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COMPLEX ANALYTIC GEOMETRY
OF COMPLEX PARALLELIZABLE MANIFOLDS

Jorg Winkelmann

Abstract. — We investigate complex parallelizable manifolds, i.e., complex man-
ifolds arising as quotients of complex Lie groups by discrete subgroups. Special em-
phasis is put on quotients by discrete subgroups which are cocompact or at least of
finite covolume.

These quotient manifolds are studied from a complex-analytic point of view. Topics
considered include submanifolds, vector bundles, cohomology, deformations, maps
and functions. Furthermore arithmeticity results for compact complex nilmanifolds
are deduced.

An exposition of basic results on lattices in complex Lie groups is also included, in
order to improve accessibility.

Resume (Geometric analytique complexe et varietes complexes parallelisables)
On etudie les varietes complexes parallelisables, c'est-a-dire les varietes quotients

des groupes de Lie complexes par des sous-groupes discrets. On s'mteresse tout par-
ticulierement aux quotients par des sous-groupes discrets cocompacts ou de covolume
fini.

Ces varietes quotients sont etudiees du point de vue de la geometric analytique
complexe. On traite notamment les sujets suivants : les sous-varietes, les fibres
vectoriels, la cohomologie, les deformations, les applications et les fonctions. De plus,
on en deduit des resultats d'arithmeticite pour des nil-varietes complexes compactes.

Pour faciliter la lecture du texte, on a inclus un expose de resultats de base sur les
reseaux dans les groupes de Lie complexes.

© Memoires de la Societe Mathematique de Prance 72/73, SMF 1998
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PREFACE

This book is concerned with quotients of complex Lie groups by discrete subgroups.
Of particular interest are those quotients where the discrete subgroup is large in a
certain sense, e.g. cocompact or of finite covolume. We are interested in the complex-
analytic properties of these quotient manifolds. Typical questions include those on
the existence of meromorphic, holomorphic or plurisubharmonic functions, existence
and structure of complex subspaces and vector bundles, the rigidity of the complex
structure and the nature of certain cohomology groups. Arithmeticity results for
complex nilmanifolds are derived.

The core material for this book comes from the "Habilitationsschrift" of the author
([153]). However, there are a number of changes. We provide a more complete
exposition of the basic techniques used in this area and include proofs for auxiliary
results wherever possible without too much of an effort. In the Habilitationsschrift
mainly only the quotients by cocompact discrete subgroups were considered. Although
substantial additional work was required, most results of the Habilitationsschrift could
be proved for lattices, i.e., discrete subgroups with finite covolume. These have been
included in the present work.

I wish to express my gratitude and indebtedness to Alan T. Huckleberry for his
consistent support throughout my mathematical development.
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CHAPTER 1

INTRODUCTION

1.1. Summary

This book is organized in the following way. In the first chapter we introduce some
basic notions, provide some first examples of complex parallelizable manifolds and
collect some general results on Haar measures and on subgroups of linear groups.

In the second chapter we discuss arithmetic groups. We cite arithmeticity and
superrigidity results and a criterion for the cocompactness of arithmetic groups. Fur-
thermore, some examples of arithmetic lattices are presented.

In the third chapter a number of foundational results on lattices in complex Lie
groups are presented. Particular emphasis is given to density results and results im-
plying that certain orbits are closed. Moreover, the Albanese torus and the algebraic
reduction is discussed and it is shown that compact complex tori are the only quotients
of complex Lie groups by lattices which admit a Kahler metric.

In the fourth chapter, complex analytic subspaces of quotients of complex Lie
groups by lattices are studied. Normally, there are no hypersurfaces, but there
always exists closed analytic subspaces of higher codimension if the group is non-
commutative. We discuss the Kodaira-dimension of subspaces and show that in a
certain way it closely reflects the behaviour of subspaces in tori.

In the fifth chapter, holomorphic mappings and automorphism groups of complex
parallelizable manifolds are investigated. Often holomorphic mappings are automati-
cally equi variant. This permits a complete description of self-maps in general and the
automorphism group in particular.

Chapter 6 is concerned with basic facts on homogeneous vector bundles and con-
ditions under which a homogeneous vector bundle must be flat.

In Chapter 7 we deduce classification results for flat vector bundles over paralleliz-
able manifolds. In particular we introduce the notion of essentially antiholomorphic
representations and prove that every flat vector bundle over a quotient of a semisim-
ple complex Lie group without rank-1-factor by a lattice is induced by an essentially
antiholomorphic representation. Furthermore, the topological structure of homoge-
neous vector bundles is investigated and it is deduced that every positive-dimensional
compact complex manifold admits a non-trivial holomorphic vector bundle.

