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THE CHERN-WEIL HOMOMORPHISM OF REGULAR LIE ALGEBROIDS 

by J. KUDARSKI 

Abstract. The aim of this paper is to construct the Chern-Weil 
homomorphism for regular Lie algebroids. This homomorphism, in the case 
of an arbitrary integrable transitive Lie algebroid A* agrees with the 
one for any connected principal bundle for which A is its Lie 
algebroid. Next, it is proved that there exist nonintegrable transitive 
Lie algebroids having the non trivial Chern-Weil homomorphism. Lie 
algebroids of some transversal 1 y complete foliations have this 
property. Some applications to nonclosed Lie subgroups and to vector 
bundles over foliated manifolds are given. 
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INTRODUCTION 

1. In [24] K.Mackenzie gives the first general and abstract 
treatment of the algebraic properties of Lie algebroids. The present 
work belongs to this direction. It is based on: 

(a) the observation by the author that the Chern-Weil homomorphism 
of a connected principal bundle is an invariant of the Lie algebroid of 
this bundle, 

(b) the construction of an equivalent of this homomorphism in a 
large class of regular (thus, nontransitive in general) Lie algebroids. 

(c) the discovery of a class of Lie algebroids which are not 
integrable, i.e. which do not come from principal bundles, but have 
non trivial Chern-Weil homomorphisms. 

[Analogous observations, which will be the topic of the next work 
by the author, concern the characteristic classes of flat (and 
partially flat) principal bundles]. 

This enables one to apply this technique to the investigation of 
some geometric structures defined on objects not being principal 
bundles but possessing Lie algebroids, such as transversally complete 
foliations, nonclosed Lie subgroups, vector bundles over foliated 
manifolds, Poisson manifolds or some complete closed pseudogroups. 

This work concerns the Chern-Weil homomorphism and transversal ly 
complete foliations, chiefly, foliations of left cosets of Lie groups 
by nonclosed connected Lie subgroups. 

2. The notion of a Lie algebroid comes from J.Pradines [29], [30]. 
Originally, this notion was invented in connection with the study of 
differential groupoids [J.Pradines in [29] introduced the so-called Lie 
functor which assigns a Lie algebroid to any differential groupoid] . 
Since each principal bundle P determines a differential groupoid [the 
so-called Lie groupoid PP~* of Ehresmann [6]], therefore each principal 
bundle P defines - in an indirect manner - a Lie algebroid A{P). 
P.Libermann noticed [21] that the vector bundle of this Lie algebroid 
is canonical ly isomorphic to the vector bundle TP/G (G is the structure 
Lie group of P). The construction of the Lie functor for principal 
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bundles with the omission of the indirect step of differential 
groupoids was made independently by K.Mackenzie [23] and by the author 
[16]. 

The Chern-Weil homomorphism hp of a principal bundle P has been 
known for some forty years [3]. One can ask the question whether this 
homomorphism is an invariant of the Lie algebroid A{P) of a given 
principal bundle P. In [17] (see also [19]) the author proved that it 
is so under the assumption that the structure Lie group G of P is 
connected. It turns out that this condition can be eliminated entirely 
(see Chapter 5). More precisely, the Chern-Weil homomorphism of a 
principal bundle P appears as a characteristic feature of the Lie 
algebroid A(P) of P in every case [provided only that P is connected]. 
This means that, knowing only the Lie algebroid A{P) of P, one can 
uniquely reproduce the ring of invariant polynomials (vQ ) and the 
Chern-Weil homomorphism h^:(Vg )^ • # d R(M (9 denotes the Lie 
algebra of G). 

We pay our attention to the fact that this holds although in the 
Lie algebroid A{P) there is no direct information about the structure 
Lie group of P (which may be disconnected !) 

In addition, we must point out two things: 
1) A Lie algebroid is - in some sense - a simpler structure than a 

principal bundle. Namely, nonisomorphic principal bundles can possess 
isomorphic Lie algebroids. For example, there exists a nontrivial 
principal bundle for which the Lie algebroid is trivial (the nontrivial 
Spin(3)-structure of the trivial principal bundle lRP(5)xS0(3) [19], 
[18]). 

2) There exist other sources of Lie algebroids than principal 
bundles, for example, transversal ly complete foliations [26], [27], 
Poisson manifolds [4], [5], or some complete closed pseudogroups [31]. 
Among them there are ones which give "noninbegrable" Lie algebroids, 
i.e. those which are transitive and cannot be realized as the Lie 
algebroids of principal bundles . Namely, according to Almeida-Molina 
theorem [1], [27], Lie algebroids of nandevelopable (and only such) 
transversal ly complete foliations have this property. An example of 
such a foliation is any transversal ly complete foliation with nonclosed 
leaves on a simply connected manifold. A more concrete example is any 
foliation of left cosets of any connected and simply connected Lie 
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group by a Lie subgroup connected and dense in some torus. 

3. In connection with the above, it seems important to construct 
the Chern-Weil homomorphism in some category of Lie algebroids, being a 
generalization of that for principal bundles- This problem is solved 
in our paper (chapter 4) in the category of regular Lie algebroids, 
i.e. of such ones in which the anchor is of constant rank. 

Namely, 
h : kl°(5ecVV) . > H (tf) 

A I E 

serves as this homomorphism for the regular Lie algebroid A (with the 
adjoint bundle of Lie algebras g), where Q <E Q (M;g) is the curvature 

k 5 ' 
tensor of any connection in A* whereas (5ecV 9 ) 0 is the space of 

k # ' 
invariant cross-sections of Sec V g with respect to the adjoint k ̂  k 'X representation of A on V g , i.e. T <E (5ecV g if and only if 

V V f^ojxrycr v...v<r > 
Z<zSecA cr ,. .. ,<r <=Secg ̂  

1 k 
= E <F,cr v. f ,<r D̂ ...vcr > 

t=1 1 x k J-
The nan triviality of h means, of course, that in A there is no flat 

A 
connection. 

The existence of a natural isomorphism of algebras u such that 
k*°(SecVV>,. 

^ >v A< P > 

< v . \ / * > . 

for the Lie algebroid A(P) of a principal bundle P (provided only that 
P is connected) means that the Chern-Weil homomorphism of a Lie 
algebroid is some generalization of this notion known on the ground of 
principal bundles. On the other hand, this also means that the 
Chern-Weil homomorphism of a principal bundle is a characteristic 
feature of its Lie algebroid (for connected principal bundles). 

We give two applications of the homomorphism obtained: 
• the transitive case is used for TC—foliations, especialy, for 
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the foliations of left cosets of Lie groups by nonclosed connected Lie 
subgroups (chapters 6 and 7 ) , 

# the non transitive case - for vector bundles over foliated 
manifolds (section 5-7). 

4. Chapters 6 and 7 concern transversal ly complete foliations. We 
start with giving a precise construction of the Lie algebroid A(M9^) of 
a TC-foliatian (M,^). Next, we explain the geometric signification of 
connections in AiM,^) : 

Let E and Efo be the distributions tangent to the foliation & and 
to the basic foliation ^ , respectively. Connections in A are in the 
1-1 correspondence to the C°° distributions C czTN satisfying the 
conditions: (1) C ~*~ E — TM, (2) C n E = E, (3) an arbitrarily taken 

b b 
vector belonging to C is the value of some foliate vector field having 
all values in C [in the case of left cosets of a connected Lie group G 
by a connected Lie subgroup HaG* condition (3) is equivalent to: (3') 
C is H-right-invariant] . 

In particular, such a distribution C always exists. A connection 
in A is flat if and only if the corresponding distribution in TM is 
completely integrable. Thus the nontrivial i ty of the Chern-Weil 
homomorphism of A{M9^) means that then there exists no completely 
integrable distribution C c 77tf satisfying conditions (l)-r(3) above. In 
chapter 7 we give a wide class of transversal ly complete foliations for 
which the Chern-Weil homomorphisms of the corresponding Lie algebroids 
are nontrivial. It will be some class of foliations of left cosets of 
Lie groups by nonclosed connected Lie subgroups. As a preparation in 
this direction we give (Th.7.4.2): 

Let HcG be any connected Lie subgroup of G and let <5, t) and Q be 
the Lie algebras of H9 of its closure H and of G9 respectively. Let 
A(G;H) be the Lie algebroid of the foliation of left cosets of G by H. 
Denote by h :(VÍ)*) >H (G/H) the Chern-Weil homomorphism of the 

P I clR 
H-principal bundle P={G >G/H). Then there exists an isomorphism of 
algebras p such that the following diagram commutes: 
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k& 0(5ecV kg*>. — r • W (G/H) I ti dR 

I AiG;H y r 

V<í>/*»* 5 > (Ví)*)/ . 
Because of the well-known fact that, under the assumption that G 

is a connected, compact and semisimple Lie group, 
(h„)Z:(i)*) — ^ U f í * {G/H) P I dR 

is an isomorphism, we assert, thanks to the diagram above, that h 
is nontrivial- This means that then there exists no C completely 
integrable distribution CczTG such that (1) C+E = TG9 (2) 

h C n E (3) C is H-right-invariant-b 
As a corollary we also obtain that (Cor.,7.4-8): 
No Lie subalgebra c c g satisfying (i) c + t) = g, (2) c n í ) = í) 

exists. 
(Such a Lie subalgebra determines some flat connection in A{G;H)). 

Adding the simple connectedness to the assumption about 67, we get, 
according to the Almeida-Mo lino theorem, some nonintegrable transitive 
Lie algebroid having the nontrivial Chern-Weil homomorphism. 
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0. PRELIMINARIES 

We assume that in our work all the manifolds considered, are of 
the C°°~class and Hausdorff, and that the manifolds Af, M'9... over which 
we have Lie algebroids are, in addition, connected. By ft°(Af) we denote 
the ring of C°° functions on a manifold Af, by 36(A/) the Lie algebra of C°° 
vector fields an Af, and by SecA the Q°(Af)-module of all C°° global 
cross—sections of a given vector bundle A (over Af). 

Denote by $ the category of couples (Af,E) consisting of a manifold 
M and a C°° constant dimensional and involutive distribution E <z TM- A 
morphism f : (Af ' ,E ' ) • (M9E) in $ from (Af ' ,E') to (M9E) is a C°° 
mapping f :AT • Af such that f [ E ' D c E . 

Let (Af,E) be an object of the category and f any vector bundle 
on Af. Each element of 

n (Af;f):= k^°O k(W;f), where Q k (Af ; f ) : =5ecAkE*<»f, 

is called a (C°°) tangential differential form on (Af,E) with values in 
f, while, for the trivial vector bundle f = AfxtR, briefly a (C°° reaZ) 
tangential differential form on (Af,E) (for that, see [28 ] ) . The space 
of tangential differential forms on (Af,E) will be denoted by Q^(Af). 

There is an obvious differential of degree +1 in Q (Af) which 
can be defined in an elementary way in terms of local coordinates [28] 
or, equivalently, by the global formula: 

/(B ) (X , . . . ,XJ = £(-D jX.(e(X ,X.)> 
o k y j o k 

+ E( -D U j ®(CX. ,XJ,X ,X.) 
L<J L J ° k 

(for 0<s Q k(Af;f))- We evidently have (d£')2 = 0. The tangential 
cohomology space H (M) of (Af,E) is, by definition, the cohomology space 
of the complex (Q (Af),</). If E = IAf, then // (Af) is the de Rham 

r E 
cohomology space W (Af) of Af. 

For a morphism fz{M'9E') • (Af,E) of $ and a vector bundle f on 
Af, we can define, in a standard way, the pull back of forms 

f*:Cytf;f) •0F,(M';f*f>. 
The usual law of the commuting of f with the differentiation of 
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real-valued forms holds: 
f'.cf-S'.f*. 

Let f ,...,f ,f be vector bundles over M. An arbitrary k-linear 
1 k 

homomorphism of vector bundles pzf x...xf >f determines the 
mapping 

^:O p(W;f 1)x...xO (W;fk) • O (W;f) 
* E E E 

defined by the standard formula 
<p (0 , . . . , 0 A . . . A V ) 

* 1 k i m 

in which m = E<7. where g. is the degree of 0. Q (Mjf*'). 
Sometimes, the form <p (0 ,...,0 ) will be denoted in other ways: 

*r 1 k 
(a) for forms of degree 0 (i.e. for cross-sections of the vector 

bundles f L), by <p{® ,...,0 ) ; 
k k 

(b) for the standard homomorphisms €>:fx...xf • # f, 
V k : f x,..xf • V V , by 0̂ <8>...<»0k and e^v.^vO^ respectively; 

(c) for the duality <•,->:Vkf *x Vkf •K, [8], by <©,©>» etc. 
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1. THE CATEGORY OF REGULAR LIE ALGEBROIDS 

1.1. The category of regular Lie algebroids. 

1.1.1. Definition [29], [30]. By a Lie algebroid on a manifold M 
we mean a system 

A = (1) 

consisting of a vector bundle A (over M) and mappings 

I -,-Í zSecA x SecA • SecA, yzA • TW, 

such that 

(i) (SecA,I -,•]!) is an R-Lie algebra, 

(ii) y. called by K.Mackenzie [23] an anchor* is a homomorphism 

of vector bundles, 

(iii) SecyzSecA >X(M)9 % i >r°K ? i s a homomorphism of Lie 

algebras, 

(iv) I? ,f-T)l r?í + (r°Z)íf)'n for/€0°(/f), í,r?€5ec/í. 

Lie algebroid (1) is called 

(a) regular if Y is a constant rank; then Ez=Imy is, of course, 

C°° constant dimensional and completely integrable distribution, (1) is 
then also called a Lie algebroid over (#,£). g :=Ker^ is a vector 

bundle, called the adjoint of (1), and the short exact sequence 

0 • g < • A — E • 0 (2) 

is called the Atiyah sequence of (1); 

(b) transitive if y is an epimorphism. 
The concept of a Lie algebroid enables one to make many 

generalizations [15], [22]. 

1.1.2. Let (1) be a regular Lie algebroid. In each vector space 

g {-Kery ) , X€M, some Lie algebra structure is defined by 

[v,w]:= Hi ,7?]1 (x). 5,i?€ SecA. ? (x) = v, r)(x) = iv, v, ^<E g . 

g is called the isobropy Lie algebra of (1) at Jr. For transitive Lie 

algebroid (1), g is a Lie algebra bundle [ 2 ] , [19], [23]. 
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1.1.3. The following are important examples of transitive Lie 
algebroids: 

(1°) the Lie algebroid A(P) = TP/G of a G-principal bundle P, see 
[16], [19], [23], 

(2°) the Lie algebroid CDO(f) of cavariant differential operators 
on a vector bundle f, see [23], 

(3°) the Lie algebroid ^(T*^) of a Lie groupoid see [13], 
[30], 

(4°) the Lie algebroid AiM-F) of a transversal ly complete 
foliation {M9f)9 see [26], [27]; in particular, 

(5°) the Lie algebroid A(G;H) of the foliation of left cosets of a 
Lie group G by a nonclosed connected Lie subgroup H<zG9 see [20], 
[27], 

(6°) the Lie algebroid of some pseudogroups, see [31]. 
The following are examples of nan transitive (in general) Lie 

algebroids: 
(1°) the Lie algebroid j * ( r * $ ) of a differential groupoid see 

[12], [29], [30], 
(2°) the Lie algebroid of a Poissan manifold, see [4], [5], 
(3°) the regular Lie algebroid AFz- y l[E]<zA defined by 

transitive Lie algebroid (1) and an involutive distribution E<zTM (for 
example, a Lie groupoid [or a vector bundle] over a foliated manifold 
determines such an object). 

