Complex analytic geometry of complex parallelizable manifolds
Mémoires de la Société Mathématique de France, no. 72-73 (1998) , 224 p.
@book{MSMF_1998_2_72-73__R1_0,
     author = {Winkelmann, J\"org},
     title = {Complex analytic geometry of complex parallelizable manifolds},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {72-73},
     year = {1998},
     doi = {10.24033/msmf.386},
     mrnumber = {99g:32058},
     zbl = {0918.32015},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_1998_2_72-73__R1_0/}
}
TY  - BOOK
AU  - Winkelmann, Jörg
TI  - Complex analytic geometry of complex parallelizable manifolds
T3  - Mémoires de la Société Mathématique de France
PY  - 1998
IS  - 72-73
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/MSMF_1998_2_72-73__R1_0/
DO  - 10.24033/msmf.386
LA  - en
ID  - MSMF_1998_2_72-73__R1_0
ER  - 
%0 Book
%A Winkelmann, Jörg
%T Complex analytic geometry of complex parallelizable manifolds
%S Mémoires de la Société Mathématique de France
%D 1998
%N 72-73
%I Société mathématique de France
%U http://www.numdam.org/item/MSMF_1998_2_72-73__R1_0/
%R 10.24033/msmf.386
%G en
%F MSMF_1998_2_72-73__R1_0
Winkelmann, Jörg. Complex analytic geometry of complex parallelizable manifolds. Mémoires de la Société Mathématique de France, Série 2, no. 72-73 (1998), 224 p. doi : 10.24033/msmf.386. http://numdam.org/item/MSMF_1998_2_72-73__R1_0/

[1] Akhiezer, D.N. : Invariant meromorphic functions on complex semisimple Lie groups. Invent. Math. 65, n° 3, 325-329 (1981/1982) | Zbl | MR | EuDML

[2] Akhiezer, D.N. : Lie Groups actions in complex analysis. Aspects of Mathematics. Vieweg 1995 | Zbl | MR

[3] Akhiezer, D.N. : Group actions on the Dolbeault cohomology of homogeneous manifolds. Math. Z. (1996). | Zbl | MR

[4] Atiyah, M. : On the Krull-Schmidt theorem with applications to sheaves. Bull. Soc. Math. France 84, 307-317 (1956) | Numdam | Zbl | MR | EuDML

[5] Atiyah, M. : Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181-207 (1957) | Zbl | MR

[6] Atiyah, M. : K-Theory. Benjamin 1967 | Zbl | MR

[7] Atiyah, M. ; Rees, F. : Vector Bundles on Projective 3-space. Invent. Math. 36, 131-153 (1976) | Zbl | MR | EuDML

[8] Baker, A. : Transcendental Number Theory. Cambridge University Press 1975 | Zbl | MR

[9] Barlet, D. : Familles analytiques de cycles paramétrées par un espace analytique réduit. LN 481, 1-158. Springer 1975 | MR

[10] Barth, W. ; Otte, M. : Über fast-uniforme Untergruppen komplexer Liegruppen und auflösbare komplexe Mannigfaltigkeiten. Comm. Math. Helv. 44, 269-281 (1969) | Zbl | MR

[11] Barth, W. ; Otte, M. : Invariante Holomorphe Funktionen auf reduktiven Liegruppen. Math. Ann. 201, 91-112 (1973) | Zbl | MR

[12] Berteloot, F. ; Oeljeklaus, K. : Invariant Plurisubharmonic Functions and Hypersurfaces on Semisimple Complex Lie Groups. Math. Ann. 281, 513-530 (1988) | Zbl | MR

[13] Bierstone, E. ; Milman, P.D. : Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math. 128, 207-302 (1997) | Zbl | MR

[14] Blanchard, A. : Sur les variétés analytiques complexes. Ann. Sci. ecole norm. sup. 73, 157-202 (1956) | Zbl | MR | Numdam