In Chapter 8 we study deformations of the complex structure of compact complex
parallelizable manifolds and investigate the cohomology group H1^-, 0). Forthermore
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we use the Serre-construction to prove the existence of non-homogeneous vector bun-
dles over certain quotients 5'Z/2(C)/r.

Chapter 9 is devoted to the structure theory of complex nilmanifolds. We prove
that they are always built from complex tori admitting a certain kind of complex
multiplication - a result which can be regarded as a kind of arithmeticity result for
complex nilmanifolds.

In the final chapter we discuss criteria for determining which complex linear alge-
braic groups satisfy the following statement: IfT is a Zariski dense discrete subgroup
of G, then every T-invariant holomorphic function on G is constant.

As an appendix, we provide a diagram displaying the dependency relations between
different density properties for discrete subgroups of complex Lie groups.

Each chapter of this book starts with a survey of the results obtained in that
chapter. Of course, these survey are more detailed than the present "tour d'horizon".

1.2. General references

General knowledge about complex manifolds, Lie groups and linear algebraic groups
is presupposed.

As general references we suggest
- [46, 50, 71] for complex analytic spaces,
- [48, 53] for algebraic geometry,
- [23, 20, 64, 115] for linear algebraic groups,
- [74] for Lie groups,
- [19, 65] for arithmetic groups,
- [92, 118, 123, 163] for discrete subgroups in Lie groups,
- [2, 61, 59, 77] for complex transformation groups.
- [24, 100] for locally compact topological groups
- [66] for fibre bundles and
- [Ill] for number theory.

The note [155] contains a short survey of many of the results treated in this book. A
number of results of the author described here have already been published elsewhere
([152, 153, 154, 156, 157, 158, 159, 160, 161]).

1.3. Parallelizable Manifolds

We will now introduce the notion of parallelizability.

DEFINITION 1.3.1. — A connected complex manifold X is called parallelizable if the
(holomorphic) tangent bundle is holomorphically trivial.

It is called group-theoretically parallelizable if X is biholomorphic to a quotient G/F
where G denotes a connected complex Lie group and F a discrete subgroup.
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1.4. FIRST EXAMPLES 3

Using fundamental vector fields induced by the G-left action on G/T, it is evi-
dent that a group-theoretically parallelizable complex manifold is parallelizable. Con-
versely, every compact paralllelizable complex manifold is group-theoretically paral-
lelizable.

THEOREM 1.3.2 (Wang [149]). — Let X he a connected compact parallelizable com-
plex manifold and Auto (X) the group of holomorphic automorphisms of X equipped
with the compact-open-topology. Let G denote the connected component of idx in
Anto(X)

Then X ^ G/T where T is a discrete subgroup of G. In particular X is group-
theoretically parallelizable.

Proof. — Since X is compact, every holomorphic function on X is constant. Hence
the triviality of the tangent bundle Tx implies that F(JC, Tx) is a complex vectorspace
of the same dimension as X. Recall that a vector field with compact support on a
manifold is always integrable to a one-parameter group of automorphisms. It follows
that F(X,Tx) is the Lie algebra of a complex Lie group G acting on X. Moreover,
since Auto(X) is a complex Lie group ([15]), it follows that this Lie group G is the
connected component of the whole automorphism group of X. The tangent space of
an orbit of G at a point p C X is the vector subspace of TpX spanned by the vector
fields induced by the G-action. Hence every point of X is contained in an open G-
orbit. Since X is connected, it follows that G acts transitively on X. Hence X ^ G/T
(with r discrete, because dim(X) = dim(G)). D

If X is a compact complex manifold on which a solvable (resp. nilpotent) com-
plex Lie group acts transitively, then X is called a (compact) complex solvmanifold
(resp. nilmanifold). Every compact complex solvmanifold is parallelizable [10].

1.4. First examples

Here we present some elementary examples of compact complex parallelizable man-
ifolds, i.e., quotients of complex Lie groups by discrete cocompact subgroups. The
simplest examples are naturally compact complex tori, i.e.y quotients C-^/H of com-
plex vector spaces by lattices. These are the only Kahler compact complex paralleliz-
able manifolds ([149], see also thm. 3.14.1).