1.1.4. Definition. [24] Let (1) and (A' 9l •, -J ' 9y') be two Lie 
algebroids (even not necessarily regular) on manifolds M and AT, 
respectively. By a homomorphism 

Hz(A'9l-9-l'9y9) • (A9l-9*l9y) (3) 
between them we mean a homomorphism of vector bundles Hz A' • A9 say, 
over fzM' • M9 such that, 

(a) yoH = f^r9, 
(b) for arbitrary cross-sections £, £' <£ Sec A' with 

H-decomposi Hons 

t V J J 

f \ f'J€ 0°(tf'), r? , y)9. ̂  SecA9 we have ^ j 
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I , j L J J J t ъ 

Zn the case of Lie algebroids A and A' on the same manifold M, a 
strong homomorphism H:A' » A of vector bundles is a homomorphism of 
Lie algebroids if and only if 

(l'> r°H = y', 
(2') SecHiSecA' • Sec A. £ i •H<>?!, is a homomorphism of Lie 

algebras. 

Indeed, 11 =» " is trivial. 
11 <= " Let Яо^=Г/"Ъ">7. and Ho?'=rr J*T}: be ^-decompositions of 
? , ? ' € 5есЛ'. Then" J 

l ъ J J 

= E /" l-/'J"IIr?.,T?'J + E )(f'J)->7'"- E ir#J'(r°r?#)(f,')-r7. i j . . ъ" J i. j \ J t,j J v 

= E fb'fKlri.,T7fJ +Е<Г'°0(^'^7?'-Е(Г'Ч'М^)-Г?.. о 
I, j ъ J J J t 

If homomorphism (3) is a bijection, then H 1 is also a 
homomorphism of Lie algebroids; then H is called an isomorphism of Lie 
algebroids. 

Below, we represent each nonstrong homomorphism (3) of regular Lie 
algebroids over /":(#',£') • (M*E) as a superposition of some strong 
homomorphism Hz A' • f^A with the canonical nonstrong one x'T^A • A 
where f^A is the so-called inverse-image of A over f. The term 
" inverse-image of A over f" appears in work [24] by K.Mackenzie, but in 
the sense not quite helpful here (for example, Mackenzie's definition, 
although it is general enough, ensures neither the existence of the 
inverse-image of A nor its regularity for a regular Lie algebroid A). 
For the sake of campletness, we add that the two definitions, 1.1.5 
below and 1.4 from [24], are equivalent on the ground of transitive Lie 
algebroids. 

1.1.5. Definition. Let (1) be a regular Lie algebroid over (M,E) 
and let f:(M ' , E ' ) • Ш,£) be a morphism of the category The 
inverse-image of A by f is a regular Lie algebroid over (W,£') 

if*A, tt','D,pri) (4) 
in which 
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(i) f*A = E'x /? = f(v,^) € E ,x ̂; f (v) = r ( ^ ) ] c P e f ^ 
{f *>ry I * J 

(f̂ i4 is a submanifold of E'ef because /" x yzE'x A • E x E is 
transverse to the diagonal A c E x £ , and f^A-if x^) _ 1[A]), 

(ii) the bracket I*,-I in Secf^A is defined in the following way: 
Let (X^f.) € Secf^A, 2 = 1,2 [where X € SecE', f € 5ecf - Then, 
locally (say on iicff'j, £^ is of the form £g J-£ Jof for some 

€ Q°(W) and € 5eo4, and we put 

The correctness of this definition. By antisymmetry, it is 
sufficient to show that V g J • g k-I? J ,£ kII o f + r X ( g k ) - ? k o f 

jTk * 2 1 2 k 1 2 

is independent of the choice of the decomposition for £ . Consider 
simultaneously the 2-linear function F:0°( W ) x 5ec>4 • Secf*A given 
by 

F(g,?> - Eg J-g-ltf J,?Uo/ + X (g) gc Q°(W), ? € 5eo4. 
J 1 1 1 

Clearly £ gj-gk-lI?J,?k]]of+ EX ( g k ) -? kof = EF"(g k , ? k ) . For fc€ n°(tf), 
j k 1 2 1 2 k 1 2 2 k 2 2 

by standard calculations and thanks to the assumption that 
f (X (x)) = r(£ (f(x))), one can easily notice that (cf. Lemma 1.4 from * l l 
[24]) 

F(g,t-K) = F(g-( to/") ,?) . 

To prove the examined independence, take two decompositions 
£ — '° f ~ Y* gT %T ° f - For a point x ̂  tin let ̂  be a local basis 

2 k 2 2 ^ 2 2 S 
of the module SecA around fix) and let ? k = E^f'^ * ^-Vh5-^ 

2 s k s" 2 ^ r s 
(around fix)), hj% 0°(/1/); then, around x we have Eg^h^/" 

N p k 
= E <7 "h of for each s*. Therefore, in the end,, we obtain 

•̂ 2 r 
r 

k 2 2 k z 5 k s 3 k 2 * s 

*"*-̂2 r 5 2 r s 2 2 S r r s r 

The Atiyah sequence of the inverse—image f^A of A is 

0 » /' g • f A —> £' > 0. 
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(identify f g with Oef g). 
Clearly, 

X = pr >A 

is a homomorphism of regular Lie algebroids. 
1.1-6. Proposition. Let A and A' be regular Lie algebroids over 

( M,E) and (M' ,£ ' ) , respectively. Let Hz A' • A be a homomorphism of 
vector bundles over f z (AT ,£ ' ) -* (M.E). Then H is a homomorphism of 
Lie algebroids if and only if 

(1) r * H = f

x°r\ 
(2) HzA' —> f^Aj v\ • (y'( v),//( v) ), is a strong homomorphism of 

Lie algebroids. 

Proof. The very easy proof will be omitted. • 
According to this proposition, each nonstrong homomorphism of 

regular Lie algebroids is canonical ly represented as the superposition 
HzA' JL—> f*A X > A. (5) 

In the case of regular Lie algebroids, each homomorphism (3) 
determines a homomorphism of the associated Atiyah sequences 

0 • g' < • A'—£' • 0 

0 > g < • A — £ > 0 
(tf+ is the restricted homomorphism of the adjoint vector bundles and 
^ix = ^[x * ̂lf<x> ' X0EM* is a homomorphism of Lie algebras). 

An example of a nonstrong ( in general ) homomorphism of regular Lie 
algebroids is the tangent mapping f ̂ z£' • £ to any C°° morphism 
/ : ( # ' , £ ' ) > (W,E) of the category ^, cf. [24]. 

1.1.7. All regular Lie algebroids and all homomorphisms between 
them form a category fundamental in our considerations. 

1.1.8. Lemma. Let A and B be two regular Lie algebroids over 
(W,£), HzA >B a strong homomorphism, and fz(M'.E') • (M,£) any 
morphism of Then the mapping f^Hzf^A • f*B9 (u,v) i • (u,tf(v)), 
is a strong homomorphism of regular Lie algebroids. 

Proof. Of course, pr±°f*H = pr±. To prove that Secf^H is a 
homomorphism of Lie algebras, take two cross-sections 
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?,T)€ Secf^A, K = ( X,E^'? • •/")» r/= ( y , r g J ? o f ) , and calculate 

= tt(X,E^l-W°?. ° f ) , ( > ' ,Eg J - W ° ? . o f ) I t L j J 

1.1.SL ± c- r-nlloH f ho mt/<avcva-- imarf<a y\f W /̂ t/jav f" ' " a. ii 15 LdlieU XLIPB mv^x^«— X iitotv̂ ^ '̂ x n <w> v <̂x x • 

1 . 2 . The Lie algebroid A(f) of a vector bundle f. 

1.2.1. Definition. Let f be any vector bundle on a manifold W, 
with a vector space V as the typical fibre. A linear homomorphism 
USecf > f is called an f-vector tangent at x if and only if there 

|x J 

exists a vector u<= T M such that 
X 
l(f v) = f (X ) 2 ( P) + u(f ) P ( X ) 

for all feQ°{M) and v <E 5ecf. 
The vector a determined uniquely by 2, is called the anchor of 1 

and denoted by q{l)« All f-vectors tangent at x form a vector space 
4 ( f ) . Put ̂ ( f ) = I I A(f) and let pzA(f) >M be the canonical 

|x u x € / f |x r ' 
projection. Clearly, each f-vector 2 is fac tori zed by some linear 
mapping 7 from the space of i-jets at x: 

Secf — > ( j A f ) 
\ z 7 

and the mapping just obtained A(f) > HomiJ f ;f), 2 • 2, is a 
monomorphism on each fibre. One can prove [23] that the image of this 
mapping, equal ling CDO f, is a vector subbundle of Horni J*f ; f) - Via this 
mapping we shall identify Aif) with CDO f to obtain a transitive Lie 
algebroid with gzA(f) • TW, 21 > q( 2), as the anchor. A 
cross-section £ c 5ec\4(f) defines a differential operator in f by 
the formula: 

K x 

being a covariant differential operator in f. Besides, each covariant 
differential operator in f is of the form £ for exactly one 
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cross-section £ € SecAif)- The bracket |[ •, H of cross-sections of A(f) 
is defined in the classical - for differential operators - manner, i.e. 
for £, 77 € SecAif), tt?3r7?I is a cross-section of y?(f) such that 
^n. TI = ^ ° ^ °^v- T h e Atiyah sequence of ̂ (f) is 

0 • Endf < i-» i4(f) —31* • 0 
(and X. =?(!>>) for ? <E Sec(Endf), where £ (u) «s Secf is defined by 

Take now a vector bundle f on M and a mapping f iM' • W- Consider 
the inverse-image f*(A(f)) (=TM'x x 4 ( f ) ) of J l ( f ) . 

1 .2.2. Lemma. For xeM' and ( a , 2) <s f ̂ ( ^ ( f ) ) , there exists 
exactly one element w<sA(f f ) with the anchor u, such that 
w(^°jf) = 2(î ), 5ecf. The correspondence (a, 2) i • w establishes a 
strong isomorphism 

cfzf~{A(f)) >Mf*f) 

of transitive Lie algebroids. 

Proof. Let and (a, I) <E f^Utf)) , i.e. a € T W , 
|X * X 

Z e J U f ) , and 

i^(u) =g(2). (6) 
The uniqueness of an element we A(f f) with the anchor a, such 

|x 
that w{uof) = Hu)9 i> <= Secf, is evident. As to the existence of such 
an element, we notice that any cross-section r e 5ec/" f can be 
represented (not uniquely) in the form r = £/"L-v>. of, f^eCFiM'). 
v. € 5ecf. Put 

" ( T) = Ef l(x)-2(iO + u(fVi;.ofU). 
i 

The correc tness of this def ini tionz Let T ̂ J^f^-v. of = TTgl*MT i u J J 

(locally in some neighbourhood of x) - Take an arbitrary basis 
of cross-sections of f around f(x) and let v.=E<ps-u , T ^ J J ^ ' M -
Therefore in a neighbourhood of x 

E f 1 = JJ^vSfp s = l , . . . , n . (7) 
l L J J 

Equalities (6) and (7) yield 
Ef lU)-2(v.) + u(fVv>. °f (x) t 
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s I 1 5 s I 3 

= Es^x) 2(T ) + u(g J)r of{x). 
j J J 

It is easy to see that w is an /~*f-vector tangent at x (with the 
anchor u). Clearly, the mapping obtained c^if*(A(f)) >A(f*f)9 

ill* I) I > w, is a strong homomorphism of vector bundles. The 
smoothness of c follows from the fact that c maps a smooth f t f 
cross-section to a smooth one: namely, (X«E/ f of) is carried over to 

t 
a cross-section r? such that ( i ^ < » n = E f 1 ' ^ v <= 5ecf. 

It remains to show that is a homomorphism of transitive Lie 
algebroids. Of course, qoc - pr^ To see? that Sec(c^) is a 
homomorphism of Lie algebras, take two cross-sections 
?, r) € Secf^UCf)). They are ( locally) of the form ? = (X ,E* a ' ? l °*">» 
77= (y , E 5 J ? C j f ) f o r f\ fiT1* 0 0(W) and ?.«5eci4(f). We' calculate 
(for i> <s Secf ) 

ICfo£,Cf o l̂ 
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2. REPRESENTATIONS OF LIE ALGEBROIDS ON VECTOR BUNDLES 

2.1 Definition and fundamental examples. 
2.1.1. Definition (cf. [23, p.106]). Let f and (1) be any vector 

bundle and Lie algebroid (both over M), respectively. By a 
representation of A on f we mean a strong homomorphism of Lie 
algebroids 

TzA • >4(f). (8) 
2.1.2. Adjoint representation (defined by Mackenzie [23] for the 

transitive case). One can trivially notice that if v> € Secg, then, for 
£ e Sec An the value of at x depends only an the value of £ at x 
and belongs to g^. In this way, it is the correctly defined element 
II v,î D € g^ for v € A and u <E Secg. 

A very important representation is the so-called adjoint 
representation of a regular Lie algebroid A 

ad zA > A is) 
A 

defined uniquely by the following property: 
ad (v) (u) = II v , v l , v <E An v € Secg. 

A 
To see the existence of ad n we only need to notice that 

A 
Sees => v • • I v9ul € ĝ  is a g—vector. The smoothness of ad^ is 
evident. 

2.1.3. Contragredient representation. The contragredient 
representation of (8) is, by definition, 

T*zA • Mf*) 

such that <X. ( f ) ^ > = ( ^ 0 < ^ ^ > - < ^ „(^)>, K * SecAn *> <E Secf * , 
T o £ 7* o £ 

v € Secf. 
2.2.Representations induced by a single one. A single 

representation TzA >A{f) determines (as in the case of a 
representation of a Lie algebra in a vector space) a number of new 
ones, frnong them we shall need the following ones: 

2.2.1. The symmetric product V k I of A on Vkf as the one for which 
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2.2.2. The representation Hom{T) of y? on the space of ^-linear 
homomorphisms Horn (f;K) as the one for which 

for any /c-linear homomorphism (pzf x...xf • IR and for 1/ € 5ecf, 
? € 5eCi4. 

Via the above, the given representation (8) determines V T of A 
on the space Vkf*. 

2.2.3. Lemma. The representation V k r h is defined by the following 
formulaz 

VKT o( i k 1 k j i To( 1 k 

f o r r e Sec(Vkf*) and v <s Secf. 

Proof. We need the following 
2.2.4. Sub lemma. Let, f o r a given matrix B, the symboZ perm[{B) 

denote the permanent of the matrix which arises from B by the 
eliminating of the iih row and jih column [for the definition of a 
permanent, see [8]). The following properties of the permanent of the 
matrix B=lf[; i,j<kl hold: 

(1) The expansion formula with respect to the j£ row or j*0 

column: 

permB= E/"-J -perm.3 (S) = E f-°'permf°(B) , j=i L° t o i=i c L 

(2) the law of differentiation z 
X(permB) = EX(f^)-per/n L

J(S) 
L , j 

^here f;1 and X are functions and a vector field on a given manifold, 
respec tively. 

The very easy proof will be omitted, o 
Proof of Lemma 2.2.3. It is sufficient to show the equality for a 

cross—section r of the form r = u* 1v . . . ^u* k , u*^€Secg*. Using the 
above sub lemma, we obtain, for i>. <E Secf, 
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y T i k 

= £perm : : : 
J • . *± #j #k <.u > ... <£ „ u ,v > ... <a , i>> k T °£ k k 

'^u* 1 ,^ > — ( ^ o ( X u ^ V > --- <u*k,t> > 
1 i 1 = £ perm ! ; 

J • 
#i #i #k 

<U J^>

K

> ( ^ ( ) v U ,1^k> < a ,^k > 

#1 #j #k 
<u 9i> > ... <u i> > ... <.u > 

i To£ i - 1 
-Eperm 

J 
#1 *j #k 

<u 9u> ... <a ^ > ... <u 9x> > 
k 7o( k k 

= E )<u*j,v\>-per/n j - E<u* j,# ^.>*permj 

" . *l % . *k <La ,y ... <u *v > I i 
= )perm '. 