[15] Bochner, S. ; Montgomery, D. : Groups on analytic manifolds. Ann. of Math. 48 (2), 659-669 (1947). | Zbl | MR

[16] Boothby, W. ; Wang, H. : On the finite Subgroups of Connected Lie Groups. Comm. Math. Helv. 39, 281-294 (1964) | Zbl | MR

[17] Borel, A. : Density properties of certain subgroups of semisimple groups without compact components. Ann. of Math. 72, 179-188 (1960) | Zbl | MR

[18] Borel, A. : Compact Clifford Klein forms of symmetric spaces. Topology 2, 111-122 (1963) | Zbl | MR

[19] Borel, A. : Introduction aux groupes arithmetiques. Hermann 1969 | Zbl | MR

[20] Borel, A. : Linear algebraic groups. Second Enlarged Edition. Springer 1991 | Zbl | MR

[21] Borel, A. ; Harish-Chandra : Arithmetic subgroups of algebraic groups. Ann. Math. 75, 485-535 (1962) | Zbl | MR

[22] Borel, A. ; Remmert, R. : Über kompakte homogene Kählersche Mannigfaltigkeiten, Math. Ann. 145, 429-439 (1962) | Zbl | MR

[23] Borel, A. ; Tits, J. : Groupes Reductifs. IHES 27, 55-152 (1965) | Zbl | MR | Numdam

[24] Bourbaki, N. : Intégration. Ch. VII. Hermann, Paris. 1960

[25] Brody, R. : Compact manifolds and hyperbolicity. T.A.M.S. 235, 213-219 (1978) | Zbl | MR

[26] Campana, F. : On Twistor Spaces of the class C.J. Diff. Geo. 33, 541-549 (1991) | Zbl | MR

[27] Campana, F. : Remarques sur le revêtement universel des variétés Kählériennes compactes. Bull. Soc. math. France. 122, 255-284 (1994) | Zbl | MR | Numdam

[28] Campana, F. : Connexité abélienne des variétés kählériennes compactes. C.R. Acad. Sci. Paris, t. 325, Série I, 755-758 (1997) | Zbl | MR

[29] Capocasa, F. ; Catanese, F. : Periodic meromorphic functions. Acta Math. 166, 27-68 (1991) | Zbl | MR

[30] Cartan, E. : La topologie des groupes de Lie. Enseign. math. 35, 177-200 (1936) | Zbl | JFM

[31] Cernousov, V.I. : On the Hasse-principle for groups of type E8. Dokl. Akad. Nauk. SSSR 306, 1059-1063 (1989) Translation: Sov. Math. Dokl. 39, 592-596 (1989) | Zbl

[32] Cordero, L. ; Fernandez, M. ; Gray, A. : La suite spectrale de Frölicher et les nilvariétés complexes compactes. C.R. Acad. Sci. Paris 305, 753-756 (1987) | Zbl | MR

[33] Cordero, L. ; Fernandez, M. ; Gray, A. : The Froehlicher spectral sequence for compact nilmanifolds. Ill. J. Math. 35, no. 1, 56-67 (1991) | Zbl | MR

[34] Corlette, K. : Archimedean superrigidity and hyperbolic geometry. Ann. of Math. 135, 165-182 (1992) | Zbl | MR

[35] Curtis, C. ; Reiner, I. : Representation Theory of Finite Groups and associative algebras. Interscience 1962. (Reprinted 1988 in the Wiley Classics Library series.) | Zbl

[36] Dixmier, J. ; Lister, W.G. : Derivations of nilpotent Lie algebras Proc. A.M.S. 8, 155-158 (1957) | Zbl | MR

[37] Dold, A. : Lectures on Algebraic Topology. Springer Berlin Heidelberg New York 1972 | Zbl | MR

[38] Dynkin, E.B. : Semisimple subalgebras of semisimple Lie algebras. Mat. Sbornik N.S. 30 (72), 349-462, Moskva (1952) | Zbl | MR

[39] Dynkin, E.B. : Maximal subgroups of classical groups. Trudy Moskov. Mat. Ob. 1, 39-66, Moskva (1952) | Zbl | MR