Another well-known example is the Iwasawa-manifold, which is obtained as X =
GC/GZ^Z with

r/i^
GA = <. 1 y \'.x,y,z C A

I V 1
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The Iwasawa manifold is a popular example of a non-Kahler compact complex mani-
fold.

Note that Z 0 zZ is just the ring of algebraic integers in the number field k = Q[z].
This suggests the following generalization:

Let A; be a imaginary quadratic extension field of Q, i.e., k = Q[^] for some
negative rational number q e Q~. Fix an embedding a : k ̂  C and let A = a(0k),
where Ok denotes the ring of algebraic integers in k. Then GC/GA is a compact
complex parallelizable manifold.

EXAMPLE 1.4.1 (Otte-Potters [117]). — Let A; be a totally real number field of
degree d, Ok its ring of algebraic integers and o - i , . . . , a a : k —^ ]R C C be the d
distinct embeddings ofA; into R. Let H = C* iXpC be the semi-direct product given by
p : C* ^ Aut(C, +), Gi = ̂  and G be the subgroup of those ( ( A i , ^ i ) , . . . , (A^,^))
for which Hf^\i = 1. Now we obtain a discrete cocompact subgroup of G in the
following way. We embedd 0^ K (Ok^iOk) into H ' 1 via (o- i , . . . , c^). The theorem of
Dirichlet ensures that rank^C^ = d-1, ensuring cocompactness of F = 0^ tx (Ok^iOk)
mG.

EXAMPLE 1.4.2 (Nakamura [110]). — Let A G SL^T} with Trace(A) ^ {-2,2}.
Then A has a unique eigenvalue a with |a| > 1. Now let E be an elliptic curve {i.e.,
a one-dimensional torus) and X the quotient of X\ = C* x E x E by the Z-action on
X\ generated by

/g\
(x.s.t) ̂  (ax, A' [ )).

W
Then X is a compact complex parallelizable manifold.

EXAMPLE 1.4.3. — Let V = (C2, -h) and A be the lattice in V given by (Z © zZ)2.
Let A C 51/2 (Z[z]) with |Trace(A)| > 2, e.g.

^/4+. 2 -A

\l+i 1 )

Let F be the subgroup of 51/2 (C) K V generated by (A, 0) and (J, A) with A G A and
let G be its Zariski closure in SL^(C) K V. Observe that |Trace(A)| > 2 implies that
A is diagonalizable with one eigenvalue of absolute value larger than 1. Therefore
{A71 : n G Z} is discrete and contained in a commutative reductive subgroup of G.
Compactness of both C*/Z and V / A implies that F is cocompact in G.

Already in these examples it is apparent that arithmetic methods play an important
role in constructing lattices. We will discuss arithmetic groups in more detail in
chapter 2.
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1.5. Haar measure

A locally compact topological group is a group which is simultaneously a locally
compact topological space with countable basis of topology such that the group struc-
ture is compatible with the topological structure. Every locally compact topological
group G (thus in particular every Lie group) admits a left-invariant and a right-
invariant regular Borel measure which are both unique up to multiplication by a
positive real scalar, called the left- resp. right-invariant Haar measure [24]. Let [IG
denote a left-invariant Haar measure and for g G G let Rg : G —^ G denote the map
given by Rg(x) == xg~1. Let R^G be the measure given by

R^G(S) = ̂ cWS)) = ̂ G{Sg-1).

Then R^G is again a left-invariant Haar measure. Hence there exists a continuous
group homomorphism AG? : G —^ R4" such that RgfiG = ̂ (^)^G for all g G G. This
group homomorphism AG, also called modular function, measures to which degree
a left-invariant Haar measure on G fails to be right-invariant. Thanks to the Riesz
representation theorem we may consider the corresponding linear functionals on the
respective spaces of continuous functions with compact support instead of these reg-
ular Borel measures itself. Then Rg^c = ^{g)^G translates into

/ f(xg)dijiG(x) =^c(g) \ f{x)diiG(x).
JG JG

Note that AG'/^G is a right-invariant Haar measure. Furthermore ^* IJLG = AG; • I^G
where ^ : G —> G denotes taking the inverse, i.e., ^(g) = g~1. This translates into

f /\G{g)f{g)d^G(g) = I JOT1)^^).
JG JG

For a discrete group F the counting measure is the Haar measure. Since the
counting measure is evidently left- and right-invariant, Ar = 1 for every discrete
group r.