. *i . *k > <wU > k k 

<a ,v > — xa ,t> ̂  i I 

* 1 # k 

-Eperm <U »v> — <a ,<£ v > 

y *1 . *k 
k k 

" l k 

" i Tô  t k 
2.3. The inverse-image of a representation. 
2.3.1. Definition. Let A be any regular Lie algebroid over (M,E), 

and f any vector bundle over M, whereas f : (W ,E') • (M,E) ~ any 
morphism of the category By the inverse-image of a representation 
T:A > Aif) over f we mean the representation / T'.f^iA) • Aif f ) 
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defined as the superposition 
f*Tzf~{A) J—L> j f ^ ( f ) ~U A(f*f) 

where is the isomorphism described in 1..2.2 whereas f^T is the 
inverse-image of T over f, see 1.1.8-9. 

2.3.2. Lemma. The inverse-image of the adjoint representation is 
adjoint, i.e. 

f [ad ) = a d ^ 
A f A 

Proof. It is enough to check the equality 
f*(ad )(u)(pof) = acL~ <u)(v.f) 

A t A 
for ̂  € Secg and u«s /""̂ 4. Write u= (v,w) for v <s E' and w€ >4 , see 
1.1.5. Then 

f*(ad )(u)(^of) = c°f*ad {v,w)(vof) 
A f A 

= c (v,ad <i/))(i>of) = (ad (ur))(v) 
f ,4 /1 

= lw9vl = l(v,w),(0,v.f)] 
= ad,„ ( u X ^ f ) . • 
2.3.3. Lemma. Under the canonical identif ications 

f * ( f * ) 3 ( f * f > * , f * (V k f ) ^V k(f * f ) , the following equalities of 
representations holdz 

(a) /-*(rN) = ( f * r ) \ 

(b) f*(V k r) = V k ( f * n . 

Proof. (a): Let xeM9 and (v,v) € ( f ^ ) , i.e. v <s E' , 
|x * |x ifl and /" (vr)=x(w). Of course f by the uniqueness considered in \fix> * v 

1.2.2), it is sufficient to show the equality 
f*<rN)(v,i/)(i/cf) = ( ^ D ^ v ^ x / o f ) 

for v € Secf - Both sides of the equality are elements of the space 
f ^ ^ (= (/" f )( ), therefore, to show this, take arbitrary f ( /r < x ) 

and a cross—section u <= Secf, such that u{f{x)) = u. 
< f * ( r N)(v,v ) ( / - f),u> 
= <f*(T*)(VnW){v*of),vof {X)> 

= <c „ (v,rN(i/>><i/of),vof(X)> 
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= <rN(t/)(^),u./-(x)> 
= (r<fcO)<i>*,v>-<i/(/"(jr)),7'(v)(i>)> 

= / (v )<v* ,v>-<^ ( f (x ) ) , c (v,nw))(y/)> 
* f 

= <(f*r)N(v,^)(i/o/-),i,(f (X))> 
= <(f*r>Nv,uO(i>*»f ),u>. 
(b): Uhder the canonical identification /**(Vkf) ^ Vk(f * f ) , we 

have i> o/"v..,vi; o/"=(̂ > v...vi; ) ©/" for v> e Secf. Since a cross—section i k k i k i 
v € 5ecV f is (locally) a linear combination of cross-sections of the 
form i ;

1

V-" V 1 ;J CJ ^ € Secf, we see (by the same argument as in (a) 
above) that it is sufficient to notice the following: 

f*(VkI)(v,^)((^ )of) 1 k 
1 k 

= E,v(fix))^...ssT{w)(v )^...w(f(x)) 
1 t k 

= Vk(/"*D(v,v)(v .fv...^, of). • 
i k 

2.4. Invariant cross-sections (cf. Mackenzie, [23, p. 195]). 
2.4.1. Definition. Let (8) be any representation of a regular Lie 

algebroid A over (MnE) an f. A cross-section u e Secf will be called 
invariant (or, more precisely, T-invariantn or, after Mackenzie, 
A-parallel) if T(v)(v) - 0 for all v<=i4 and t> <s Secf. 

Denote by (Secf) / 0 < r ) (or briefly by (Secf)/Q if it does not lead 
to confusion) the space of all /"-invariant cross—sections of f . 
(Secf) o is an Q°(W,.^)-module where F is the foliation having E as / <r> fo 
its tangent bundle [Q°(#„^) being the ring of ̂ -basic functions] . 

b 
One can prove (cf. [23]) that each invariant cross-section 

ve Secf with respect to a representation TzA > A(f) of a transitive 
Lie algebroid A is uniquely determined by the value at one of the 
points of M. 

2.4.2. Lemma. Let TzA >A{f) be a given representation of A on 
f. An element <p<=SecVkf* determines a k-linear homomorphism 
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£>:fx. . .xf > \R by the formula* p(v ,v ) = <<p*v v . . . w >. We 
k N 1 ~ k 1 

have that <p is V T -invariant if and only if p is Horn (D-invariant 
Proof. Follows directly from 2.2-3 and the definitions- • 
2.4.3. lemma. Let TzA >A(f) be a given representation of A on 

f. Let r c5ecV k f and r € 5ecV lf be V k I - and ylT-invariant 
1 2 

cross-sections, respectively. Then the symmetric product 
r v r € 5ecV k + l f is V k + l 7*- invariant. 

1 2 
Proof. Follows trivially from the equality 
( V k + l D(v ) ( r v r ) = (V k D(v ) ( r )x,r (x) + r (x)v(V l D(v)(r ) 

1 2 1 2 1 2 for v € i4 5 X€ Af; which can easily be checked by considering simple |x 
tensors r = t> v...vi; , r = i>> v. . .v^ , t> <= 5ecf, only. • 

1 1 k* 2 k+l k+l* L 
2.4.4. Theorem. Let J4 be any regular Lie algebroid over (M9E)9 and 

f any vector bundle over W, whereas* f :(M ' ,E ' ) • (M,E) - any morphism 
of the category For a representation TzA >4 ( f ) , the linear 
mapping f :Secf • Secf f, v » *v>»f, can be restricted to the 
spaces of cross-sections invariant under T and f 7", respectivelyz 

f * o : ( S e c f ) / 0 ( r > • ( S e c f * f ) / 0 < f l , r ) . 

Proof. Let i> € (5ecf) 0 and (v5w) € f^d. Then 
Jf*7"( v,w) (2̂ 0/") = c^of^T(v9w){uof) 
= c f(v,n^))(^of) = r(uO(t>) = 0 . • 
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3. CONNECTIONS IN REGULAR LIE ALGEBROIDS 

In this chapter we fix a regular Lie algebroid (1) over 
with the Atiyah sequence (2). 

3.1. Connections, curvature and partial exterior covariant 
derivatives. 

3.1.1. Definitions. By a connection in A we mean a homomorphism of 
vector bundles \z E • A such that id^. The uniquely determined 
homomorphism o>: A •g such that oo|g = id and co|J/n\=0 is called the 
connection form of \. The projection HzA • A onto the second 
component with respect to the decomposition i4=geC, C:= Im\9 is the 
horizontal projection. By the curvature tensor of a connection A. we 

2 shall mean the form Q e O (W;g) defined by b E 
n.(X ,X ) = - wUXoX ,\°X I ) , X. eSecE, 
b 1 2 1 2 i 

or, equivalently, by 
0^(X ,X ) = XoCX ,X 3 ~IIXoX ,\oX 11 , X. eSecE. (9) 

O 1 2 1 2 1 2 I 
A given connection X in A determines the so—called partial 

exterior covariant derivative V:Q^(tf;g) • 0^(M;g) by the formula 
(V©) (X ,...,X, ) = E (-DjIU°x.,0(X xi ) B 

° " k j=o j o k 

+ E.(~l)l+Jo(CX.,X.],Xo?...t...?...,Xk), 

X^SecE, for 0€Q k(W,g). Without difficulties we assert that 
for v> <s 5ecg and 0<EO^(M); besides, the linear operator 
V|5ecg:Secg •^(W;g) i s a partial covariant derivative (in the 
sense of [11], compare [13], [14]). 

3.1.2. Proposition. (1) If <p:gx...xg • K is- a Hom(adA) 
-invariant k~linear homomorphism, then, for B. <z CL^1 (Mis) > w e have 
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of ( ^ ( e t , . . . , e k ) ) = E (-i ) q i + "- + q t - i^(0 i 5 . . . ,ve. ?...,0 k). 

(2) =0 (The Bianchi identity). 
Proof. (1): We begin with the following lemma: 
3.1.3. Lemma. For a Horn (ad^)-invariant k-linear homomorphism 

f : g x . . . x g • K and i> <s Secg, we have 
cf(<p{v±*-••j^k) ) = J]^(vi,...,7i;.,...,vk). 

Proof of the lemma. According to definitions 2-2.2 and 2.4.1, we 
have, for X<£ SecE, 

d E ( ^ ( ^ , . . . , v k ) ) (X) = Xlplv±9...9vk)) 

= (ro\oX) (*>(i; ) 
1 k 

; 1 acf.oXoX t k 
I A 

= E ^ 1 ? . - - . - (Vu>.) (X) ,...,̂ k) 
= E^(^1?---5V^i,...,^k) (X). • 

To continue the proof of our Proposition, we notice that since 
both sides of the examined equality are tR-linear with respect to each 
0. , and each g-valued form 0 is (locally) a linear combination of forms 
U'G where z-> € Secg and 0 is a real form, therefore it is sufficient to 
show the equality for 0 = , v <s Secg, 0. €Q q ^(W). From the 
lemma above and (10) we obtain 

- cf (<P(l>> R))A0 /N.../N8, + (p( l> , ... „ 2̂  ) '<f (0 y\...y\0X ) 
1" " k l k l ' k 1 k 

+ <p{i>9v ) • E (-i)qi+,'"+qt"16'i/N...^dEai^.../Nek 

+ E (-i)qi+"-+q^-^^( v e ....,v. -<fe.t...,v-e) 

= £ (-l)<,i + '"+qi-»» ,...,7v.^0.+v. ...,v.-©. ) 
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1=1 * 1 i t L k k 

(2): From the definitions, equality (9) and the Jacobi identity 
in SecE we obtain: 

VQ (X 9X -X > 
b o i 2 

= II\.X ,n (X ,X,)I -lU-X .n.(X ,X )D +tt\-X ,o.(X ,X )1 
o b l 2 1 b o 2 2 b o i 

-n.(CX ,X ],X ) + n ( C X ,X 3,X ) - 0.(CX-X.],X ) 
b o l 2 b o 2 1 b l 2 o 

= i x . x ,x»cx , x 3 -iix»x ,x»x m -tt\oX ,xo [ x , x , ] - i \ » x , \ » x ID 
o 1 2 1' 2 1' o 2 o 2 

+ I\»X -\»EX ,X 3 - IU«X ,X°XJI -XoCCX ,X J,X,] + IIX«CX ,XJ,X-X B 
2 O l O l 0 1 2 O l 2 

+ X<.[[X ,XD,XD-lXoCX ,X D,\»X 1 -X-CCX ,X ,3,X D + ttX<>CX ,XJ ,X°X I 
o 2 1 o 2 " 1 1 2 o 1 2 O 

= 0. • 
3.2. Inverse—image of a connection. 
3.2.1. Definition. Let ,\ be a connection in /3. Take a morphism 

fz(M'nE') • (MnE) of the category $ (see chapter 0) . By the 
in verse-image of X over /* we mean the connection X in the inverse—image 
of A over f, (4), defined by X ( v ) = ( v , X ( / ^ ( v ) ) ) , V<EE ' . 

Notice the commuting of the diagram 
^ P r 2 

f~A U A 

E F — > E 

and the equality X <>X= (X? X of oX) for X ^ 5 e c E ' . The connection form of 
X is cozf^A >f*3* ( v , w) h — * co( w) , where oo is such a form for X. 

3.2.2. Proposition. Let X be a connection in A, and 0 L - its 
curvature tensor. Then O , the curvature tensor of the inverse-image X 
of X over f, is equal to Ct(X9Y) = (/" Q ) ( X , n , X, y<=5ecE'. 

D D 
Proof. We start with the following 
3.2.3. Lemma. (1) For X<sSecE', we have (X,X . f ̂ -X) < Secf"/. 
(2) For X, Y e 5ecE ' , ve have 
liX9\*f„*X),iY9\*f„*Yn = (CX,y]),Xojr^0[X,Y] - ( f"o b)(X,r)), 

Proof of the Lemma. (1) is evident. To prove (2) we establish the 
equality in some neighbourhood of an arbitrary point A-cM'. For the 
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purpose, take any commuting vector fields ïrl,...,yn € SeC(E) being a 
local basis in some neighbourhood U of yz^fix). Then, on 
U'z- f^LUl <= M', we may write 

for some g" , h} € Q°( M) . Therefore, by (9), 

II ( X , \ « / »X> , iYt\of 0Y)litt. 

i J . . 
= (CX,n, E g •h i ' ï \ o y i , \ o y j ] | of +£X(h J) -XoyJof-EyCg 1) -Xo^of) 

= ( C X , n , ~ T.g-'hj'QAY\Yj)of + £X( h V x * r j *f - E ^ g V ^ o f ) , 

= (tx,n,- ( f V ) ( X , n + £X(hj) •xor jo / --E> r (g i ) • ^ ' ' • n . . 

It remains to prove that 

( i V i i x , n ) | y , = x : x ( h j ) - y j o f - p ( S r i ) -Y^n^.. 

Let a € Q ° ( W ) ; then ( f »X) ( a) i t . = X(aof ) = ( E g '^(a) » f >„,., 

analogously - for Y ̂  so, 

f^oCX, n(a) | t /,= [ X , n ( a . / ) | v , 

= ( X ( y ( a°0) - rtX(a.f 

= ( X ( £ h J T j ( a ) o f ) - n ï ^ ^ a l . f ) ) ^ , 

= (£X(h j ) - y j ( a ) of - ç y ^ S - y L ( « ) -f 

because 

(£h j-X( yj(ot) ) - E g l y ( y l ( « ) o f ) ) 
J L 

= ( E h J ( f ^ o X ) ( y j a ) - E g - t f ^ m / a ) ) ^ , 

= ( Z higx-Y\Yia) of - E g i h j y j ( y t o < ) of ) 

= E. h'g--LY\Y'l{o) of 

= 0 .o 

Proof of the proposition. Let X j / ^ S e c E ' and By the 

lemma above, we have 

OJX,Y)(x) = - w ( ï \ o X , \ o y l ) (jr) 

= - w( I I (X , \o f o X ) , ( y , \ o f »y)]J)(x) 
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= - co( ( C X , n , X - f ^ - C X , n - ( /*n f a ) (X,7) ) ) (*) 

= - « , ( ( X o f o[X, Yl - (f*Qu)(X,Y))lx)) 
fix) * b 

= ( / * n . ) ( X , n<x). • 

3.2.4. Proposition. Let H: A' >A be an arbitrary homomorphism 

( say, over /*:(#',£') • (M«E) ) of regular Lie algebroids. Let 
\z E • A and X ' : E ' • A' be connections in A and A', respectively* 

such that Ho\' = \ of ; then the curvature tensors ft and CV of X and 
# b b 

X', respectively, are related to each other via 
( f * a ) = H+ (o; ), xeM*. 

b x I x bx 

Proof. Represent canonically H in the form of superposition (5). 
Let X be the inverse-image of X over f and denote by O the curvature 
tensor of X- Consider the following diagram 

f /r H{ x 1 
9| x * 9|/<x> 9|/<x> 

h'bx K , f < w , 
1 1 f*x

xf*x

 1 

E' xE* = E' xE1 - ?U E , xE . 
|X | X | X | X \ f ( X ) I fix) . 