[40] Forster, O. ; Knorr, K. : Über die Deformationen von Vektorraumbündeln auf kompakten komplexen Räumen. Math. Ann. 209, 291-346 (1974) | Zbl | MR

[41] Frölicher : Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Nat. Acad. Sci. U.S.A. 41, 641-644 (1955) | Zbl | MR

[42] Ghys, E. : Déformations des structures complexes sur les espaces homogènes de SL(2,ℂ). J. Reine Angew. Math. 468, 113-138 (1995) | Zbl | MR

[43] Goto, M. : On an arcwise connected subgroup of a Lie group. Proc. A.M.S. 20, 157-162 (1969) | Zbl | MR

[44] Grauert, H. : Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen. Math. Ann. 133, 450-472 (1957) | Zbl | MR

[45] Grauert, H. ; Remmert, R. : Über kompakte homogene komplexe Mannigfaltigkeiten. Arch. Math. 13, 498-507 (1962) | Zbl | MR

[46] Grauert, H., Remmert, R. : Coherent Analytic Sheaves. Springer 1984 | Zbl | MR

[47] Green, M. ; Griffiths, P. : Two Applications of Algebraic Geometry to Entire Holomorphic Mappings. The Chern Symposium 1979, Springer, New-York Berlin (1980) | Zbl

[48] Griffiths, P. ; Harris, J. : Principles of Algebraic Geometry. Pure and Applied Mathematics, Wiley-Interscience, New-York (1978) | Zbl | MR

[49] Gromov, M. ; Schoen, R. : Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. IHES 76, 165-246 (1992). | Zbl | MR | Numdam

[50] Gunning, R. : Introduction to Holomorphic Functions of several variables. 3 volumes. Wadsworth 1990. | Zbl

[51] Harder, G. : Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen. Jahresber. DMV, 70, 182-216 (1968). | Zbl | MR

[52] Hartshorne, R. : Varieties of small codimension in projective space. Bull. A.M.S. 80, 1017-1032 (1974). | Zbl | MR

[53] Hartshorne, R. : Algebraic Geometry. Springer 1977. | Zbl | MR

[54] Higman, G. : A finitely generated infinite simple group. J. London Math. Soc. 26, 61-64 (1951). | Zbl | MR

[55] Hironaka, H. : Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2), 79, 109-326 (1964). | Zbl | MR

[56] Hironaka, H. : Bimeromorphic smoothing of a complex-analytic space. Math. Inst. Warwick Univ. 1971.

[57] Hochschild, G. : The Structure of Lie groups. Holden Day Inc 1965. | Zbl | MR

[58] Huckleberry, A.T. ; Margulis, G.A. : Invariant analytic hypersurfaces. Invent. Math. 71, 235-240 (1983). | Zbl | MR

[59] Huckleberry, A.T. ; Oeljeklaus, E. : Classification theorems for almost homogeneous spaces. Revue De l'Institut Elie Cartan, Numéro 9, Janvier 1984. | Zbl | MR

[60] Huckleberry, A.T. ; Oeljeklaus, E. : On holomorphically separable complex solvmanifolds. Ann. Inst. Fourier XXXVI 3, 57-65 (1986). | Zbl | MR | Numdam

[61] Huckleberry, A.T. : Actions of Groups of Holomorphic Transformations. Encyclopaedia of Mathematical Sciences. Volume 69 Several Complex Variables VI. (1990). | Zbl | MR

[62] Huckleberry, A.T. ; Snow, D. : Pseudoconcave homogeneous manifolds. Ann. Scuola Norm. Sup. Pisa, (4), 7, 29-54 (1980). | Zbl | MR | Numdam

[63] Huckleberry, A.T. ; Winkelmann, J. : Subvarieties of parallelizable manifolds. Math. Ann. 295, 469-483 (1993). | Zbl | MR