For a real Lie group G the Haar measure can be realized by a left-invariant volume
form induced by a non-zero element uj e y^1"16' (CieG*) and A is given by A(p) =
| detAd(^)| where Ad : G —>• GL{deG) is the adjoint representation.

LEMMA 1.5.1. — Let G be a locally compact topological group and H a closed
subgroup. Then G/H admits a left invariant Borel measure if and only if ̂ G\H = ^H-

Proof. — Let uj be a left-invariant Borel measure on G / H . Then a left-invariant
measure 77 on G is given by

f f(g)drf(g) = f ( { f(gh)d^H(h)} d^gH).
JG J G / H \JH )

Now R^r] = ^iiWrf for h G H and R^G = ^cW^c for all h C G. Unicity of
the Haar measure implies that rj = C^IG for some constant C > 0. It follows that
AG\H =A^.
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Now we have to show the converse. Thus let us assume ^G\H = A^. Let pi
denote the natural projection TT : G -)- G/T^ and let S denote the set of all continuous
functions C on G such that

1. C(^) > 0 for all g G G,
2. supp(C) Fl Tr"1^) is compact for every compact subset K C G / H .
3. fn W)d^nW = 1 for all g e G.

For every C € S a Borel measure 77 on G/lif can be denned by

( f(gH)drj(gH) = [ f(gH)(:(g)d^(g)
J G / H JG

We claim that ^G\H = A^ implies that this measure is independent of the choice of
C e s .

Indeed, let C, C^ ^ S, /o C Cc(G/H) and define / = /o o TT.
Then J^ C(p^) - ̂ {gh)dp,H(h) = 0 for all ^ G G and this implies

0 = I ^g)f(g) \l (:{gh) - ̂ d^w] d^g)
JG UH J

= I I ^(g)f{g) \W) - agh)} d^W^W
J H J G L ]

= [ AGW f ̂ gh-^f^h-1) \ag) -ag)] d^G(g)d^nW
JH JG N—^—'L -1

=f(9)

= f f{g) k(g)-ag)} f ̂ nW^^^gh-^d^Wd^g)
JG L ] J H ^HW

= t f(g) k(g) -ag)] f ̂ Wd^Wd^g)JG L ] JH

= f f{gK(g)d^G{g) - f f(gK(g)d^{g)JG JG
Finally left-invariance of the Borel measure rj follows from the fact that C ° Lg G S
for all g G G, < C S and Lg{x) = g • x. D

LEMMA 1.5.2. — Let G be a locally compact topological group, H C I C G closed
subgroups and assume that G/H carries a G-left invariant probability measure p..
Then there is a G-left-invariant probability measure on G/I, too.

Proof. — Consider the projection TT : G/H —^ G / I and define the desired measure rj
on G / I by rj{S) = ̂ Tr-^S)) for 5 C G / I . D

LEMMA 1.5.3. — Let G he a locally compact topological group and T a discrete
subgroup. Assume that there exists a G-invariant probability measure on G/F.

Then AG = 1.

Proof. — From lemma 1.5.1 we deduce that A^lr = Ar = 1. Thus F C kerAc?.
By lemma 1.5.2 above it follows that G/kerAc admits a G-invariant probability
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1.6. UNIMODULAR GROUPS 7

measure. Since G/kerAc- embeds into (M,+), this can happen only if G = kerA^,
i.e., AG EE 1. Q

LEMMA 1.5.4. — Tye^ G be a locally compact topological group and F a discrete
subgroup such that G/F is compact Then G/F admits a G-left invariant probability
measure.

Proof. — Note that G is locally compact and that the projection TT : G —>• G/F is an
open map. Hence compactness ofG/F implies that there exists a compact subset FQ c
G with 7r(Fo) = G/F. Choose a measurable subset F c FQ such that TT\F : F -> G/F is
bijective. Let p,o = ̂ G^G- Then fic is a right-invariant Haar measure. Compactness
of -FO implies that all the gF are measurable with p.G(gF) < oo. Furthermore one may
check easily that p,G(gF) = AG^)/^^). On the other hand, given g C G we may
define sets Fg^ by Fg^ = F D (gF^~1). Since TT projects both F and pF bijectively
onto G/F, it is clear that F = U^rFg^ and gF = U^r^/y • 7. It follows that

A(^(F) = flG(gF) =^G(Fg^ . 7) = ̂ ftG(Fg^) = ̂ (F).
7er 7er

Therefore Ac(p) = 1 for all g eG. Due to lemma 1.5.1 it follows that G/F admits an
invariant Borel measure uj. Finally compactness of G/F implies ^(G/F) < oo. Thus
Cu;(G/T) = 1 for a suitable choosen positive number C G R"^. D

DEFINITION 1.5.5. — A subgroup F in a locally compact topological group G is
called a lattice if F is discrete and there exists a G-invariant probability measure on
the quotient G/F.