By 3.2.2, we have the commutativity of the right square. Thus the 

proposition reduces to the case of a strong homomorphism, say, 

Hi A' >A~'z 

o.( X» Y) =-w ( t t \ » X ,Xoy i ) =-w(Œ/7oX'oX,//oX'oyll ) 
Jb 

= - w.HoE\'oX,\'oiTI = - / / * • « ' ! [ \ ' » X , X ' « m = H*Ci'AX,Y). m 

27 





4. THE CHERN-WEIL HOMOMORPHISM OF A REGULAR LIE ALGEBROID 

4-1. Definition of the homomorphism. L e t ( 1 ) be an arbitrary but 
fixed regular Lie algebr o i d over (ff9 E) <= $ and let ( 2 ) be its Ati y a h 
s e q u e n c e . Assume also that a connection X in A is g i v e n , and that 
O b € Q ^ ( W ; g ) is its curvat u r e tensor. Let us fix a point xeM. By the 

k -̂O 2k * c o m m u t a t i v i t y of the alg e b r a & A E , there exists [ 8 , p . 1 9 2 ] exactly I x 
one homomorphism of alg e b r a s 

X x =Vg • e A E 
<A,\\x 1 X I X 

such that x v ( 1 ) = 1 and x . ( D = < r , Q > , r <s V * g * = g * . 

4.1.1. Lemma. x . ( r) = -i - ^ r , ^ } v . . . v O > for r € V k g * . 
k t i me s 

Proof. Define auxiliarily a mapping 

ft :<8>g* >k&°/fkE* , r i • < r , n <8>...<8>Q >, for r € & g * . 
x | x I x bx bx • I x 

Thanks to the simplicity of the nature of the duality 
<8>ĝ  x <8> g^ • \R (see [ 8 3 ) , we state (analogously as in Lemma III 
in [ 9 , p . 2 6 1 3 ) that ft is a homomorphism of al g e b r a s . Take the canonical 

# x # 
projection 7i : ® g • Vg , w <8>...<2>w I v...vi/ . The following 

x | x I x' 1 k 1 k 
diagram 

* k>0A2k,-,* 
<g>g > & A E 

| x I X 
" j / < : 

• ^(/l ,X) ,x 
V g * X 

c o m m u t e s , w h i c h can easily be seen by checking on simple tensors 
w <8>. ..®w <E & g * . Let * : V g * • <8> g * denote a mapping defined by 

1 k | x x | x | x 
n (v v...w ) = — Tw <8>...<8>iv . Then n on = id and ( see [8, 

x 1 k k ! *"* cr<i> <r<k> x x v 

* k * 

p p . 9 1 , 1 9 3 3 ) , f o r T ^ V g and u € g ^ , 

T h e r e f o r e 
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x , ( r ) = * , (n <>« r ) = f? (« r ) = <* T,Q <8>...<8>Q >, 
(A,\),x <A,\y,x x x xx x bx bx 

so, for V <S E , 
L |X 
- # x ( D ( v A . . . A V , ) = <« ( D , Q , «>...<8>Of ( v A . . .AV , ) > 

</i,X>,x 1 2k x bx bx 1 2k = ^r'<rn Q T v. ..vOt > ( V A. ..AV , ). • k l bx bx 1 2k 
Fix an integer /c>0. The family of homomorphisms 

~ k k # 2k # y :V g •A E , x«stf , gives rise to a strong homomorphism (AfX\x | x | x * * 
~ k k * 2k # 

of vector bundles x : V g •A E and, by the Lemma above, we 
have the equality 

Xk °r = l - -<r ,0 v...vO > ^(AX) k ! ' b b 
k # ~ k CO for r € 5ecV g , from which we obtain that x is a C homomorphism ( A, A > 

of vector bundles. The homomorphism of O (M)-moduli 

< A, A > £* £" 
induced on the cross—sections, is, of course, a homomorphism of 
algebras. 

The adjoint representation ad gives rise to a representation 
k N k # ^ k * 

V ad of ̂  on V g , see 2.2. Denote by (5ecV g ) 0 the space of A k N k # 7 invariant (under V ad ) cross-sections of V g and restrict x to 
invariant cross-sections to obtain 

X , o : k&°(5ecV kg*) 0 • O (M) . 
According to 2.4.3 k&°( 5ecV kg*) / 0 forms an algebra. 
4.1.3. Proposition. The forms from the image of *<AX>/° <are 

closed. 

Proof. Let r<e (5ecV k g*) Q- Then, by 2.4.2 and 3.1.2, 
/ ( W ! r ) 1 = i f r - d " ( < r ' ° f c - - V ) = i f r ^ ( f V f V - - < V ) 

J v y ' 
j - 1 It me s 

Define the superposition 
h 4 : kl» 0(SecVV) . *<"-*>-'* > Kercf > H (Af). 
<A,\) ^ I E 

4 . 2 . The functoriality of the homomorphism ft . Let Hz A' » A 
be an arbitrary homomorphism (say, over /:(#',£') •(#,£)) of 
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regular Lie algebroids- Define the pullback 
u+* kl0 o wk * k£o^ wk ,* . 
H : é 5ecV g • é 5ecV g' by the formula: 

<(//**(P)) , v v/.-.vv > = < r , ( v ( v )>, X € W , v. <sg'. 
x 1 k fixr | x l |x k * t l x 

It is easy to see that H+* is a homomorphism of algebras. 

4.2-1. Proposition. The pullback H** imps invariant cross-sections 

into invariant ones. 

Proof m Represent H in the form of superposition (5) and notice 

that D = ( ) * ( D ) ; therefore we see that it is enough to 

consider two cases: (a) a strong homomorphism and, (b) the canonical 

homomorphism x* see 1.1.5. 

(a) Consider the case of a strong homomorphism HzA' • A of 
k * 

regular Lie algebroids (both over (W , E ) ) . Let T € ( 5ecV g ) / 0 . For 

Ç € 5ec>4', cr € 5ecg', 
( r ' o f ) < ^ r , o ' v. . .vc > = ir°HoÇ )<r,7/+o<r v...v//+o<r > 

1 k 1 k 
= E<T, f/+°cr s/...vW+o|I ç „<rj v...vH+°cr > f-* * i t k 

I 
= E<H+ F, CT N/...vtt Ç , <T II V...VCT > . 

. i v k 
t 

(b) Consider the canonical homomorphism #:f^A • A. Identify 

f *( Vkg*) ̂ V k(f*g)*. Then ( x + ) * r = f * r and, applying 2.3.2 and 2.3.3, 

we get 
f*(V kad N) = v V a d " = V k ad* -

/1 A f A 
Our assertion now follows from 2.4.4. • 

4 . 2 . 2 . Theorem [The functoriality property ). Let HzA' >A be a 

homomorphism ( say, over fz ( W, E' ) • ( W,E) ) of rega2ar Lie 

algebroids. Then, for arbitrarily taken connections \ ' and A. in A' and 
A, respectively, such that H*\' = \°f„ * the following diagram 

commutesz 

k ! 0 ( S e c V V ) . *1±±±1 > HIM) 

H+* F 

kè°(SecVV*) „ > > H.(M') 
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Proof. Of course, it is enough to prove the commutativity of the 

following diagram: 

k l> 0(5ecV kg*) > Q ( M ) 

kl°(5ecV kg'*) C1E,(M') . 

Let Q be the curvature tensor of X . Take r<=5ecVkg*. By 3.2.4, we 
b 

have, for x€ M' and v. e E ' , * L |x ' 

= n - - < r ' ° b v " - v Q b > ( f ( x ) ; f * ( V i ) ^ - - / v f * ( V 2 k , )  

= i T - < r / c x , ' 0 ^ - - - v n b ( / ' ( j r ) S ^ ( V i ) - " ^ ( v » k ) ) > 

k! /<x> , k *" ̂  fc * <r<±> * <r<2> 

b # <r<2k-l> # cr<2k> 

k! /(x)' k *•* ̂  |x b <r<l> <r<2) 2 or 
(Q' (x ;v f A V ) ) > 

\x b cr(2k-l> <r<2k> 
= ̂ T'<H+XiD ,^7-''Esgn<r'Q'Ax;v A V )V...VO'(X;V , A V )> k! x' k ̂  ^ b or(l> <r<2> b <r(2k-l> cr<2k> 2 
= •£-r'<H**{r) , ( f i y.,vO ' ) ( ^ ; v A...AV 1)> k ! x b b 1 2k 

(A ,A ) 1 2k 

4.3- The independence on the choice of a connection. 

4.3.1. Theorem. Let (1) be an arbitrary regular Lie algebroid over 
(Af,£). Then, the homomorphism h<AfX}

 is independent of the choice of a 
connection X. 

Proof. Let X :£ > A9 ¿ = 0,1, be two arbitrarily taken 
i 

connections in i4 and let o> z A • g be their connection forms. Take 
i 

the regular Lie algebroid T\R x A over (Rxtf,7TRxE) [24] being the 

product of the trivial Lie algebroid T\R with A and take in it the 

connection form co: TR x £ •O x g defined by 
co, (v,w) = (0,co (uO -(1 - t) + co (w)*t). 
<i,x> Ox lx 

The following 
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Gz 7TR x A • A9 F zA • 7TR x A9 

(v9w) i • w w i • i$^9w) 

(O is- the null tangent vector at t<sR), t<sR, are homomorphisms of 

regular ' Lie al g e b r o i d s over pr^z (RxW, ITRxE) • (#,£) and 

Jtz(M9E) >(RxAf, IRxE) ( JHT I >it9x))9 respectively- Notice the equality 

woF. = F % o ) . , ¿ = 0 , 1 . Let X : J I R x E > T\R x A be the connection in 

TTRx^, corresponding to co. We see that \ o 7 = F o\ . Functoriality 

property 4.2.2 yields the commutativity of the diagram for ¿ = 0 , 1 : 

© (SecV (Oxg) ) 0 • W (RxM) 

•'i . . . . . 1 * 

k & ° ( 5 e c V k g * ) / 0 - • fy/*) . 

C o n s i d e r the homotopy //= ¿6? joining 7 to j . Since 

W: (R x W, ITR x E) • ( R x W J R x f ) is a morphism of the category 

therefore H implies the equality f-f [hzCt* (IRxtf) —tcf^lM) 
1 

defined by ( h&) ( v . . A V ) = fs ( — A V A...AV )dt is a 
1 q - l J <*,x> <? * i q-1 

o ^ ^ 

cochain homotopy o p e r a t o r , i.e. the condition j — j 

hol d s , c f . [ 2 8 ] ) . From the fact that G*F = id^ ¿ = 0 , 1 , we have 
F. °G = id. 

t 

T h e r e f o r e 

, , .-.+ * # , ~+* 

<i4,A0> </t,X0> t -'O <TRX/1,X> 
= 7 0 n v 0(7 — n . • 

-'l (TRXjiX) (AXj) 

The theorem just proved means that the examined homomorphism 

h i s , in f a c t , a characteristic feature of the regular Lie 
<A,\) 

a l g e b r o i d A and jus t i f i e s its being denoted by h . It will be called 

(traditionally) the Chern-Weil homomorphism of A9 w h e r e a s its image 

Imh <zH iM) will be called the Pontryagin algebra of A and denoted by 

PontA. C l e a r l y , 

h ( D = [ — -<r,QLv<...vO >] if r«s(5ecV kg*) - , ( 1 1 ) 
A k ! b b I 

where O is the cur v a t u r e tensor of any connection in A* As a simple 
b 

corollary from Theorem 4 . 3 . 1 we obtain 
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4.3.2. Corollary. If the Chern-Weil homomorphism hA of a regular 
Lie algebroid A is nontrivial (i.e. then there exists no flat 
connection in A- • 

In the nearest chapter we compare this homomorphism with the 
well-known homomorphism for principal bundles, whereas in the next ones 
we examine this homomorphism more precisely for Lie algebroids called 
into existence by other objects such as TC—foliations or nonclosed Lie 
subgroups -
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5. COMPARISON WITH PRINCIPAL BUNDLES. 

5.1. The Lie algebroid of a principal bundle [16], [19], [23]. Let 
us fix a G-principal bundle P = (P,TT,tf,G, • ). By a Lie algebroid A(P) of 
a P we mean a transitive Lie algebroid (A(P) ,11 • ,-II ,r) an a manifold M, 
in which A(P) = TP/G (i.e. the vectors v and (P ) v, v <s TP, are 
identified for each a<sG), ̂  ([ v]) = rr (v), v«sTP, where [v] denotes 
the equivalence class of v, and the bracket is constructed on the basis 
of the following observation (see [16] [19]): For each cross-section 
77 € SecA(P), there exists exactly one C°° right-invariant vector field 
T)'<= X ( P ) such that [77' (z) ] = T}{nz), and the mapping 
SecA(P) • X (P), r;i > 77', is an isomorphism of Q (M)-modules. The 
bracket 1? ,77]] for 77 <s SecA(P) is defined in such a way that 
II? ,77!!' = [£ ' ,77']. [The Lie algebroid of a principal bundle can also be 
constructed in some other ways [16], [19]]. 

The Lie algebra bundle g adjoint of A(P) is canonical ly isomorphic 
to the Ai-associated Lie algebra bundle Px 9 (9 denotes the right ! 

G ^ 
Lie algebra of G) via r:Px 9 > g, (z,v)1 >z(v), where 

J G 
Z'.Q >g , vi >UA ) (v)], x:=nlz), (12) 

|X Z *G 
is an isomorphism of Lie algebras, A iG • P, ai • z*a (see [16], 
[19]). Notice that 

(za)^ = z°Ad (a), z^P, a<EG-
G 

Let (P',rc',M,G', •') and (P,TT,tf,G, • ) be two principal bundles (on 
the same manifold W) and f^izC • G — a homomorphism of Lie groups. By 
a (fj-)homomorphism of principal bundles 

F:(P',rz',W,G',-') • (P,rc,W,G,-> 
we shall mean a mapping F:P' •P such that nop = 77' and 
F(z-'a) = P(z) *^(a), zeP', a<EG'. F determines a homomorphism of Lie 
algebroids dFiA{P') >A(P), [v] 1 >LF„lv)l (see [16], [19]). 

5.2. The Lie algebroid of a principal bundle of repers. With a 
vector bundle f we associate the Lie algebroid A{f), see 1.2. Of 
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course, with f we can also associate the Lie algebroid A{Lf) of the 
principal bundle Lf of repers of f - Both of them are isomorphic [23] 
which can be proved by considerably simpler means than those of 
Km Mackenzie [23]. We begin by giving some simple 

5.2.1. Example. For the right Lie algebra 7" (GL{V)) of the Lie 
id 

group GL{V)n V being any finite dimensional \R-vector space, the 
following linear homomorphism 

p : I .(GUV)) > EndV9 v\ M v i >v(w))9 

V id 
where wzGL(V) • V9 ai »a (w), is an isomorphism of Lie algebras 
provided that EndV is equipped with the canonical Lie algebra 
structure [Z,Z]: = Zo2 —Z ©J « Of course, thanks to the fact that 

1 2 1 2 2 1 
GLiV) can be considered as an open subset of EndV, we have the 
canonical identification cz T. XGLiV))—EndV - Then, p =-id. 

id V 
5.2.2. Now, we apply this idea to vector bundles. Let f be any 

vector bundle over M with the typical fibre V and let Lf be the 
GLiV)-principal bundle of all repers of f interpreted as linear 
isomorphisms V—f , x M - For a cross—section i> <E Secfdefine 
the C mapping 

uzLf >V9 ui • if^Wrcu)). (13) 
It is easy to see that, for £ <s SecA(Lf) and v <s 5ecf, 

Av)zM >f9 x\ >U(?'(D))f U€ (Lf) , 
is a correctly defined C°° cross-section of f. By a simple calculation 
we assert that 

(i°) = j f + ( y o ? ) ( / - ) - v , f €0°(W), which means that 
<£^:Secf > 5ecf is a covariant differential operator* [23], 

(ili°) Jf „ = ^ oj? -£> oj? . 
* * i? K 

By (i°), £ can be interpreted as a C°° cross-section of Aif) with 
qoX^yoZ. see 1.2, and, by (ii°), SecA(Lf) >SecA{f)9 £i • J? , 
is a Q°(W)-homomorphism. Therefore we see the existence and the 
uniqueness of a homomorphism of vector bundles 

* :4(Lf) >Aif) 

such that is the cross—section of Aif) corresponding to a 
covariant differential operator £ . By (iii°), $ is a homomorphism of 
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Lie algebroids. is defined by the formula: 
$f([v])(^) = u(v(£))? where v<s TJLLf), U€ L f . 