[64] Humphries, J. : Linear algebraic groups. GTM 21 Springer 1975. | Zbl | MR

[65] Humphries, J. : Arithmetic Groups. LN 789 Springer 1980. | Zbl | MR

[66] Husemoller, Dale : Fibre bundles. 3. ed. Springer 1994. | Zbl | MR

[67] Iwamoto, T. : Density properties of complex Lie groups. Osaka J.Math. 23, 859-865 (1986). | Zbl | MR

[68] Jordan, C. : Mémoire sur les équations différent linéaires à intégrale algébriques. J. Reine Angew. Math. 84, 89-215 (1878). | JFM

[69] Jørgensen, T. : Compact 3-manifolds of constant negative curvature fibering over the circle. Ann. Math. 106, 61-72 (1977). | Zbl | MR

[70] Jost, J. ; Yau, S.T. : Harmonic maps and superrigidity. Proc. Symp. Pure Math. 54, 245-280 (1993). | Zbl | MR

[71] Kaup, B. ; Kaup, L. : Holomorphic Functions of Several Variables. De Gruyter 1983. | Zbl | MR

[72] Každan, D.A. : Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl. 1, 63-65 (1967). | Zbl | MR

[73] Každan, D.A. ; Margulis, G.A. : A proof of Selbergs hypothesis. Math. Sbornik 75, 162-168 (1968). | Zbl | MR

[74] Knapp, A. : Lie Groups Beyond an Introduction. Birkhäuser 1996. | Zbl | MR

[75] Kobayashi, S. : Hyperbolic manifolds and holomorphic mappings. Dekker Inc. 1970. | Zbl | MR

[76] Koblitz, N. ; Rohrlich, D. : Simple factors in the Jacobian of a Fermat curve. Canad. J. Math. 31, 1183-1205 (1978). | Zbl | MR

[77] Kraft, H. : Geometrische Methoden in der Invariantentheorie. Aspekte der Mathematik, Band D1. Vieweg 1984. | Zbl | MR

[78] Lang, S. : Abelian Varieties. Interscience 1959. | Zbl | MR

[79] Lang, S. : Complex Multiplication. Springer 1983. | Zbl | MR

[80] Lang, S. : Introduction to Complex Hyperbolic Spaces. Springer 1987. | Zbl | MR

[81] Lescure, F. : Action non triviale sur le premier groupe de comologie de Dolbeault. Comptes Rendus Acad. Sci. Paris 316, 823-825 (1993). | Zbl | MR

[82] Lescure, F. : Cohomologie totale et courants de Dolbeault invariants. J. Reine Angew. Math. 475, 103-136 (1996). | Zbl | MR

[83] Lindemann : Über die Zahl π. Math. Ann. 20, 213-225 (1882). | JFM

[84] Lubotzky, A. : Free Quotients and the first Betti number of some hyperbolic manifolds. Transformation Groups. 1, 71-82 (1996). | Zbl | MR

[85] Lundell, A. ; Weingram, S. : The topology of CW-complexes. Van Nostrand 1969. | Zbl

[86] Makarov, V.S. : On a certain class of discrete groups of Lobachevsky space having an infinite fundamental region of finite measure. Soviet Math. Dokl. 7, 328-331 (1966). | Zbl | MR

[87] Malcev, A. : On isomorphism matrix representations of infinite groups. Mat. Sb. 8, 405-422 (1940). | Zbl | MR | JFM

[88] Malcev, A. : Commutative subalgebras of semisimple Lie algebras. Izv. Nauk USSR 9, 291-300 (1945). | Zbl | MR

[89] Malcev, A. : On a class of homogeneous spaces. Izvestiya Akad. Nauk SSSR Ser. Math. 13 (1949)/ AMS Transl. no. 39 (1951). | Zbl | MR

[90] Margulis, G.A. : Free totally discontinuous groups of affine transformations. Soviet Math. Doklady 28, 435-439 (1983). | Zbl