Another name for lattices is discrete subgroups of finite covolume.

DEFINITION 1.5.6. — A subgroup F in a topological group G is called cocompact if
the quotient G/F is compact.

A cocompact subgroup is necessarily closed. A discrete cocompact subgroup is a
lattice by cor. 1.5.4 above.

Sometimes a discrete subgroup F of a locally compact group G is called uniform if
it is cocompact.

1.6. Unimodular groups

DEFINITION 1.6.1. — A locally compact topological group G is called urn-modular
iff A = 1, i.e., iff a left-invariant Haar measure is also right-invariant.

Using this terminology lemma 1.5.3 may be reformulated as follows: If a locally
compact topological group G contains a lattice F, then G must be unimodular.

If G is a locally compact topological group such that every continuous group ho-
momorphism from G to R is trivial, then G must be unimodular. This includes in
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8 CHAPTER 1. INTRODUCTION

particular compact topological groups and semisimple Lie groups and every locally
compact topological group G with G = [G,G].

Other examples of unimodular groups are nilpotent locally compact groups and
discrete groups.

For Lie groups it is easy to see that nilpotency implies unimodularity: If G is a
nilpotent Lie group, then Ad(g) is unipotent for every g e G. Hence | detAd(^)| = 1
for all g e G.

On the other hand, using structure theory of semisimple groups, it is easy to see
that parabolic subgroups of semisimple Lie groups are never unimodular.

1.7. Subgroups of linear groups

DEFINITION 1.7.1. — A group G is called torsion-free if it contains no elements of
finite order, i.e., g" ^ e for all g e G \ {e} and n G N.

Finitely generated linear groups are almost torsion-free.

PROPOSITION 1.7.2 (Selberg). — Let k be a field of characteristic zero, n e N and
let F be a finitely generated subgroup of GL(n, k).

Then F admits a torsion-free subgroup Fo of finite index.

Proof. — Let a i , . . . dg denote a set of generators of F and let T denote the set
of all torsion elements of r \ {e}. For each torsion element t C T we choose a
root of unity ^ ^ 1 which is an eigenvalue of t e GL(n,k). Now GL^ contains a
subvariety V defined over Q such that for every field K D Q there is a one-to-one
correspondence between J^-rational points in V and group homomorphisms p : F -^
GLn(K) given by Oo(a i ) , . . . , p(ag)) ~ p. There is a subvariety VQ corresponding to
those group homomorphism p such that ujf is an eigenvalue of p(t} for all t G T. This
subvariety is defined over Q and non-empty. Hence there is a Q-rational point in Vo
and consequently there exists a group homomorphism T : F -> GL^(Q) such that
kerr H T = 0. Since F is finitely generated, r(F) is actually contained in GLn{K)
for some finitely generated field K C Q, i.e., r(T) is contained in GLn(K) for some
number field K. Now for each t G T the eigenvalue ̂  of r(t) is contained in an
extension field Kt with deg(Kt/K) < n. Recall that for a fixed number d there exist
only finitely many roots of unity which are contained in a number field of degree < d.
It follows that there exists a natural number M such that for every t e T the order
of t divides M.

Let R denote the subring of K generated by all the matrix coefficients of all the
generators r(a,) and'T(a^1) and let p be a prime which neither divides M nor is
invertible in R. (Such a choice is possible, because R is a finitely generated ring.)
Now consider the ring homomorphism ̂  : R -^ R/pR and the induced group ho-
momorphism ^ : GL^(R) -> GL^R/pR). Since R is finitely generated as a ring, it
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follows that R/pR is a finite field. Thus the kernel ker('0 o r) is a subgroup of finite
index in T. We claim that this subgroup is torsion-free. Indeed, if g G ker(^ o r) \ {e},
then r{g) == In +pA for some A C M(n,R) and the calculation

{In + pA)^ = In + mpA modulo p2

shows that g171 ^ e unless p divides m. But p was choosen in such a way that it
does not divide the order of any torsion element of T. Thus Fo = ker('0 o r) is
torsion-free. D

COROLLARY 1.7.3. — Let k be a field of characteristic zero, n G N and F C GL(n, k)
be a subgroup such that every element of F is of finite order.