5.2.3. Proposition. $̂  is an isomorphism of transitive Lie 
algebroids. 

Proof. Look at the homomorphism of associated Atiyah sequences 
induced by By the 5-Lemma, it is clear that it suffices to see that 
$^:g • Endf is an isomorphism of vector bundles (g being the 
adjoint Lie algebra bundle of i4(Lf)). For the purpose, take x^M9 

u<= (Lf) and notice the commutativi ty of the diagram 

g — £ n d ( f ) u^aou 1 

I x |x 

T. XGLiV)) —£—• End(K) a . • 
id 

5.3. Representations of principal bundles an vector bundles. Let f 
be any fixed vector bundle over M9 with a vector space V as a typical 
fibre. Denote by Lf the GLiV )-principal bundle of all repers 
zzV — ^ f , Af. 

|x" 
5.3.1. Definition. Let /JzG • GL(K) be a homomorphism of Lie 

groups. By a JJ-re presentation of a principal bundle iP9n9M9G9') on f we 
mean a /j-homomorphism of principal bundles 

FzP • L f . (14) 
5.3.2. Examples, (a). By the adjoint representation of P we mean 

the Ad^ -representation 
Ad zP • Lg, z i • z , 
/> 

where z is defined by (12). 
(b). The contragredient representation of (14) is 

F N zP • L ( f * ) , z i > ( F ( z ) ~ V . 

(c). The symmetric product of (14) is 
V k F : P • L ( V k f ) , z« >V k F(z) . 

5.4. Differential of a representation. 
5.4.1. Definition. By the differential of a representation 

37 



FiP • L f we mean the representation F'iA(P) • A(f) defined as the 
superposition F' = 

5.4.2. Example. Consider a Lie group G as a G-principal bundle. 
Its Lie algebroid A(G) (on a one-point manifold) can be cananically 
identified with the right Lie algebra g of G (see [19]) via the 
isomorphism 

<p-(piA{G) • 9 , [v] i >S*(v), 
G 

where <S> denotes the canonical right-invariant 1—form an G. Therefore 
([ Vnwll = [v, w] ([*,'] is the right Lie algebra structure on 9 ) . The 
Atiyah sequence of A(G) equals 

0 > 9 = 9 • 0 > 0 

( 9 is treated here as a vector bundle over a one-point manifold), 
whereas the principal bundle L 9 of repers of the vector bundle 9 is the 
same as the Lie group GL(9) of all automorphisms of the vector space 9 . 
Besides, the following two isomorphisms 

MGUQ)) = MLQ) — ^ A(Q) = 9 * ®9 = Endg. 
and 

P 9 
id 

ar-e identical (which is not difficult to prove). Also, after the 
identifications A(G) ^ 9 and A(GL(Q)) = T.JGLiQ)), the adjoint 

id 
representation Ad of the principal bundle G is simply the adjoint 

G 
representation of the Lie group G. Therefore d(Ad ) = (Ad ) 

G G #G 
Seeing the following commuting diagram 

(Ad ) c 
9 - ^ T.AGL(Q)) ^ Endg 

id 
\ (Ad )' $ S N f 9 -id 

N. C 9 N. 

i4(g) ^ E n d g 

and recalling that {c°{Ad ) ) (v) (̂ ) = [ v,wlL ([-,•]* is the left Lie 
G * G ^ 

algebra structure on 9 ) , we assert that, for v, w<= 9 , 

(Ad)'(v)(w) =~(Ad)„ (v)(w) =-LvnWlL 

G G #e 
~lv,w] = II v,wH = ad (v){w)n 

A<G> 
which means that (Ad )' = ad 
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5.4.3. Theorem, (a) iAd ) ' = a d 
(b) (F ) ' = ( F ' T 1 r . 

^ f o r any representation (14). 
(c) ( V k F ) ' = V k(F') J 
We start with the following 

5.4.4. Lemma. L e t yzlIxV • p^Wl be a local trivialization of 

a vector bundle f (with V as a typical fibre). For v<zSecf, denote by 

the function U^x\ • ̂ x ^ x * e V m T^ien ^ e n&PPIN9 

yzTUxEndV >A(f\w * 

such that y(v,a)(v) =yj iviv ) + a ( v ix))) when v <s T U and aeEndV. 
|x \p ip X 

is an isomorphism of Lie algebroids. 
Proof. It is immediate that y ( v , a ) is an f-vector with v as the 

anchor, which means that qoxp — pr^ First, we notice that y/ is a 
bijectian such that w zT U x EndV >Aif) is a linear 

|X X |x 
isomorphism. The fact that w is a monomorphism is clear. To see that 

|x 
it is an epimorphism, take an arbitrary Z^ Aif) and notice that the 

- i , x 

element w iliu)) — qiDiv ) of V depends only an the value of \x ^ y 
v <s Secf at x. Denote by aiu) the element where x> is a cross-section 
of f such that vix)=y (a), U«EK, Put a = ( u i • aiu)) c EndV. One 
can trivially assert that Y>(<y( Z) , a ) = Z. It remains to verify that 
Sec /̂ is a homomorphism of suitable Lie algebras. To this end, take 
X,Ye XiU) and cr, n e Q°iU;EndiV)) - For xe U and t>€ 5 e c f , we have 

l^o(X,oO,yo(y,77)]lx(i>) 
= (X ,<r ) ( y « < y , Y > ) ( v O > i T ) )(^*(X,<r)(v)) 

|X X X |x X X 
= V/ (X iYiv )+niv ))+cr (r (v )+r> (u> (x)))) 

|xv x ip ip x x ip x ip J 

- V (Y ( X ( ^ ) + c r ( v ) ) + r ) ( X )+<r ( J f ) ) ) ) 
|xv x y X X (/J X tfl 1 

= V ( C X , n (i> )+X x(r7)(^ (x)) - y x(c)(w U ) ) + |> ,rj ](v (*))) |X X 1̂  V * x x v * 
= ( ^ o ( [ X , n , J ? x ( T ? ) -J?y(cr) + [<r,i73)Mu) 

= (v^°II(X,cr),(y,77)]l) (v). a 
X 

Proof of theorem 5.4.3. (a): The case P = G was considered in 
Example 5.4.2. To prove (a) in all its generality, take an arbitrary 
local trivialization pzUxG • P- p determines a local 
trivialization <pAzTUxg >AiP), iv,w) i • L<p^iv,w)l9 of the Lie 
algebroid AiP), (see [19]), especially, a local trivialization 
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A A 
у: - <p^zU x Q > g, {Xnw) i ^ix^x^'! 1 erf the vector bundle g-
Next, according to the Lemma above, we obtain a local trivialization 
yzTU x EndQ > A{&) of the Lie algebroid Л (д ) . To prove that 
{Ad )'='ad , it is sufficient to show (taking account of the p АИРУ v 
classical equality (i4d̂ )' = ad^ ) that two following diagrams commute 
for any p z 

Ad ' ad 
AiP) > A(s) AiP) A i P * > A(s) 

TUxQ — — > j # ч > TUxEnds TUXQ —r-r— -r—-r—• TUxEnds idx(-Ad ') J dx(-ad ) С 9 
^d с 

in which ,4d % 7 (GLQ) = Endg fc as in Example 5.4.2). For 
G id K J 

the purpose, take x> € 5ec g, v <s Г ¿7, w<s Q and notice that 
X 

£>(x,e) , whereas г>°Adp°(pzU x G *Q is given by 
v° Ad^op{x,a) =1^(^>(х,а)/ч) = vi<pix,e)*<>Adca) - Ad^ia±)ii^^ix)) 

= и (x)~(Ad a). 
ц> G 

Therefore (^de)*o^(v,^)(^) =$ *diAd )<[> (v,^)])(i;) " 3 P * = Ф ([^.„(ю (v,w))])(b») = у/ ((Ad op) (v,v)b)) g * |x p # 
= v ((v,w)(^o^d o^)) = у/ (v(i^ )+w(v {x)~°Ad (•))) 

|x /> \x ц> у G 
= v )+p (A* (JT))) = у (va> )-Ad 'iw)iv (x))) 

\x Ц) 9 G* ц> \x Ц) G ц> 

= у° (id x -/Id ') (v,w) iu). 
Since о (0,i> ) = г>>, we have, following the fact that <p is an 

isomorphism of Lie algebroids, that 
ad v.w) iu) = ̂ <pA( v9w) 

= tt^Cv,^),<px°(0,t> )D = «р* Шv,w),(0,v ) I 

= <pA {в *viv ) + [.w.v ix)f) = у/ (v(t> ) ~ L V , P (x)]£) 
I x X Ц) Ц) \x Ц) y> = V iviv )~adjw){v (x))) |x ip 9 у 

= v70 (id x-ad^) (v,w) (v). 
(b): Consider the identical representation id^ :Lf • Lf. Of 

course, $ zAiLf) >Aif) is its differential. First, we notice that 
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(1) FN =idN oF, 
(2) T - id ̂  r °T for any representation Z":,4 >A(f)9 in 

>i< f > * 
particular. (f) N = id" °(F'), 

n i,<f> 

(3) (id' ) =(id )' or, equivalently, 
L f L f 

(1) and (2) follow directly from the definitions. 
(3): Let <p«sSecf*, \> e Secf, u«s (Lf) and v <E I ( L f ) . Then 

f * if x 
= <u_i*((id? ) (v)(£)),i; > 
= <v(<p°ict ),v»(u)>-

£ f 
Oh the other hand (for rc:Lf >M being the projection), 

<(id* r o$C[v\]))<f>),i> > 
/Kf> f x 

= (v)<^,y> ~ <£> ,§ ([v])i/> 
# X f 

= v(<^,v>ofT) - <f^ou,v(p)>. 
To end the proof of (3), notice that <<p, v> on = <<po id^ -x» and apply the 

. ^ f 
Leibniz formula for v<<p°id ,i>>. 

£ f 

From (i)-r(3) above we obtain 
( F V = $ od(FN) = $ od(idN °F) = idN <>$ odF 

= jdN oF = ( F ' ) N . 

(c): First, we notice that 
(1) VkF = (Vkid )oF, 

, v ^ 
(2) V r = ( V id )°I for any representation •^(f)? in 

. <̂f> . particular, V (F') = (V id ) o (F ' ) , 
(3) V (id' ) = (V id )', or equivalently, 

Z. f L f 
(Vkid )o$ = a k od(Vkidr ) . 

(i) and (2) follow directly by the definitions. 
(3): Let î. €5ecf, (Lf) , v € r ( L f ) . Then 

t |x" u 
§w. od(Vkid )(tv])(p v...vi; ) VKf £ f i K 
= Uv...vU((V id ) v...vi; ) ) 

~ wk = Uv.,.vU( V((l̂  v...vy ) oV id ) ) 1 k if = Uv...vU(v(^ v...vP)) 1 k 
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- U^...v/U(T]^ (u)v. . .vV(R)v. . .vy (u)) 1 t k t 
= v...vU(v(R))v...vy ) ix i kx 

i = v...vid °$ ([v])^.v...vV ) ~* lx /Kf> f t kx 
= (Vkid )o$ ([v])(î  ). 

/Kf> f l k 
From (l)-4-(3) above we obtain 
(VkF)' = $ yk f od( VkF) = 4^ od( (Vkidz f) oF) = $ yk f od(Vkid£ f) <>dF = (Vkid )o$ odF = (Vkid )oF'=Vk(F')- • i f f 
5.4.5. Problem. Prove part (a) of the above theorem immediately 

without using this fact for a single Lie group. 

5.5. Invariant cross-sections. 
5.5.1. Definition. Let (14) be any representation of a principal 

bundle P an f. A cross-section v € Secf will be called invariant (or, 
more precisely, F~ invariant) if there exists a vector v^V such that 
F(z)(v)~i> for all z <E P [ equivalently, if the function uoF is rtz v 

constant, where x> is defined by (13)). Denote by (Secf)^^ the space 
of all invariant (with respect to F) cross—sections of f. 

5.5.2. Proposition. Let (14) be a jj-representation of P on f. 
Denote by V the subspace of V of /J-invariant vectors (see [9,p.39]). 
Then, for V G V ^ the function 

i>^:M • f, x\ • Fiz)i v), 
where ze P , is a correctly defined C°° cross-section of f, and 

|x 
V • (Secf) , v i • x> , 
/ /<r> ' v 

is* an isomorphism of vector spaces, m 
5.5.3. Proposition. The spaces of invariant cross-sect ions 

(Secf) ^ and iSecf)^^,^ under a representation F:P > Lf and its 
differential F'iA(P) > Aif) are related by 

(a) (Secf) / < F > c (Secf) / 0 ( r, ), 
(b) if P is connected (nothing is assumed about the connectedness 

of C !), then (Secf) = (Secf) /o ( F, >-
Proof, (a). Let V€ (Secf) ; this means that v<>F is constant. 

Thus, for Iwl ̂  AiP) , w<= T P, we have 
Ix ' z ' 
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= * IFAw)l(v) = F(z){Flw){i>)) 

= .F(z)iw(voF)) = O. 
(b). Let v € (Secf this means that F'(v)(i^)=0 for 

all v<s ̂ (P). Let V€ T P, then 
ur(voF) =F^(^)(^) =P(z)"1($f(CP#(^)])(^)) 
= F(z)"1F'([>])(i;) =0. 

From the assumption about the connectedness of P it follows that i>*F is 
constant- • 

5.6. The Chern-Weil homomorphism. Consider the representation 
) induced by Ad on the -symmetric power of the dual G * G 

vector space Q . According to 5.3.2(b)(c), AdpzP • Lg determines the 
^d^-representation AcF ( :=VkadN):P • L(Vkg*). 5.4.3 yields that the 
c P * pJ 

differential of A<T is equal to ad^ (z^V^ad* )zA(P) >i4(Vkg*); 
therefore Propositions 5.5.2 and 5.5.3 give rise to a monamorphism of 
vector spaces 

i>>:(Vk9*) > » (SecVkg*) .» • v « 
where i> (x)=V (z ) iw), X€ W, z c P , and next, assert that >̂ is 
an isomorphism if P is connected. 

