contained in the subgroup of G(L) generated by
the subgroups Uy, (., oy for positive roots o € ®, U

—at, ()~ — G, ) for negative roots

—a, and H:={x e TK): x =1 (mod nz)}. The inequalities on x imply that the
first two subgroups are contained in the subgroups Uy, ,/,_,+ for all roots o € ®. We
check immediately from the table of values of A(Gg) that A(Gg) > [K : K], so that the
assumption p — 1 > #(Gk)ex implies that p — 1 > ¢z, or in other words eg >@p— 1)

It follows that the subgroup H, is contained in {x € T(K): ord,(x—1)>(p—1)~'}.
In terms of the Chevalley group G, extending Gk discussed earlier, these
statements say that @ '(Iw)a is contained in the subgroup of elements x € Gor)

with x = 1 (mod m) for some m € o with ord,(m) > (p — 1)~!. This completes the
proof, as explained earlier. O

13. Open subgroups of S1,Z,

We will now show that the assumption that Gq, has rank at least 2 in Theorem
11.1 and Corollary 11.6 is essential. Some examples of nonzero Euler characteristics
for open subgroups of SLyZ, follow already from Proposition 6.2, combined with
Corollary 9.3. Those examples involve prime numbers p which are small compared
to the representation considered. For example, if G is an open pro-p subgroup of
SLyZ,, p > 5, and M is the standard module M =(Z,)?, then those results just say that
X(G, M)=0. In this section, we will show that for any prime p > 5, there is an open
subgroup G in SLyZ,, necessarily not a pro-p group, such that x(G, M) is not zero.
We do this by computing all the homology groups H.(G, M) for a natural class of
subgroups of SLyZ,.

Proposition 13.1. — Let p > 5 be a prime number, and G be the inverse image in SLyZ,
of some subgroup Q of SLoZ/p. Let M =(Z,)* be the standard representation of G. Then the
homology groups H.(G, M) are zero unless Q is either the trivial group, a cyclic group Z/3, a



222 BURT TOTARO

Sylow p-subgroup Z/p, or a semudirect product Z/3 x Z/p. In those four cases, the homology groups
H,(G, M) are F-vector spaces, zero except in degrees 0, 1, 2, of dimensions

2,4,2if Q=1

0,2,0if Q=7Z/3

1,2,1fQ=Z/p

0,2,0if Q=Z/3 xZ/p.

So the Euler characteristic ¥(G, M) is O unless Q s isomorphic to Z/3 or Z/3 < Z/p, in which
case it 15 —2.

In particular, for every p > 5, the group SLyZ/p contains a subgroup Q of order
3, and the Proposition implies that the inverse image G of Q in SLy,Z, has x(G, M)
equal to —2, not zero. This is the counterexample described above. For p=1 (mod 3),
SI,Z/p also has a subgroup isomorphic to Z/3 x Z/p, giving another counterexample.

Progf. — We first prepare to analyze subgroups Q of SLyZ/p of order prime to
p. Let G| be the congruence subgroup

ker(SLyZ, — SLyZ/p).

By Corollary 10.2, the homology groups H.(G;, M) are F,-vector spaces, zero except
in degrees 0, 1, 2, of dimensions 2, 4, 2. Moreover, the action of SLy,Z/p on these
groups is given by

Ho(Gi, M) = MFp

Hi (G, M) =sLF, — MFP

Hy(Gi, M)= A’ sLF, — sL,F, + Mg,

in the Grothendieck group of finite p-torsion SLyZ/p-modules. Using the representation
theory of SLy, we compute that these homology groups are Mpp, S3Mpp, MFp in this
Grothendieck group. In fact, these SLyZ/p-modules are simple, since p > 5, and so the
homology groups H.(G,, M) are actually isomorphic to these SLyZ/p-modules. The
restrictions of these modules to the diagonal torus (Z/p)* in SLyZ/p have the form

H()(Gl 5 M):L_l +L
H/(G,,M=L3+L'+L+L?
H?(Gl 5 M) = L_l + L)
where L is the standard 1-dimensional representation over F, of the group (Z/p)*. The

restrictions of these modules to a non-split torus ker(F;Q — F;) in SLyZ/p have the
same form, after extending scalars from F, to Fp.
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Let Q be a subgroup of SLyZ/p of order prime to p, and let G be its inverse
image in SLyZ,. Then the homology groups H.(G, M) are the coinvariants of () acting
on H.(G,, M). Since every element of SLyZ/p of order prime to p belongs to some
torus, possibly non-split, the calculation of H.(G,, M) shows that H.(G,M)=0 if Q
contains any elements of order not equal to 1 or 3. The Sylow 3-subgroup of SL,Z/p
is cyclic, so this leaves only the cases Q=1 and Q = Z/3. We read off from the
calculation of H,(G,, M) that the F,-vector spaces H.(G, M) have dimension 2, 4, 2
for Q=1 and 0, 2, 0 for Q =Z/3, as we want.

Next, let Iw, be the inverse image in SL,Z, of the strictly upper-triangular
matrices in SI,Z/p. Since p > 5, the group Iw, has a valuation as described in the
proof of Corollary 9.3, and M has a compatible saturated valuation. So we have a
spectral sequence

H.(gr Iw,, gr M) = H,(Iw,, M)

as in the proof of Theorem 9.1. Moreover, the diagonal subgroup Z; C SLoZ,
normalizes Iw,, preserving its valuation, and acts compatibly on M, so it acts on
this spectral sequence. The Lie algebra homology is easy to compute, and the spectral
sequence degenerates for degree reasons. The result is that the groups H,(Iw, , M) are
F,-vector spaces of dimensions 1, 2, 1, on which Z7 acts by

Hy(Iw,, M)=L""
H,(Iw,, M)=L~ + L’
H,(Iw,, M) =L.

Here L is the standard 1-dimensional representation over F, of the quotient group
(Z/p) of Z;.

Let Q be any subgroup of SLyZ/p of order a multiple of p. By conjugating Q, we
can assume that it contains the Sylow p-subgroup U = Z/p of strictly upper-triangular
matrices. The normalizer of U in SLyZ/p is the Borel subgroup B=(Z/p)*xZ/p. Let G
be the inverse image of Q in SLyZ,; then H,(G, M) is a quotient of the coinvariants
of QN (Z/p)* on H.Iw,, M). Using the calculation of H,(Iw,, M), it follows that
H.(G,M)=0 unless Q N (Z/p)* has order 1 or 3. So suppose that Q) N (Z/p)* has
order 1 or 3. Then Q is contained in the normalizer B of U in SL,Z/p, since any
subgroup of SL,Z/p which contains U but is not contained in B must contain two
distinct subgroups of order p, hence the subgroup they generate, which is the whole
group SL,Z/p. Thus, either Q=U or Q =Z/3 x U, and we can read off H.(G, M)
in these two cases as the coinvariants of QQ/U on H,(Iw,, M). The dimensions of the

F,-vector spaces H,(G, M) are 1, 2, 1 for Q=U and 0, 2, 0 for Q =Z/3xU. O
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