Then T is locally finite, i.e., every finitely generated subgroup ofT is finite.

DEFINITION 1.7.4. — A group r is called residually finite, if for every 7 e F \ {e}
there exists a group homomorphism ^ from T to a finite group F such that ^(7) 7^ e.

PROPOSITION 1.7.5 (Malcev, [87]). — Let k be a field, n e N and let F be a finitely
generated subgroup ofGLn{k).

Then F is residually finite.

Proof. — Let a i , . . . , dg be a set of generators of F and R denote the subring of k
generated by the a^ and a^~1. Then R is a finitely generated ring. For every prime ideal
p C R and every number A; G N the quotient ring R/p^^ is a finite set. Moreover Hfcp^ =
{0}. Now consider the induced group homomorphisms ^n : GL{n, R) —^ GL(n, R/p^.
All the groups GL^n^R/p^ are finite and ^\kpk == {0} implies Dfc ker^ = {e}. Hence
GL(n,R) and thereby F are residually finite. D

We will also make use of the Tits-alternative.

THEOREM 1.7.6 (Tits). — Let k be a field of characteristic zero, n C N and F a
subgroup of GL{n^ k).

Then either T contains a non-commutative free subgroup or F contains a solvable
subgroup of finite index.

For the proof see [145].

COROLLARY 1.7.7 (Zassenhaus). — Let k be a field of characteristic zero, n G N
and r a subgroup of GL(n^ k).

Then F is solvable if and only if every finitely generated subgroup of F is solvable.

One of the ingredients of Tits5 proof is the subsequent theorem of Schur ([131], see
also [35], p. 582).

THEOREM 1.7.8 (Schur). — There exists a map F : N —^ N such that the following
is true:
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Let k be a field of characteristic zero, n G N and F C GL{n^ k) a subgroup such
that every element 7 ofF is of finite order (the order possibly depending on ̂ ).

Then there exists an abelian normal subgroup To C F of finite index such that
#(r/Fo)<F(n).

This result of Schur contains an earlier theorem of Jordan ([68], see also [16]) as
a special case.

COROLLARY 1.7.9 (Jordan's theorem). — There exists a function k : N —>• N such
that for every finite subgroup F C GLn(C) there exists a normal abelian subgroup
A < F such that F/A has at most k(n) elements.

Instead of C?L(n, C) we may consider arbitrary real Lie groups with finitely many
connected components.

COROLLARY 1.7.10. — Let H be a (real) Lie group with finitely many connected
components.

Then there exists a number k{H) such that for every finite subgroup F C H there
exists an normal abelian subgroup A < F such that F/A has at most k(H) elements.

Proof. — Let K be a maximal compact subgroup of H. Then every finite subgroup
of H is conjugate to a finite subgroup of K. Since K is compact, there exists a faithful
representation p : K —> GLn(C) for some n € N. Therefore the statement follows
from cor. 1.7.9. D

LEMMA 1.7.11. — Let G be a connected real Lie group, F a subgroup such that each
element 7 G F is of finite order.

Then F is almost abelian and relatively compact in G.

Proof. — If G is abelian, then G ^ M^ x (51)71. In this case F C (S'1)71 and the
statement is immediate.

Now let us assume that G may be embedded into a complex linear algebraic group
G. Let H denote the (complex-algebraic) Zariski closure of F in G. By the above
mentioned theorem of Schur (thm. 1.7.8) F is almost abelian, hence H° is abelian.
This completes the proof for this case, since we already discussed the situation where
G is abelian.

Finally let us discuss the general case. By the above considerations Ad(ro) is
contained in an abelian connected compact subgroup K of Ad (G) for some subgroup
Fo of finite index in F. Now N = (Ad)"1^) is a central extension 1 —> Z —^ N —>
K —^ 1. (where Z is the center ofG). But complete reducibility of the representations
of compact groups implies that this sequence splits on the Lie algebra level. Hence
N is abelian and we can complete the proof as before. D
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LEMMA 1.7.12. — Let G be a connected complex linear algebraic group and F a
Zariski dense subgroup.

Then F contains a finitely generated subgroup FQ such that the Zariski closure of
FO contains the commutator group G1 of G.