5.6.1. Theorem, (cf. [17], [19]). The Chern-Weil homomorphism hp 

of P and h^p^ of AiP) are related by the following commutative diagram 

A < P > 

(V9 ) 7 ' 
Proof. To see this, we only need to observe the equality 

n*(-i-<i> ,Q v..,vfl,» = -ir<^,Ov...v/Q> (15) k • W b b k I 
where O and O are, respectively: the curvature form of same connection 
H <zTP in P and the curvature tensor of the corresponding connection X 
in the Lie algebroid A(P) (H = (nA ) _ 1[7mX ] , z <s P, where 

V |Z I Z |7TZ 
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nAiTP > AiP) is the canonical projection). Doth sides of (15) are 
horizontal forms, so we must notice the equality on the horizontal 
vectors only. Let KzTM • AiP) be any connection in AiP) and let 
vZ € T P denote the horizontal lifting of v c T W- By the relationship 

z Ttz 
between O and Q, 

h 
Q , ( x ; v/Mv) = z ( Q ( z , v z ^ w z ) ) , z e P „ v9weTM* 

b * |x x ' 

we have, for we ( V k g * ) , Z € P and v. <eT W , 

/ t TTZ 

2 <r 

= ~<wf~-Y\sgn<r-{z~±)GtAxiv A V ) v . - . v ( z"" 1)n_ ( X ; V . ^ A V ) > k! ' k ^ ^ b <r<l> <r<2> b cr<2k-i> <r<2k> 2 cr 
= — < J V \ — ' V s a n c r - Q ( z ; v * A V Z ) V . . . V Q ( Z ; V Z , *vz , )> 

k! \»k ^ ^ ' <r<l> <r<2> ' <r<2k-±> cr<2k> 
= ^- r-<jv r,Qv...vO>(z; V Z A . . . A / ). • 

k ! i 2k 
5.6.2. Remark. In [19] it is proved that the Chern-Weil 

homomorphism of a principal bundle is an invariant of the so-called 
"local isomorphisms" between principal bundles, fulfilling an 
additional condition (the Ch-W property) which is satisfied, for 
example, in the case of principal bundles with connected structure Lie 
groups. By 5.6.1 above, we can assert more, namely, that the Chern-Weil 
homomorphism of a principal bundle is a characteristic feature of the 
Lie algebroid of this bundle provided only that it is connected. In 
consequence, the Chern-Weil homomorphism of a principal bundle is an 
invariant of all local isomorphisms between connected principal 
bundles. More precisely, we have: 

5.6.3. Proposition. Let <^:P' * P be a ZocaZ homomorphism of 

principal bundles (see [16], [19]). Assume that P' is connected. Then, 

for an arbitrary partial homomorphism FzP'^D^ >P belonging to $ 

and the corresponding local homomorphism ^ : G ' D D ^ • G of Lie 

groups, we have 

(1) V ( < ^ ) * [ ( V 9 * ) 7 ] c (Vg'*), and V ( * i > * : < V g * > 7 • < V 9 ' * > 7 is 

independent of the choice of F < = $ , 
( 2 ) the diagram 
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V(dM)* w (W) 
* dR 

( V 9 ) 7 ' ' 
commutes. 

Proof. Let dgzMP') >MP) be the homomorphism of Lie 
algebroids induced by Jf. By functoriality property 4-2-2, we obtain the 
commutative diagram 

h 

(V9 ) > > * (SecV g ) 0 • (M) 
I I dR 

( V 9 ' * ) k * ° ( 5 e C v V * > . >, ^ ( f f > . 

To end the proof, it is enough to check that 
V(djj)*-i>' 1 »(d$ ) + * °̂>- Let F be an arbitrary partial homomorphism 
belonging to $. Take x & U ̂ and z <E P^ - By the obvious equality 
F(z)^ °du — dF* °z, we have the commutative diagram Ix 

V k ( * ) * V k(dF* )* 
I x 

v V * v k < r V , v , g , * . 

Notice also that * ( D = V k (dF + ), and that x IX X k y*s—1 # f (x )=V (F ( z ) ) ( v ) - The result is now trivial: w 
v'^iid®*)*^ ) ) = Vkz*<>Vk(dF* )*oV k (F(z)"""V(uO =V k ( dM) # ( v ) . • 

W I x 

5.7. Remarks an the tangential Chern-Weil homomorphism. Let P be a 
connected tf-principal bundle on a manifold M9 and F <zTM a C°° constant 
dimensional involutive distribution- Let & denote the foliation of M 
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determined by F . We recall that the transitive Lie algebroid AiP) and 
the distribution F give rise to a regular Lie algebroid over (M9F) 
equalling A(P)r:= y^lFI <zAiP), see 1.1.3. 

By the tangential Chern-Weil homomorphism of P over the foliated 
manifold iM,^) we mean the Chern-Weil homomorphism 

h .:<&k(SecVkg*) o ^ _ > H AM) 

of the regular Lie algebroid A(P)F (g is the Lie algebra bundle adjoint 
of AiP)). 

h^p)F measures the nonexistence of a partial (over F ) flat 
connection in P 

In the case of P equalling to the G-principal bundle L f of 
G-repers of same G-vector bundle f (Gc GL(n,!R) , n^rank f ), the 
tangential Chern-Weil homomorphism measures the nonexistence of 
(suitable) flat partial covariant derivatives. 

Notice that the superposition 
h 

(Vg") ^ * k ( 5 e c V k g * ) , <= e k (5ecV k g* ) 0 / ^ r —*L> H AM) 
l /<acK > / (a.d AF> F 

A A 
(in which Az=A{L f)) agree for G = GL(n,R) with the homomorphism 
>• G J 

obtained by Moore and Schochet [28] to investigate vector bundles over 
foliated manifolds. However, the domain of our homomorphism h^ 
contains, in general, more elements. 

To further consideration of the matter, the author will devote an 
individual paper. 

In the end, we add that the generalizatim of the Bott Vanishing 
Theorem from [14] can be formulated in our language as follows: 

Let \F,F'} ( P c F c F M ) be a flag of foliations on M. If F=F ' e f , 
then Pon£{A{f)F) =0 for k>2-rankf. 

This theorem follows easily from the exisstence of a flat partial 
covariant derivative in f over F . 
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6. THE LIE ALGEBROID O F A TC-FOLIATION 

6.1. TC-foliatians. Basic properties [26], [27]. A foliation 01,3") 
is said to be transversal ly complete[TC~ foliation for short] (see 
P.Molino [26], [27]) if, at each point xe M, the family L (M,3?) of 

' c 
complete global ( J*'-)foliate vector fields generates the entire tangent space T M. x 

For an arbitrary TC-foliatian, we adopt the following notations: 
3? - the basic foliation, 
E, E, - the vector bundles tangent to 3? and 3? , respective 1 y, b b 
L , L - the leaves of 3? and 3? , respectively, passing x bx b 

through x «s M, 
riQ >M (Q=TM/E) - the transverse bundle, 
7T iM > W — the basic fibratian, 
b 

a: TM >Q - the canonical projection, 
X: — cx° X — the cross-section of Q corresponding to a (local) 

vector field X on M, 
101,3?) - the Lie algebra (and the Q°{W)-module, as well) of 

transverse fields. 
Recall that by a transverse field we mean a cross-section C € SecQ 

such that, in any simple distinguished open set U equipped with 
distinguished local coordinates (x1,..-,xp,y1,... ,yq) (p- dim3?, 
<7= codim3?), C is of the form C = £ bJ• — . for* the functions bJ 

constant on the plaques. If £ = X, then £ <s 101,3*) if and only if 
Xe 101,3?). 

Besides, the foliation 3? is simple and defined by a locally 
b 

trivial basic fibratian niH >W with a Hausdorff manifold W. 
b 

A fundamental role in the construction of the Lie algebroid of 
01,3?) is played by the following properties: 

6.1.1. If C ,v e 101,3?) and, for some xeM, Z(x)=v{x), then 
tiy)=v(y) forallyeLbx. 

6.1.2. Every foliate vector field X projects onto W, giving a 
vector field X , and the homomorphism of Lie algebras L(M,3?) • X(W), 
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Xi * Xw , factarizes bo a homomorphism of Lie algebras 
r'-UM.F) >X(W), Xt >X- The following equality holds: 

IXjon-Yl = Jorr .[XJ] + Y lF)-Y, f <=cf{W), X, У€L(W,У)-•' b b w 

6.2. Construction of the Lie algebroid of a TC-foliatian. Let 
(M,^) be an arbitrary TC-foliation. In the transverse bundle rzQ • M 
of (M,^) we introduce the equivalence relation " ̂  " as follows : 

For v, w € Q we put 

v^w o -Irr (rv) = nirw) and 3 f C (rv) = v and C = = " r ) r-

6.1.1 makes the following lemma obvious. 
6.2.1. Lemma. Take x and y lying on the same leaf of the basic 

foliation Then, for each vector v<zQ , there exists exactly one 
b |x 

vector w c Q such that v^w. The correspondence vi • w establishes 
a linear isomorphism °^ :0 ) x *®\y' s e e ^^9WRE LM M 

/ c*y - [ v\ > w) y 
(isomorphism) / 

V ̂  I — 

/ A W / 
/ 0 J ' \ / 

V 

v=C(x), w = K(y), C ̂  2(tf,̂ >. 
Figure 1. 

Clearly, two vectors v,w<zQ are in the equivalence relation ̂  if 
and only if they corresponds to each other via one of the isomorphisms 
oty. In the sequel, Cv] denotes the equivalence class of v and 
AiMf^yz — Qdenotes the set of all equivalence classes (with the 
quotient topology) and 

rzA{M,F) • W, [ v ] i • n . ( rv) , 
b 

the projection. 
Each fibre AiM,^) _:- r~±(x), x <z W, possesses a structure of a 

vector space, defined uniquely by demanding that for each i€ (x) 
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the cancnical bijection ft zQ • A(M,F) _ , v\ • [v], be a linear 
Ix |x |x 

isomorphism. The family ft , x<=M, determines the canonical 
projection ftzQ • A{M,f) being a homomorphism of vector bundles over 
the basic fibratian rr . We equip A(M,3?) with a structure of a C°° 
manifold as follows: For any x € W, we find (as a consequence of 6.1.1) 
its open neighbourhood U and transverse fields C >-.>C € UM,&*) which -l - 1 q 

are linearly independent an Uz = n LU1, and we put b 
pzfj x [Rq • F"1 tUl c A 

ix,a) i • CE^C 3, x <£ TT~ 1 (x). 
" ix b 

(p is a bijection such that ̂ >_:iRq —> AiM,^) _ is an isomorphism of 
X _ |x 

vector spaces. It is easy to see that r LU1 is open and <p is a 
hemeamorphism, see the following diagram: 

t/x R q r ^ t W c 0 (x,a) i • E ^ x 

Jrr^xid J/? 

iJx (Rq r^CiJ] c . 

In i4(M,^) there is exactly one C°° manifold structure (compatible with 
the topology) for which the <p's are diffeomorphisms. To see this, we 
must only notice that, for another tp' (defined an [/'xRq via 
C',...,C ^ ), ̂ r lof> is C 0 3. Clearly, for a point x <= U D U* 
there exists its neighbourhood U" <zU C\U* and functions € Q°(hO such that C =E/ J °rc C' on t/"s = Tr7±Ct7"3- Therefore we have i y t b j b 

p'^ofKx.a) = ( x , ( E^J ( x ) , . . . , E a F q ( x ) ) ) , xe 0", a€R q , 

which proves the smoothness of <p'~±o<p. Of course, FzAXM,^) >W is C°° 
and (AiM,-?) ,r,W) is a vector bundle with <p's as local trivializatians. 

The mapping 

r*MM,y) • TV, Cvli >t (v), 
b* 

is a correctly defined epimorphism of vector bundles. 
6.2.2. Proposition. (1) A cross-section C € SecQ is* a tran5ver5>s 

fie 2d if and only if there exists a cross-section % e SecAiM,^) such 
that the following diagram 
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j c T? u*>> 

M — > w 

commutes. Such a ? is at most one. 
(2) The correspondence C • • ? establishes an isomorphism of 

Cr(W)-modules 

czUM.F) • SecA(M,F), 

Proof. (1): Necessity is evident. 
Suf f iciency. Let £ e SecQ be a cross—section of Q for which there 

exists % e SecA{M,f) making diagram (16) commute. Equivalently, 
« y ( C ) = c 

xx y 
for any points x and y lying on the same leaf of To prove that C i s 

a transverse field, we first observe that if (x*,... ,x p ,y 1 , . . . ,]/q) are 
distinguished local coordinates in U, then, for any points x and y 
lying on the same plaque, we have , ^ , , i < q* Indeed, iM,^) 
is rC, therefore there exists a transverse field v € HM,^) such that 

<? k <? k 
x> = , . Locally on U, ^ ~ £ b • with the functions b constant 

x <?xMx k <?xk 

k k k k on plaques. Since b (x)=6 , therefore b {y) - 6 ; in consequence, i * L " 
p = ——. j , so, by the definition of the equivalence relation ^ , we 
have that — . ^ ~—. . 

<?yMx ayx'\y 
k <? 

Passing to the proof of sufficiency, write locally £ = £b * -
k <? yk 

Take x and y belonging to one of the plaques. We have, by the above, 
£ b k ( y ) - ~ . = C = o(y(C ) = oLyiZbkix)'~. , ) 

= Eb k^)*^ y(~ ui ) = Z^ix)-—, . k x <?yklx k ayMy k k 
Thus b ix) = b ( y ) , which confirms (1). 
(2): c is a monomorphism of 0°(¥)-modules, as is easy to check. 

The subjectivity follows from (1) and the observation indicating that, 
for a crass-section % <= SecMM^), there exists a cross-section 
C € SecQ making diagram (16) commute. • 

In SecA{M,F) we introduce the bracket (forming a Lie 
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algebra) by demanding that c be an isomorphism of Lie algebras, i.e. 

The system (^4(M,^) ,11 •, -I ,y) is a transitive Lie algebroid (over 
the basic manifold W ) , which is clear from 6 . 1 . 2 . It is called the Lie 

algebroid of the TC-foliation ( # , ^ ) . Let g = /Cer^ be the adjoint Lie 
algebra bundle of AiM,^). We have the following isomorphism of short 
exact sequences 

0 • • HM,&) XiV) • 0 
- } c + a j c II 

O • S e c g < • SecA{M,F) • X(W) • 0 . 

6.3. Connectians and the Chern-Weil homomorphism. Let (M,^) be an 
arbitrary r C-foliatian and iA(M,P) ,1 •,-I ,r) "~ its Lie algebroid. Notice 
that, for any xeM, the isomorphism ft iQ • AiM,^) _ maps 

|x \x \x 
Q' := E /E onto a , x:=rc, ( x ) . A connection X in AU1,P) I x b\x \x I x b ^ 

determines the so-called horizontal subbundle C : = 7 mX <z AiM,^) (i.e. 
the condition AiM,^) = g e C X holds), and next, the distribution 
C X c = r W on the manifold Af by C X := a " 1 ^ " 1 ^ J ] , x«s Af. 

| X |x |x 1X 
6.3.1. Lemma • The correspondence X i • C X es tabl ishes a 

bijection between connections in A(M,P) and distributions C aTM such 

that 

(1) £ n C = £, 
D 

( 2 ) EU + C = TM, 

(3) C | x = | x ( x ) ; L{M,F) nSecC^ for each point x<= Af. 

In particular, such a distribution C always exists (and is C°°). 

Proof. " 11 Let C = C X for some connection X. 
(1): ( E L n C ) = a ~ 1 [ / ? ~ i [ g _ n C X J ] = Ker ((f?oct) ) = £ -

b |x |x |x |x |x |x |x 
( 2 ) : ( £ + C ) = a " 1 [ ^ 1 C f l - + C ^ 1 1 = aT1 If**11AiM,F)-11 = T Af. 

b |x |x |x I x I x |x |x |x X 
(3): Let v € C . We have to find a foliate vector field X lying 

|x__ 
in the distribution C and such that X = v . For the purpose, take 

x x 

arbitrarily a cross-section ? € 5ec(C ) such that = [v], and next, 
the crass-section C « 5ec(? defined by C = / ? _ 1 ( ? ^ ) , y<s r T ^ y ) , y € [ / . 

X I y y " 

( is a transverse field, see Proposition 6 . 2 . 2 . Let £ = Y for a foliate 
vector field y. Then v - V € £ . Taking an arbitrary vector field 

X Ix 
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X<s XiF) such that X =v~Y , we obtain that X+Y*L{M,F)c\SecC 
X X 

and (X+ Y) = v. 
" "Let C <zTM be any distribution on Af satisfying (i) + (3). 