[91] Margulis, G.A. : Complete affine locally flat manifolds with free fundamental group. Zapiski Nauen. Sem. Leningrad Otd. Mat. Inst. Steklov 134, 190-205 (1984) [in Russian]. | Zbl | MR

[92] Margulis, G. : Discrete subgroups of semi-simple Lie groups. Erg. Math., Springer-Verlag 1990. | Zbl

[93] Matsushima, Y. : On the discrete subgroups and homogeneous spaces of nilpotent Lie groups. Nagoya Math. J. 2, 95-110 (1951). | Zbl | MR

[94] Matsushima, Y. : Fibrés holomorphes sur un tore complexe. Nagoya Math. J. 14, 1-24 (1959). | Zbl | MR

[95] Matsushima, Y. : Espaces homogènes de Stein des groupes de Lie complexes I. Nagoya Math. J. 16, 205-218 (1960). | Zbl | MR

[96] Matsushima, Y. ; Morimoto, A. : Sur certaines espaces fibrés holomorphes sur une variété de Stein. Bull. Soc. Math. France 88, 137-155 (1960). | Zbl | MR | Numdam

[97] Millson, J.J. : On the first Betti number of a compact constant negatively curved manifold. Ann. of Math. 104, 235-247 (1976). | Zbl | MR

[98] Milnor, J. : On fundamental groups of completely affinely flat manifolds. Adv. Math. 25, 178-187 (1977). | Zbl | MR

[99] Mok, N. ; Siu, Y.T. ; Yeung, S.K. : Geometric superrigidity. Invent. math. 113, 57-83 (1993). | Zbl | MR

[100] Montgomery, D. ; Zippin, L. : Topological Transformation Groups. Interscience 1955. | Zbl | MR

[101] Morimoto, A. : Sur le groupe d'automorphismes d'un espace fibré principal analytique complexe. Nagoya Math. J. 13, 157-168 (1959). | Zbl | MR

[102] Moskowitz, M. : On the density theorems of Borel and Furstenberg. Ark. Mat. 16, 11-27 (1978). | Zbl | MR

[103] Mostow, G.D. : Factor spaces of solvable groups. Ann. of Math. 60, 1-27 (1954). | Zbl | MR

[104] Mostow, G.D. : Homogeneous spaces of finite invariant measures Ann. of Math. 75, 17-37 (1962) | Zbl | MR

[105] Mostow, G.D. : Intersection of discrete subgroups with Cartan subgroups. J. Ind. Math. Soc. 34, 203-214 (1970) | Zbl | MR

[106] Mostow, G.D. : Arithmetic subgroups of groups with radical. Ann. Math. 93, 409-438 (1971) | Zbl | MR

[107] Mostow, G.D. ; Tamagawa, T. : On the compactness of the arithmetically defined homogeneous spaces. Ann. Math. 76, 440-463 (1962) | Zbl | MR

[108] Mumford, D. : Abelian varieties. Oxford University Press 1970 | Zbl | MR

[109] Murakami, S. : Sur certains espaces fibrés principaux holomorphes admettant des connexions holomorphes. Osaka Math. J. 11, 43-62 (1959) | Zbl | MR

[110] Nakamura, I. : Complex parallisable manifolds and their small deformations. J. Diff. Geo. 10, 85-112 (1975). | Zbl | MR

[111] Neukirch : Algebraische Zahlentheorie. Springer 1992 | Zbl

[112] Oeljeklaus, K. : Hyperflächen und Geradenbündel auf homogenen komplexen Mannnigfaltigkeiten. Schriftenreihe Math. Inst. Univ. Münster (2) 36 (1985) | Zbl | MR

[113] Oeljeklaus, K. ; Winkelmann, J. : Some Remarks on Parallelizable Manifolds. Publ. IRMA, Lille 27, 1992

[114] Okonek, Ch. ; Schneider, M. ; and Spindler, H. : Vector Bundles on Complex Projective Spaces. Progress in Math. 3, Birkhäuser Boston, 1980 | Zbl | MR