Proof. — Consider all finitely generated subgroups of F and their Zariski closure in
G. There is one such group F() for which the dimension of the Zariski closure A is
maximal. Clearly A must contain the connected component of the Zariski closure for
any finitely generated subgroup of F. This implies that A° is normalized by F. Since
r is Zariski dense, it follows that A° is normal in G. Furthermore maximality implies
that the group F/A° contains no element of infinite order. Hence F/A° is almost
abelian by lemma 1.7.8, which implies that G/A° is abelian. Thus G' C A. D

Caveat: There is no hope for A = G, even if F is discrete. For instance, let A C
5'L(2,C) be a discrete free subgroup with infinitely many generators A i , A 2 , . . . and
let F be the subgroup of G = SL{2,C) x C* generated by 7n = (An.e27^) with
n = l , 2 , . . . .

1.8. Lattices are finitely generated

Let G be a Lie group. An arbitrary discrete subgroup is not necessarily finitely
generated. For instance, the universal covering of C \ Z is the unit disk and this
fact implies that 71-1 (C \ Z) can be embedded into PSL^(R) = Aut(A). However, for
lattices the situation is better. If F is a discrete cocompact subgroup of a Lie group
G, then the quotient G/F is a compact manifold. This implies that the fundamental
group Ti-i (X) is finitely presentable and in particular finitely generated. From this one
easily deduces that F must be finitely presentable as well.

For non-cocompact lattices the argumentation is more complicated, however it is
nevertheless true that they are finitely generated.

THEOREM 1.8.1 (Raghunathan, see [123], thm. 6.18). — LetG be a connected (real
or complex) Lie group and F a lattice in G. Then F is finitely generated.

1.9. Algebraicity of Lie groups

We will need some algebraicity results for Lie groups.
If G is a simply connected complex nilpotent Lie group, the exponential map is

a biholomorphic map from Cie(G) to G. As a vector space Cie(G) carries naturally
a structure as an algebraic variety. Via the exponential map this induces a natural
structure of a unipotent algebraic group on G.

For a semisimple complex Lie group S let K be a maximal compact subgroup
and consider the K- action on the vector space 0{G) of holomorphic functions which
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is induced by the K-a.ciion on G by left multiplication. Then there is a canonical
algebraic structure (independent of the choice of K) on G given in the following way:
A holomorphic function / on G is algebraic if and only if the vector space spanned
by the K-orbit K(f) through / in 0(G) is finite-dimensional.

In this way, both semisimple and simply connected nilpotent complex Lie groups
are intrinsically algebraic.

PROPOSITION 1.9.1. — Let G be a simply connected complex Lie group with G = G'.
Then G carries the structure of a linear algebraic group. Moreover, for every complex
linear algebraic group H every homomorphism of complex Lie groups f '. G —> H is
already a morphism of algebraic groups.

Proof. — Since G is simply connected, it is linear and algebraicity follows from G =
G ' . Let / be a homomorphism of complex Lie groups to some complex linear algebraic
group H. Let I = f(G). Then 1 = 1 ' and consequently I is algebraic and moreover
the nilradical of I is unipotent. Now every homomorphism of complex Lie groups
between unipotent groups is algebraic. Furthermore every homomorphism of complex
Lie groups between semisimple groups is algebraic. Using Levi-decomposition this
implies that / is algebraic. D

Recall that every continuous group homomorphism between Lie groups is real-analytic.
Using this fact we can improve the algebraicity result via restriction of scalars.

PROPOSITION 1.9.2. — Let G, H be complex linear algebraic groups and assume
G ^ G ' .

Then every continuous group homomorphism p : G —> H is already real-algebraic.

Using similar methods one may also prove an algebraicity result for commutator
groups. First we develop an auxiliary lemma.

LEMMA 1.9.3. — Let G be a connected algebraic group, Y C G a Zariski dense
subgroup. Then the commutator group V is Zariski dense in G'.

Proof. — For n 6 N consider the morphism of algebraic varieties C,n '- (G x G)71 —)- G
given by

Cn : ( ( a i , & i ) , . . . , ( < 2 n , & n ) ) ̂  (a^a^b^) • • • (aA<1^1)

Let Sn denote the Zariski closure of the image. Then Sn is an increasing sequence of
irreducible algebraic subvarieties of G ' ' . This sequence necessarily becomes stationary.
Therefore SN = G' for N sufficiently large. Finally observe that CTV ((F x F)") is
Zariski dense in Sn and CTV ((F x F)71) C F'. D

PROPOSITION 1.9.4. — Let G be a connected complex Lie subgroup of GLn(C) and
G its Zariski closure. Then G' == (G) .