There exists a subbundle CczAiM,^) such that C_= /? oot [C ], _ _ Ix |x |x |x 
x€ rr" ( x ) , x € 1/. To see this, we only need to show the correctness of b 
this formula, i.e. the independence of the right—hand side of the 
choice of a point x « n"^ x) - In order to get this, it is sufficient to 

b 
notice the inclusion ß <>oc [C ] c ß <>a [C ] for x, yen" ( x ) . For 

_ Ix |x_ |x ly ly ly b _ 
C and X<e L(M,F) nSecC such that X = v, we have X <s C . Since 

_ |x x y ly 
X is a transverse field, according to the definition of the equivalence 
relation ^ in Q, we have [v] = CX 1 € ß °ot CC ]- C is easily seen to 

y ly ly ly 
be L and complementing g, thus, in consequence, determining same 

connection X for which trie property C X = C is obvious by the 

construction. • 

6.3.2. Definition, (a). A distribution C <c TM fulfilling (1) * (3) 

from Lemma 6.3.1 will be called a connection for the TC~foliation 

(Af,^). 
(b). If C = for a connection ,\ in AiMyF) and if co and O are 

b 
the connect ion form and the curvature tensor of X., respectively, then 

the tensors co€Oi(Af;0') O «s CtZ(M;Q') defined in such a way that 

the following diagrams 
T Af v I Afxr Af v 

x _ x x V _ 
\ X \ X 

i4 _ • 9 - - TJ/xTJ/ • g _ 
I x I X X x I X 

are commutative will be called the connection form and the curvature 
form of the connection C, respectively. 

co may be defined immediately in the following way: <o(v)=v^ 

( = a(v^)) if v = v^ + v^ is an arbitrary decomposi tian such that 

v € E. , v € C. 

i b 2 

Lemma 6.3.3 below gives an independent definition of O. Let C^cC 
be any complement of E (i.e. C = £ e C u ) . Of course, TM = Eh&C^* Put 
HzTM • TAf as the projection onto the second component. H plays a 
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rale of the horizontal projection for С (although it is not uniquely 
determined by C ) , giving the equality 

#o(/?oa) = {(Зосх)оН 

in which H is the horizontal projection for the connection X. 
¿I.3.3. Lemma, (А) Т~Ь*> f/̂ v г i&irj w«v > o f^ííaf^ íf V У/М\ í с-

such a field, 
(b) For У ,Г € 1 ( И , Л П(У .У ) =-w(Cfíoy ,НоУ ]). 

1 2 1 2 1 2 
Proof, (a): Let У с L{M,f)m To prove that <>y is a foliate vector 

field, it is sufficient to show that а<>(//оУ) is a transverse field. 
Since 

(3o{<*oH°Y) = HoftoCAoY = Hoftof = (//о С(У))отт и , 
fa 

theorem 6.2.2(1) yields our assertion. 

(b): Let YT,Y e ЦМ,Э>") and x<s M. We have 

ñ iY , У , ) = f C * 0 ^ < " < у < ' У , >> 
х 1х 2х | х | х х ix 2х 

= (3*~\С1.Лп У ,п У )) I х Ьх Ь# ix Ь# 2х 

= /Э + - 1(П и_(г_(с(У )_),r_(c(f )_))) | х Ьх |х 1 х |х 2 х 
= ^ + _ 1(П и(г<.с(У ),^ос(У ))_) 

| х Ь 1 2 х 
= -^ + - 1(о_(11Хо Гос(У ),\°r°c{Y )J_) 

|х х 1 2 х 
= -f3+~ioi_aHoC{Y ),Нос(У )B_) 

I х х 1 2 х 
= - / ? + _ 1 0 J _ ( I I c(ao/7 oy ) , c(ao// 0y )])_) 

|X X i 2 X 
= -(f^uAcilaoH'Y ,aoHoY ])_) 

|X X 1 2 X 
= -^ + _ ico_(c(aoC/7oy ,HoY ])_) 

|X X 1 2 X 
= - / ? + " V _ ( f 5 oa (СНоУ ,/7оУ ] ) ) 

I x x |x |x 1 2 x 

= - w (СН°У ,HoYl). m 
x 1 2 x 

6.3.4. Proposition. The following conditions are egui vaient: 
(1) o b = 0, 
(2) Q = 0, 
(3) L(M,P) nSecC is a Lie subalgebra of UM>F), 

(4) ihe distribution С is completely integrable. 
Proof. The equivalence (1) о (2) is evident. 
(2) => (3): Let У , У € L{M,P) nSecC. It is sufficient to prove 

1 2 
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that IY,Y1 € SecC (because L(M,f) is a Lie algebra). Using the 
decomposition C = E & C , we write Y = X "** Y where X € SecE and 

u i i iu t 
Y. € SecC , i = 1, 2. Then 

cy ,y ] = e x . x i + cx , y ] - c x , , y ] + , y , ] . 
1 2 1 2 1 2u 2 iu iu 2« 

We have 
(a) CX 1,X 2]€Sec£ (c5ecC), 
(b) [X ,Y ], CX ,y 3 € SecE because X <e SecE and the vector 

1 2u 2 lu l 
fields y. = y. - X., i = i, 2, are foliate, 

(c) [y ,y ] € SecC by Lemma 6.3.3(b) and the equalities 
iu 2u 

C = Keroi and IT , y , ] = [tf<>y , / / » y ] . 
iu 2u 1 2 

(3)=»(4) : Take Z , Z eSecC, xetf, and put x = nix)*zW- Take 
1 2 o 

also cross-sections £ € SecC being a local basis of the vector 
i q _ 

bundle C on a neighbourhood W' <z W of x. The cross-sections 
Ĉ ,...,C G SecQ for which the equalities ft°K^= ?^ o 7 T

f e > J - <7* hold 
exist and are linearly independent transverse fields (see Proposition 
6.2.2). Etesides, any vector fields X̂  representing are (by the 
definition of C) from SecC and linearly independent on W"i = TT 
Adding any vector fields X >..->X G SecE forming a local basis of 

q+i q+p 
E on some neighbourhood U of x, we obtain a system (X ) of 

i q+P 
foliate vector fields being a local basis of C an t/nl/". Let Z. =EaJ-X., i = l, 2 faJ € Q 0 ( i 7 n l / " ) ) . Then, an l / n r , we have i j t. j v t y 

[Z,Z] = E (aj-a^CX.,Xu3+aj-X.(a^)-Xu~ak-Xu(aj)-X.) € SecC 
1 2 j~ k 1 2 j k 1 J 2 k 2 k l j 

according to assumption (3) . 
(4) => (2) - trivial by Lemma 6.3.3(b). • 
As a consequence of the above proposition and Corollary 4.3.2 we 

obtain the aim of this chapter: 
6.3.5. Theorem- (The geometric signification of the Chern-Weil 

homomorphism for TC-foliations). If the Chern-Weil homomorphism of the 
Lie algebroid A(M,^) of a TC-foliation {M,^) is nontrivial, then there 
exists no completely integrable distribution C on the manifold M 
satisfying conditions (i) (3) from Lemma 6.3.1. • 

In chapter 7 we describe a wide class of rC-foliations for which 
there exists no completely integrable connection C. 
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7. THE LIE ALGEBROID O F A NONCLOSED CONNECTED LIE SUBGROUP. 

7.1. Dense connected Lie subgroups and the Malcev Theorem [ 7 ] , 
[25], [32]. Let be a connected and dense Lie subgroup of a Lie 

group T and let F = {tH; t«s 7> be the foliation of left cosets of G by 

H. E, as usual, denotes the tangent bundle to F, whereas t) and t the 
(left) Lie algebras of H and 2% respectively. In the sequel, R^ is the 

tangent mapping to the right translation by t. 

7.1.1. Lemma. If t = t) e K for some linear subspace K<zt), then, 
for each t€ T, 

E n R ZKl = 0. 
it ¿1© 

Proof. Let v^ E i n / ? i IK1. Then, v is the value at t of the \t t\e 
right-invariant vector field Y generated by some vector we K. Since 

w 
Y is an (.y-)foliate vector field belonging to the distribution E at t, 

cl 
it belongs to E for each point of the closure (£//) of the leaf tH of 
y through t; however, (tf/)cl = r , therefore w=Y (e) <s E n/C = 0; in 

w |e 
consequence, v = 0. • 

7.1.2. Lemma. Every foliate vector field YeLiT,^) is of the form 

Y = X+Y^for the uniquely determined vector field XeX(F) (i.e. 

tangent to and vector we K. 

Proof. As a corollary from 7.1.1, we see that the system 
{Y ,...,y J- of transverse fields, where {w *...9w ) is a basis of K, 
forms a transverse parallelism on ( T , ^ ) . Therefore any vector field 
Y e X{T) is of the form Y = X + Zf*'YW. where X«s X(^) and f}e Q°(G). 

i J J 

Now, let Y be foliate. Then / are constant. Indeed, for an arbitrarily 
taken vector field X'eX(F), we have: LX'9YleX(F). However, 

IX',YI = cx#,x3 + z:/i-cx',sr

v ] + x:x'(f
J)-YW 

J J J J 

therefore £ X' (fJ) * Yw = 0, which implies that X'(fJ)=0. The free 
J J i choice of X' gives the result: f are ̂ -basic functions, i.e. in our 

situation, jfj are constant; fJ = bJ«s[R. In the end, we assert that 

y = X+y for ̂  = E b J ^ - • w J J 
7.1.3. Proposition. If H is a connected and dense Lie subgroup of 
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a Lie group 7\ then: 

(i) H is a normal subgroup of T, 

(ii) each left-invariant vector field X ? wet, is foliate, and 
w 

X =X+Y for some X e 
w w 

(iii) T/H is abelian. 

Proof, (i) and (iii) follow from the Malcev Theorem [ 7 ] , [25], 
[32]. Here we give new, "foliated proofs11 of these facts. 

(i): Equivalently, we need to notice that is invariant under the 
isomorphisms Ad(t), te I . Let te T and a c t ) . Put wz = Ad( t) (a); then 
£ 3> L^u) =Rt(w) ( L t denotes here the tangent mapping to the left 
translation by t), so the foliate vector field Y^ is tangent to & a t t, 
which implies that w-Y (e) e E = t). 

w |e 

(ii): The module X(F) is generated by the left-invariant vector 
fields X n u«s b , therefore we need only to check that [ X , X 3 <£ X(F) 

for wet and ue t). But, by virtue of (i), t) is an ideal in t, thus 
lu,wlL e i ) , which gives [ X , X 3 = X , eX(f). The second part 

U W lU.,WlL 

follows from the observation that X = X —Y is foliate and 
w w 

X(e) = 0<s E . 

(iii): T/H is connected, thus it is sufficient to show that t/t) is 
abelian. Let u.wet. On account of (ii), we have: 
Lu.wl1 = [ X , X 3(e) = [ X + y , X 3(e) = [ X , X 3(e) e • 

u w u w w 

7.2. A structure of the Lie algebra bundle, adjoint of the Lie 
algebroid A{G$H)m Here, we give a more detailed description of the Lie 
algebroid A(G$H) of the foliation & = \aH; ae G } of a connected Lie 
group G by left cosets of a connected and nonclosed (in general) Lie 
subgroup H c G. [The fact that F is TC follows from the observation 
that all right-invariant vector fields are foliate and generate the 
entire tangent space T G for each g e G ] . A(G]M) is called the Lie 

algebroid of a connected Lie subgroup H. Denote by t) and g the Lie 
algebras of H and G, respectively. In the sequel, Y^ and X^ stand for 
the right-invariant and left-invariant vector fields an G, 

respectively, generated by the vector we Q. 
Assume that 7* c G is the closure of H . Then : ̂ igT; geG} is 

the basic foliation and the projection n zG • G/T is the basic 
b 

fibratian. 
7.2.1. Lemma. The isomorphism RA zT G >T G, te T , g ^ G , 

^ t\g g gt ' * 
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maps E onto E . , thus induces an isomorphism R, zQ *Q A , 
and, f ur thermore, the righ t f ree ac tion R z Q x T • Q, 
(v?,t) i • Rtiv). 

Proof. Since Adtfylcl) for teT* E =L [1)3=/?, [f)3- Thus 
for ge Gn 

R. IE 3 = R [L [t)33 = ̂  №33 = L EE 3 = £ 
¿1ST l<7 ¿1«? g\e g\t t\e g\t \t \gt 

Clearly, R is a right smooth free action. • 

7.2-2. Lemma, (a). For a cross— sec tion C € SecQ, we havez 

C ^ KCF) if and only if , for any ge G and te T, 

C(gt) = ^ ( C ( g ) > , U7) 

in other words, if and only if C is* T-right-invariant (with respect to 
the action R). 

(b). For v, we Q, 

v X w <» 3 t«s f, ¿7=/?^^), 

i.e. v * w if and only if they belong to the same orbit of the action 

R. 

Proof, (a). " " Let C ̂  UM9^) and ge C. Then there exists a 

vector W€ 9 such that £(g) = y ( g ) . According to 6.1.1, £ and X agree 

an the leaf g f of J^. So, for te T* 

C(gt) = y^(gt) = ^ ( y ^ ( g ) ) = ^ ( C ( g ) ) -

" <= " Let C e SecQ satisfy (17). Take vectors w ,w e Q in such a 
_ __ 1 q 

way that transverse fields Y" form a base of Q over some 
v i " v q 

^ -saturated open subset U<zG containing gm Then £
 = £ f • Y . for some h L

 wi 
fv eCf(U). Therefore, property (17) of C and of Y^. yields that, for 
ye U and t«s 7", C (gt> = =E^ l ' ( g t ) . (gt) and, simultaneously. 

These give f L (g t ) = f ^ ( g ) , which means that fK are jP^-basic functions. 

The assertion follows now trivially (namely, the coefficients with 

respect to any distinguished local coordinates after multiplying them 

by basic functions remain constant on plaques), 

(b). " => " Results from (a). 
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" " Let v.weQ and let w^R^v) for some tel. Clearly, 
v=Y^{g) for a vector a e Q where g = r ( v ) . So, since w e and 
Y e 2(G,^) and v7= Rlv) = R ( F ( g ) ) = F ( g t ) , we assert that v^w. m 

7.2-3. Remark. The above two lemmas enable us to define the Lie 
algebroid A{G;H) immediately as the space of orbits of the action Rm 

Such a principle is adopted by the author in [20]. 
By the same reasoning as in 7.1.3(ii), we assert that each 

left-invariant vector field X < we t, is foliate. 
7.2.4. Proposition. The Lie algebra bundle g of the transitive Lie 

algebroid MG;H) of & is a trivial bundle of aloelian Lie algebras, with 
the global trivialization 

G/T x t/t) • g 
(Xnlwl) 1 • (c(X ))U), ( 1 8 ) 

w 
Proof. Since 

y :t • E , ^ 1 >L (w), (19) 
^g b\g- g\e 

is an isomorphism, we see that t/t) • Q'^, [w] 1 > X^(g)9 is also an 
isomorphism. Hence - mapping (18) (whose correctness of the definition 
is easy to check) is an isomorphism of vector bundles. To verify that 
g is abelian, take u , u e g .By the above, there exist w and w 
belonging to t such that u. = {c(X„ )) ix) for j = l, 2. So, we have 

[u^u,] = Cc(XVi)(x),c(XV2)(x)] = IIc(XVi),c(XIi,2)l(jr) 
= c(CX V l,X V 2D)(x) =c(X t u, i ? v 2 ] i)(x) = 0 

(because the relation wi—Lw 9w 1L e t) implies X^^SecE). • 

7.3. Camections in A(G;H). 
7.3.1. Proposition. distribution C <zTG is a connection for 

the TC-foliation & [see Def.6.3.2] if and only if it is C°°, satisfies 
(1) and (2) from Lemma 6.3.1, and 

(3') C is T-right-invariant, i.e. C =R1CI 1, geG, teT. 
^ \gi t \g ^ 

Proof. " => " Let C fulfil conditions (l)-r(3) from Lemma 6.3.1 and 
take veC . By condition (3), v = X (g) for some Xe L(G9F) nSecC. \g 
Since X € UG9f)9 7.2.2(a) shows that 
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Xlgt) - Xigt) = R^Xig)) - R^v ) = R^v) , 

which yields R (v) — X( Qt) e E « Condition (1) and the relation 
X e SecC give now RAv) e C So, /? EC ]cC , therefore the 

t \gt t \g \gt • 
equality of the dissensions gives the examined jT~right-invariance of C . 