[115] Onishchik, A. ; Vinberg, E. : Lie groups and Algebraic groups. Springer 1990 | Zbl | MR

[116] Otte, M. : Über homogene kompakte komplexe Mannigfaltigkeiten. Habilitationsschrift. Münster 1972

[117] Otte, M. ; Potters, J. : Beispiele homogener Mannigfaltigkeiten. Manu. math. 10, 117-127 (1973) | Zbl | MR

[118] Pansu, P. : Sous-groupes discrets des groupes de Lie : rigidité, arithmeticité. Séminaire Bourbaki. 46ème année (1993/1994), exposé 778 | Zbl | Numdam

[119] Parshin : Generalized Jacobians. Transl. A.M.S. 84 (1968)

[120] Pothering, G. : Meromorphic function fields of non-compact ℂ/Г. Ph. D. thesis. Notre Dame University, Indiana 1977

[121] Raghunathan, M.S. : On the first cohomology of discrete subgroups of semisimple Lie groups. Amer. J. Math. 87, 103-139 (1965) | Zbl | MR

[122] Raghunathan, M.S. : Vanishing Theorems for Cohomology Groups Associated To Discrete Subgroups of Semisimple Lie Groups. Osaka J. Math. 3, 243-256 (1966) | Zbl | MR

[123] Raghunathan, M.S. : Discrete subgroups of Lie groups. Erg. Math. Grenzgeb. 68, Springer (1972) | Zbl | MR

[124] Rajan, C.S. : Deformations of complex structure Г\SL2(ℂ). Proc. Indian Acad. Sci. Math. Sci. 104, n° 2, 389-395 (1994). | Zbl | MR

[125] Remmert, R. : Meromorphe Funktionen in Kompakten Komplexen Räumen. Math. Ann. 132, 277-288 (1956) | Zbl | MR

[126] Remmert, R. ; Van De Ven, T. : Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology 2, 137-157 (1963) | Zbl | MR

[127] Rosay, J.P. ; Rudin, W. : Holomorphic maps from ℂn to ℂn Trans. A.M.S. 310, 47-86 (1988) | Zbl | MR

[128] Rosenlicht, M. : On quotient varieties and the affine embedding of certain homogeneous spaces. Trans. A.M.S. 101, 211-223 (1961) | Zbl | MR

[129] Sakane, Y. : On Compact Complex parallelisable Solvmanifolds. Osaka J. Math. 13, 187-219 (1976) | Zbl | MR

[130] Scharlau, W. : Quadratic and hermitian forms. Grundlehren der mathematischen Wissenschaften, 270. Springer 1985 | Zbl | MR

[131] Schur, I. : Über Gruppen periodischer Substitutionen. Sitzber. Preuss. Akad. Wiss., 619-627 (1911) | JFM

[132] Schur, I. : Zur Theorie vertauschbarer Matrizen. J. Reine Angew. Math. 30, 66-76 (1905) | JFM

[133] Serre, J.P. : Galois Cohomology. Translated from the French by Patrick Ion and revised by the author. Springer 1997 | Zbl | MR

[134] Serre, J.P. : Cohomologie galoisienne. Lecture Notes in Mathematics, Springer 1994 | Zbl | MR

[135] Shimura, G. ; Taniyama, Y. : Complex multiplications of abelian varieties and its applications to number theory. Publ. Math. Soc. Japan 6 (1961) | Zbl | MR

[136] Selberg, A. : On discontinuous groups in higher-dimensional symmetric spaces. in Contributions to function theory. Bombay 1960, p. 147-164 | Zbl | MR

[137] Serre, J.P. : Sur les modules projectifs. Sem. Dubreil-Pisot exposé 2. (1960/1961) | Zbl | Numdam

[138] Snow, D. ; Winkelmann, J. : Homogeneous Manifolds with Large Automorphism Groups. Invent. math. (1998) | Zbl | MR

[139] Spanier, E. : Algebraic Topology McGraw-Hill 1966. Corrected Reprint : Springer 1981 | Zbl

