The Chern-Weil Homomorphism of Regular Lie Algebroids
Publications du Département de mathématiques (Lyon) (1991), pp. 1-69.
@article{PDML_1991____1_0,
     author = {Kubarski, Jan},
     title = {The {Chern-Weil} {Homomorphism} of {Regular} {Lie} {Algebroids}},
     journal = {Publications du D\'epartement de math\'ematiques (Lyon)},
     pages = {1--69},
     publisher = {Universit\'e Claude Bernard - Lyon 1},
     year = {1991},
     language = {en},
     url = {http://www.numdam.org/item/PDML_1991____1_0/}
}
TY  - JOUR
AU  - Kubarski, Jan
TI  - The Chern-Weil Homomorphism of Regular Lie Algebroids
JO  - Publications du Département de mathématiques (Lyon)
PY  - 1991
SP  - 1
EP  - 69
PB  - Université Claude Bernard - Lyon 1
UR  - http://www.numdam.org/item/PDML_1991____1_0/
LA  - en
ID  - PDML_1991____1_0
ER  - 
%0 Journal Article
%A Kubarski, Jan
%T The Chern-Weil Homomorphism of Regular Lie Algebroids
%J Publications du Département de mathématiques (Lyon)
%D 1991
%P 1-69
%I Université Claude Bernard - Lyon 1
%U http://www.numdam.org/item/PDML_1991____1_0/
%G en
%F PDML_1991____1_0
Kubarski, Jan. The Chern-Weil Homomorphism of Regular Lie Algebroids. Publications du Département de mathématiques (Lyon) (1991), pp. 1-69. http://www.numdam.org/item/PDML_1991____1_0/

[1] Almeida, R. & Molino, P., Suites d'Atiyah et feuilletages transversalement complets, C. R. Acad. Sci. Paris Ser. I Math., 300(1985), 13-15. | MR | Zbl

[2] Almeida, R. & Molino, P. Suites d'Atiyah, feuilletages et quantification geometrique, Estrait du Séminaire dix Geometrie différentielle. Montpellier, 1984-85. | Zbl

[3] Chern, S. S., Differential Geometry of fiber bundles, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, Vol.2, 397-411. Amer. Math. Soc., Providence, R. I., 1952. | MR | Zbl

[4] Coste, A. & Dazord, P. & Weinstein, A., Groupoïdes symplectiques, Publ. Dep. Math. Université de Lyon 1, 2/A (1987). | Numdam | MR | Zbl

[5] Dazord, P. & Sondaz, D., Varietes de Poisson - Algebroïdes de Lie, Publ. Dep. Math. Universite de Lyon 1, 1/B (1988). | Numdam | MR

[6] Ehresmann, C., Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibres), Bruxelles, 1950, 29-55. Liege 1951. | MR | Zbl

[7] Est, W. T. Van, Dense imbeddings of Lie groups. II. (I), Proc. Kon. Ned. Acad. v. Wetensch., Amsterdam, 55, Ser.A, 225-274 (1952). | Zbl

[8] Greub, W., Multilinear algebra, Springer-Verlag New York Inc. 1967. | MR | Zbl

[9] Greub, W. & Halperin, S. & Vanstone, R., Connections, Curvature, and Cohomology Vol. II, Academic Press, New York and London, 1973. | MR | Zbl

[10] Greub, W. & Halperin, S. & Vanstone, R. Connections, Curvature, and Cohomology Vol. III, Academic Press, New York and London, 1976. | MR | Zbl

[11] Kamber, F. & Tondeur, Ph., Foliated Bundles and Characteristic Classes, Lectures Notes in Mathematics 493, Springer-Verlag 1975. | MR | Zbl

[12] Kubarski, J., Exponential mapping for Lie groupoids, Colloq. Math. XLVII (1982), 267-282. | MR | Zbl

[13] Kubarski, J. Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism, Preprint Nr 2, Institute of Mathematics, Technical University of Łódż, August 1986, | MR

[14] Kubarski, J. Characteristic classes of some Pradines-type groupoids and a generalization of the Bott Vanishing Theorem, Proceedings of the Conference on Differential Geometry and Its Applications, August 24-30, 1986, Brno, Czechoslovakia, Communications, Brno, 1987, 189-198 | MR | Zbl

[15] Kubarski, J. Pradines-type groupoids, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 16(1987), 125-143. | MR | Zbl

[16] Kubarski, J. Lie algebroid of a principal fibre bundle - three equivalent definitions, Prace Naukowe Politechniki Szczecinskiej, 11 (1988), 123-145. | Zbl

[17] Kubarski, J. Same invariants of Lie algebroids of principal fibre bundles, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 21(1989), 235-258. | MR | Zbl

[18] Kubarski, J. Pontryagin algebra of a transitive Lie algebroid, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 22(1989), 117-126. | MR | Zbl

[19] Kubarski, J. Lie algebroid of a principal fibre bundle, Publ. Dep. Math.Université de Lyon 1, (to appear). | Numdam | MR

[20] Kubarski, J. A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup, Revista Matematica de la Universidad Complutense de Madrid (to appear). | MR | Zbl

[21] Libermann, P., Sur les prolongements des fibres principaux et les groupoïdes differentiables. Seminaire Analyse Global, Montreal, 1969. | MR | Zbl

[22] Lisiecki, K., Foliated groupoids, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, 22(1989), 127-149. | MR | Zbl

[23] Mackenzie, K., Lie groupoids and Lie algebroids in differential Geometry, London Mathematical Society Lecture Note Series 124, Cambridge, 1987. | MR | Zbl

[24] Mackenzie, K. Algebraic constructions in the category of Lie algebroids, J. Algebra (to appear). | MR | Zbl

[25] Malcev, A., Subgroups of Lie groups in the large, C. R. (Doklady) Acad. Sci. URSS (N, S.) 36 (1942), 5-7. (Kraus Reprint LTD. VADUZ 1963). | MR | Zbl

[26] Molino, P., Etude des feuilletages transversalement complets et applications, Ann. Sci. École Norm. Sup., 10(3) (1977), 289-307. | Numdam | MR | Zbl

[27] Molino, P. Riemannian Foliations, Progress in Mathematics Vol. 73, Birkhäuser Boston Basel, 1988. | MR | Zbl

[28] Moore, C. C. & Schochet, C., Global Analysis on Foliated Spaces, Mathematical Sciences Research Institute publications; 9. 1988, Springer-Verlag New-York Inc. | MR | Zbl

[29] Pradines, J., Theorie de Lie pour les groupoïdes differentiates dans la categorie des groupoïdes, Calcul differential dans la categorie des groupoïdes infinitesimaux", C. R. Acad. Sci. Ser.A-B, Paris, 264, (1967), 265-248, [ | MR | Zbl

[30] Pradines, J. Theorie de Lie pour les groupoïdes differentiables, Atti Conv Intern Geom 7 Diff. Bologna, 1967, Bologna-Amsterdam. | Zbl

[31] Silva, A. M., Atiyah sequences and complete closed pseudogroups preserving a local parallelism. Holomorphic dynamics, Proc. 2nd Int. Colloq. Dyn. Syst., Mexico City/Mex. 1986, Lecture Notes Math. 1345, 302-316 (1988). | MR | Zbl

[32] Wineerg, E. & Onishchik, A., A seminar on Lie groups and algebraic groups" (in Russian), Moscov, 1988. | Zbl