" <= M Assume that C c IG is a C°° distribution satisfying (1) and 
(2) from Lemma 6.3.1 and (3') above- For each point xe G/T, we define 

C =/? [a EC 33, ge rT̂ x). 
fx 1 \g \g \g ^ h 

(3'), 7.2.1 and 7.2.2(b) imply the correctness of this definition: for 
teT and geG* we have 

ft ,Ea EC 33 - ft fa [/? EC ]]] l̂i 1̂* î* 1ST* \gt t\g \g 
= ̂  1R, Ea EC 333 = ft Ea EC 33. 

I^i tig \g \g \g \g \g 
Put C = U C c A{G;H) - It is a standard calculation to prove 

x€G/r |x 
that C is a C subbundle of ̂ (G;//). By assumptions (1) and (2) , C is a 
horizontal subbundle of A(G;H) [i.e. C + g = T(G/T) and Cng = 0 
hold], therefore it is determined by some connection X. Clearly, C = C* 
(see 6.3). Thereby, (3) is satisfied according to Lemma 6.3.1. • 

7.4. The Chern-Weil homomorphism of A(G;H). Notice that the 
situation when H-T or T' = G is not interesting from our point of view 
because then, in the first case, the Lie algebroid A(GHH) is trivial, 
A{G;H) —• T(G/T), which implies g=0 and, in consequence, 
(ĥ c ^) + = 0; in the second case, the basic manifold W is one-point, 
so also (h )* = 0. Therefore we can consider the case H * T * G /KG;* > 
only. 

The Proposition 7.2.4 sets up a global trivialization 
<pzs G/T x t/t) (20) 

therefore any cross-see tion v e Secg determines some t/t)-valued 
function vzG/T——•t/t)«i namely £ := pr Analogously, via the 
canonical ly induced global trivialization V g ~ G/T x V ( t / t)) , any 
cross-section F-e Sec Vkĝ  determines some Vk(t/t))*-valued function 
fzG/T • V k ( t / t ))* . Let <*, ->:Vkg* * Vkg • R be the canonical 
duality [83. It is easily seen that, for xe G/T and w.^ e t, i </c 
(/c= rank g- dim t - dim b ) , 
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<r , c(X v W...vclXw.)>ix) = <r(x),lw IN/.-.V/LV, ] > . (21) 
*A 1 k 

7.4.1. Proposition. Let re5ecVkg*, then r is- V âd" 
-invariant [i.e. Te (5ecV g ) / 0 ] i / and only if r is constant. 

Proof. " =» ". Let r be invariant. This means, in particular, that 
( r . c ( n ) < r , c ( X W l ) ' c ( X V k ) > 

= E ^ c C X , , )v...vlc(F ),c(Xv.)ll^...^c(X1^)>, 
for v« 0 , K.€ i; but |[c(f ),c(X„.)ll =c - - =0, so 

(r'C(n)<r,c(X V i)v...vc(X V k)> = 0. 
The values of vector fields y>c{Y ), W€ 9, generate at each point 

xe G/T the entire tangent space T^iG/T); therefore the function 
<r,c(X )v...vc(X )>* thanks to the connectedness of G/T9 is constant, 
so the same holds for the function G/T 3 xI • <T{x) nlw^]»*>...vlw^T>. 
Equivalently, fzG/T • VNt/lt))* is constant. 

" «. " Assume now that F is such that the function r is constant. 
Thus (21) implies the same for the function <r,c(X^ Jv.-.vctX̂  )>, 

"x k 
w <s t. To prove the invariance of r, take arbitrarily cross-sections 

j 
v\ € Secg, i[ < /c, and £ € Sec4(G;tf). They can be written as follows: 
1 

iA = £fJ'C(Xv.) (globally), ? = Z^'^u^ (locally), 
for some fJ, g J € Q°(G/T), r/. € t, u.«£Q. Therefore = £c?J?''0c(}r

u.) 
and 

U,vl = E. fg J-H s-ttc(f ),ciX rt-fts-r-ciX )<<?Vc(F ) 

+ ^r°c(f u.)(/^)c(X V j s)] 
= E ̂ T-ciy )(f^).c(X ) j , J s J s j s 

because ^ . C ( L . ) = 0 and Kc(Yu.),c(Xv. )1 =c( C r„. ,X w . ])=0. Next, 
we have 
(y.f)<r,^...vi;>= E gi-roc{Yu.)<r,f\1-c{Xv. W...vfi*-c{Xv. )> 1 k . . Jk J 1 Ji K Jk 
= ES^yoc<F„.)</" j »-.. .-fj*-<r ,c(X I , . W...^c(Xv. )>) 

= Eg j-r°c(F u . ) ( / J l - . . . - / ' i k)-<r ,c(X I,. )~ . . .^c<x. , . )> 
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= E j-fi.*-...'r»c{Yu )ifi*)-...>fi*-<rrclXw. W..~c(Xw. )> 

= E < r , z : / i » - c ( x > E ^ - ^ C C F M / ^ - C C X > - . . . ^ / i k - c ( * )> 
S J ±

 X Jl J J 5 J s Jk J^ 

which means that r is V ad -invariant- • 
By the above proposition, the value of the function P at any point 

k X ^ 
X € G/r does not depend an x for r € (SecV g ) 0 - Denote it by T-
Clearly, 

p : k ^ ° ( 5 e c V V ) 7 o >V(i/t))*, r. > r , 
is an isomorphism of algebras. 

7 .4.2. Theorem. 7"he Chern-Weil homomorphism h of the Lie 

algebroid MGm

9H) makes the following diagram 

6 (Secw g ) o : • # d ( G / D 

V ( t / t » * > ^ > (Vt*) 7 

commute, i n which Vjf is* the monomorphism of algebras induced by the 
canonical projection jzt •t/t), whereas* h :(Vt*) • W J ( G / D is* 

P I dR 
the Chern- l /e i / ! homomorphism of the T-principal bundle P = (G > G / D . 

Proof. First, we notice that 7m Vj c (Vt ) . Indeed, 7m Vj 
= {r€ Vt*; L f = 0 for all we^\. Since ^ is an ideal in t and t/h is 
an abelian Lie algebra, see 7-1.3, therefore [ u , w ] £ «E t) for all 

— k ̂  
u, w € t. Thus, for any u <s t) and r € 7m V j , we have 

k - i 
£ <vr,w v...vx[U,W\] v...vW > = 0 , «s t, 

J = I 1 j k t 
— % 

which means [because T is connected] the Ad -invariance of T- That Vj 
is a monomorphism follows from the fact that j is a monomorphic (see 
[8 , p . i 0 e ] ) . 

By the independence of h^(T) and ̂ A ( G.^/ r) on the choice of a 
connection, we may set an arbitrary connection C^<zTG in the principal 
bundle P . Then C : = E e C is a connection in 7~G for ̂  because C is a C 

u 

distribution and requirements (1), (2) and (3') from 7.3.1 are 
satisfying: 

(1) Clearly, EaCnE - To see the opposite inclusion, take 
b 
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arbitrarily v<eCr\E^ and write v = v +v for v <s £, v <s C . Of 
b 1 2 l ' 2 a 

coarse, the vector v = v~ v <E C O f =0 is null. Therefore 
2 t u b 

V = V € E-
1 _ 
(2)' C + E = (EeC ) +E\ z>C e £ L = TG f E t is the vertical 

b u b iz b x b 
bundle of P). 

(3') For t<zT and geG9 we have, by 7.2-1 and the 
T-right-invariance of C in P, 

u 

R. CC 3 = R [£ eC , ] = P CE ] e R [C ] 

= E eC = C . 
Let co ^ Q1(G;t) be the connection form of C . Denote by 

VzTG • £ the vertical projection- Since A zT • G, g\ • gt9 is 
the restriction to T of the left translation by t, we have 
y/oco = V , g«sG, where y is defined by (19)- According to the 

g ug \g ^ ' g 
definitions of the connection form co of C (Def. 6.3.2(b)) and of the 
isomorphism p of vector bundles (20), we obtain the commuting diagram: 

CO 
, 7- G ^ • t 

9 y 
V v / j 

^ fa Ig (22) a (p \g Ix * ^ + 

V + L2 >g 
\g i x 

for 57 € G and x= 7Tb(<y) -
Let Q <sQ2(G;t) and Q€Q 2(G;Q') be the curvature forms of C and 

of C, respectively, while Q e O (G/7*;g) the curvature tensor of the 
connection X in A(GzH) for which C = C - Define auxiliarily the form 
Q° € Q2(G;t/t)) by 

Q°(g;v AV ) = (p oft* (Q(g;v AV ) ) , 
^' 1 2 |x ^ :1 2 

x=n^(c7) as above. We prove the equality 
Q° = 70Q . (23) 

To this end, take v , v <s T G and find foliate vector fields 
' 1? 2 $r 

y , y € UG9P) such that y (gr) = v., i = l,2. By Lemma 6.3.3(b) and 
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diagram (22), we assert that 
Q°(g;v AV ) = (p °ft* (Q(g;v AV ) ) 

^ 1 2 |x |j ^ 1 2 
= tp o^?+ <-u(g;[tfoy 3(g))) 

|x 19- ^ 1 2 ^ 
= ~joco (g ; [«oy 3(g)) 
- j(n (g;v AV ) ) . 

For r <E (Vkt*) , the class h (f") is represented by the form 
0€Q 2 k(G/T) whose re-lifting equals l - < f,0 v..,vO >. Let 
f=(V k j*)(r) for r = p ( D where r <= (5ecVkg*)/0 ; then we have 

<r,Q v...s,0 > = <r,0°v...vQ°>. (24) 
Indeed, using the fact that homomorphisms of algebras Vj and Vj are 
dual [8,p.iOG], we obtain, by (23), that for g<sG and v. € T G : 

<F,Q V...V/Q >(g:v A . . .AV , ) 
u. u ^ 1 2k 

= JT-E^ncr-<(V kj #)(r),Q (g;v /4i/xv )v...vO (g;v _ 4 %*v )> -k* - 1-^ u ^ <f<l> <r<2> xx ̂  <f(2k-l> cr<2k> 2 <r 
= — 'J^sgno"<r9j(Q (g;v AV ) )v. . .vj(Q (g;v . AV ) ) > , k ^ ^ 9 J u * <r(l> <r<2> tz ^ cr<2k-l> <r<2k> 2 <r 
= —r-E-S'g^cr-<r,n°(g;v AV ) V . . . VO ° ( Q ; V F AV , )> 

, k * ^ <T<1> <T(2> ^ <r<2k-l) or<2k) 
= <r,0°v...vO°>(g:v ../^V T ). 

-17 1 2k 
On the other hand, h (F) is represented by the form i.-<r,0 v...vn >, see (11). Fut cf € QZ(G/r,t/t)) as follows: k ! b b b 

Q°(x;v /NV ) = <p (CLAXIVSSV ) ) , v.eT (G/T). 
b 1 2 |x b " 1 2 t x 

We check that 
° ° = n b ( Q b ) ' ( 2 5 ) 

<r,Q v...vO > = <r,0%...^0t> . (26) b b b b 
Seeing Def. 6.3-2 of the tensor Q, we assert (25) trivially. Using the 
duality between the homomorphisms W> and V ^ of symmetric algebras, 
we notice that, for xe G/T and v € T (G/T)9 

<r, Ob>/... N/Ofc> (x; v±*... ̂ v2k) 
= <r ,(0 v...vO )(x;v A. . .AV | )> 

x b b ' 1 2k 
= <V*>* (h,(0 v...vO ) ( X ; V A . . . A V . ) > 

^ I x b b 1 2k 
= <r,V<p ((O v . . .vf l u)U;v /S...,NV . ) ) > 

|x b b 1 2k 
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b b i Zk 
which confirms (26) -

Now', we are able to prove our theorem: Taking r € (5ecV g ) / D and 
keeping the notations above, we assert, by (24) and (26), that the 
cohomology classes h (Vj (p(T))) and h .(F) are represented by the 
forms whose n -liftings are equal to — •<r,n°v...vO°> and 

# i ~ o k ! 

n:, (—*<r,Q, v..,vO>), respectively. But, these two last forms are 
DKl b b 

identical according to (25), which ends the proof. • 
Here is the aim of this section: 
7.4.3. Theorem. If G is any connected, compact and semisimple Lie 

group and HaG is its arbitrary connected nonclosed Lie subgroup, then 
the Chern-Weil homomorphism ̂ MG.H) *s nontrivial. 

Proof. Let 7 be the closure of //. T is, of course, compact. 
Applying Th.XI from [10, Ch.IX, p.392] to the principal bundle 
P = (G • G / D , we get the equivalence of the conditions: 

(1) the Chern-Weil homomorphism h is m-regular [understanding in 
(Vt )̂  the natural even gradation], 

(2) if (G)=Kand if (G)=0, l<p<m. 
dR dR 

Since G is compact and semisimple, it follows that W ^ R ( G ) = R , 
H1 ( G ) = W 2 (G)=0 [H3 (G)*0l. Combining this with the 

dR dR dR 
above-mentioned theorem, we obtain that the Chern-Weil homomorphism h^ 
is 2-regular, in particular, this yields that 

(h / >) < 2 >:(t*) / • H ^ R ( G / D 
is an isomorphism. In view of Theorem 7.4.2, WE? get that 

<h«e;*: ( t ^ > * 5 > (** >/ " a * № 
is a monomorphism. The assumption H * T implies t/t) * 0, whence we <2> obtain that {h ) * 0, and so, h is nontrivial. • AiG;H) JKG;N> 

7.4.4 Remark. Here is the more concrete example of a nonclosed Lie 
subgroup: Let T be an arbitrary, not necessarily maximal, torus of G 
and H c T any of its dense connected Lie subgroups. 

7.4.5. Remark. Adding the simple connectedness of G to the 
assumptions of Theorem 7.4.3, we get, according to Almeida-Molina's 
Theorem, see [1], [27], some nonintegrable transitive Lie algebroid 
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having the nontrivial Chern-Weil homomorphism. 
Therefore we can formulate the important 
7.4.-6. Corollary. There exists a nonintegrable transitive Lie 

algebroid having the nontrivial Chern-Weil homomorphism. m 

Return to Theorem 7-4.3. As its consequence as well as that of 
Theorem 6.3.5 and Prop.7-3-i we obtain that, under the assumptions of 
Theorem 7-4-3, there exists no completely integrable T—right—invariant 
distribution C <zTG such that C + E = TG and C n E = £. 

b b 
Now, we give a simple situation in which such a completely 

integrable distribution exists. 
7.4.7. Example. Assume that the symbols G, H9 7", ̂ , Q, t), t have 

the same meaning as before- If there is a Lie subalgebra c c g such 
that 

(1) C + t = Q, 
(2) COt = t), 

then the G-left-invariant distribution C determined by C (i.e. the one 
tangent to the foliation {gF;geG\ where F is the connected Lie 
subgroup with its Lie algebra equalling c] is a completely integrable 
connection in TG for ̂ . Indeed, it is clear that the conditions 
C n E = E and C + E, = TG hold. Therefore it is enough to verify the b b 
7*-right-invariance of C only, i.e. the equality R [C ] = C , teT? 
Q € G . Let veC , then v-L iw) for some vector we Cm Since 
R(v) = R(L lw))=L (R(w)), we need observe that R(w)eC . Since 
t t g g i t \t 

T is the closure of tf, we have t = limh , h e tf. In virtue of the 
— n n closedness of C, we obtain that the fact that the element R lw) 

(equalling limRh^w)) belongs to C follows from the relation 
[c] <z C ̂  for heH which is evident by the relation r,[H]cH where r is the left translation by h. h 

As a simple corollary of 7.4.3 and 7.4.7 we obtain 
7.4.8. Corollary. Under the assumptions of Theorem 7.4.3, no Lie 

subalgebra c<zQ fulfilling (1), (2) from 7.4.7 exists. 
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