[140] Taubes, C.H. : The existence of self-dual conformal structures. J. Diff. Geom. 36, 163-253 (1992) | Zbl | MR

[141] Thurston, W. : Threedimensional manifolds, Kleinian groups and Hyperbolic Geometry. Bull. A.M.S. 6, N.S. 357-381 (1982) | Zbl | MR

[142] Thurston, W. : Three-dimensional geometry and topology. Vol. 1. Edited by Silvio Levy. Princeton Mathematical Series, 35. Princeton University Press 1997 | Zbl | MR

[143] Tits, J. : Espaces homogènes complexes compacts. Comm. Math. Helv. 37 (1962), 111-120 | Zbl | MR

[144] Tits, J. : Tabellen zu den eifachen Lie Gruppen und ihren Darstellungen. Springer LN 40. 1967 | Zbl

[145] Tits, J. : Free subgroups in linear groups. J. Algebra 20, 250-270 (1972) | Zbl | MR

[146] Ueno, K. : Classification Theory of Algebraic Varieties and Compact Complex Spaces. LN 439 Springer 1975 | Zbl | MR

[147] Varouchas, J. : Kähler spaces and proper open morphisms. Math. Ann. 283, 13-52 (1989) | Zbl | MR

[148] Vinberg, E.B. : Discrete groups generated by reflections in Lobachevsky spaces. Math. USSR Sbornik 1, 429-444 (1967)

[149] Wang, H. : Complex parallelisable manifolds. Proc. A.M.S. 5, 771-776 (1954) | Zbl

[150] Weil, A. : On discrete subgroups of Lie groups I, II. Ann. Math. 72, 369-384 (1960) and 75, 578-602 (1962) | Zbl | MR

[151] Weil, A. : Remarks on the cohomology of groups. Ann. of Math. 80, 149-157 (1964) | Zbl | MR

[152] Winkelmann, J. : Every compact complex manifold admits a holomorphic vector bundle. Revue Roum. Math. Pures et Appl. 38, 743-744 (1993) | Zbl | MR

[153] Winkelmann, J. : Complex-Analytic Geometry of Complex Parallelizable Manifolds. Habilitationsschrift. Ruhr-Universität Bochum. Schriftenreihe des Graduiertenkolleg, Heft 13 (1995)

[154] Holomorphic Functions on Algebraic Groups Invariant under a Zariski dense subgroup. 519-529 in Proc. Complex Analysis and Geometry. Lecture Notes in Pure and Applied Math., Dekker Inc. 1995 | Zbl

[155] Winkelmann, J. : Complex Parallelizable Manifolds. Proc. Geometric Complex Analysis. 667-678 ed. by J. Noguchi et. al. World Scientific Publishing. Singapur 1996 | Zbl | MR

[156] Winkelmann, J. : On Discrete Zariski Dense Subgroups of Algebraic Groups. Math. Nachr. 186, 285-302 (1997) | Zbl | MR

[157] Winkelmann, J. : Only Countably Many Simply-Connected Lie Groups Admit Lattices. Complex Analysis and Geometry. Pitman Research Notes in Mathematics Series. V. Ancona, E. Ballico, R. Miro-Roig, A. Silva eds. | Zbl

[158] Winkelmann, J. : Holomorphic self-maps of Parallelizable Manifolds. Transformation Groups. (1998) | Zbl | MR

[159] Winkelmann, J. : Homogeneous Vector bundles on Parallelizable Manifolds. (to appear)

[160] Winkelmann, J. : The Albanese Variety of a Complex Parallelizable Manifold. (to appear).

[161] Winkelmann, J. : Arithmeticity of complex nilmanifolds. (to appear)

[162] Wu, T.S. : A Note on a Theorem on lattices in Lie Groups. Canad. Math. Bull. 31 (2), (1988) | Zbl | MR

[163] Zimmer, R. : Ergodic Theory and Semisimple Groups. Birkhäuser 1984 | Zbl | MR

Cité par Sources :