In particular G' is an algebraic subgroup.
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Proof. — Let G = S • R be a Levi-Malcev decomposition, i.e., S is a maximal con-
nected semisimple Lie subgroup of G and R the radical of G {i.e., the maximal
connected normal solvable Lie subgroup). Then S is already algebraic. It follows that
G = S • R where R denotes the Zariski closure of R. By standard structure theory
of linear algebraic groups it follows that {G)' = S ix U for some unipotent group U.
Since G' is a connected complex Lie subgroup of (G)' and S C G ' , it follows that
G' = S K V for some connected Lie subgroup V of U. But connected Lie subgroups
of unipotent groups are algebraic. Hence G' is already an algebraic group. Since G'
is Zariski dense in {G)' by the above lemma 1.9.3, it follows that G' = ((?)'. D

1.10. Tits-fibration

Let G be a connected complex Lie group and H a closed complex Lie subgroup.
Let H° be the connected component of H and N = NG(H°) its normalizer, i.e.

NG(H°) = [g € G : gH°g-1 = H°} .

The projection map TT : G / H —^ G/N is called the Tits-fibration of G / H . Its proper-
ties may be summarized as follows.

THEOREM 1.10.1 (Tits [143]). — Let G be a connected complex Lie group, H
a closed complex Lie subgroup, N = NG(H°) and TT : G / H —>• G/N the natural
projection.

Then the base manifold G/N admits a G-equivariant embedding into a protective
space PM^) and the fiber N/H is a parallelizable complex manifold.

If G/H is compact, then TT is universal in the sense that for every connected complex
Lie group I acting transitively on X = G/H, every m G N and every I-equivariant
holomorphic map f : X -)- Pyn(C) there exists a holomorphic map F : G/N —> Prrz(C)
such that f = F OTT.

Proof. — The base manifold G/N can be embedded into a Grassmann manifold of
vector subspaces of Cie(G) in the following way: The point gN is mapped to the point
in the Grassmann manifold corresponding to the vector subspace Ad(^) (Cie(H)) of
Cie{G). By use of Plucker coordinates this Grassmann manifold can be embedded
equivariantly into some projective space PM(C).

The fiber N / H is isomorphic to the quotient of the complex Lie group N / H ° by
the discrete group H / H ° and therefore parallelizable.

Finally, we have to show the universality property. If G / H is compact, then both
Y = G/N and N / H are compact. Being a compact orbit of a subgroup of some
GI/M(C) acting linearly on some PM(C), it is clear that Y is isomorphic to a quotient
of a semisimple Lie group by a parabolic subgroup and therefore simply connected.
Thus N/ H must be connected. It follows that every holomorphic function on N / H
is constant. For every fiber F = Tr^^y) of TT : G/H —^ G/N the map TT induces a
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morphism DTT : TX\p -^ Ty(G/N). Considering this map, 0 ( N / H ) = C implies
that if a holomorphic vector field on X is tangent to F in one point, it must be
tangent to F everywhere. Therefore every complex Lie group I acting transitively
on X contains a complex Lie subgroup J stabilizing F and acting transitively on F.
Parallelizability of N / H implies that the J-action on N / H is induced by a group
homomorphism p ' . J -> N / H ° . Using this fact, the desired universality property is a
direct consequence of lemma 3.4.3. Q

1.11. Linearity of simply connected complex Lie groups

At many points in our work the following fact is useful. It is a consequence of Th
XVIII.4.7 in [57].

PROPOSITION 1.11.1. — Let G be a simply connected complex Lie group. Then
there exists an injective homomorphism of complex Lie groups i : G -^ GLn(C) for
some n G N.

Once one obtained an embedding into GLn(C) one can construct a better one.

LEMMA 1.11.2. — Let G be a simply connected complex Lie group and i : G —>
GL(7V,C) be an injective morphism of complex Lie groups.

Then there exists a number M > 0 and an injective morphism of complex Lie groups
j : G -> GL(M,C) such that j(G) is closed in GL(M,C) andj(N) is unipotent where
N denotes the nilradical ofG.

Proof. — Note that G / G ' ^ (C^, +) for some d > 0 since G is simply connected. Let
TT : G —^ G/G' denote the natural projection and choose a morphism of complex Lie
groups v : G / G ' -^ GL(2d,C) which embedds G / G ' as a closed unipotent subgroup.
Now define j by j = (%, Z/OTI-) and recall that i(G') is an algebraic subgroup ofGL(7V, C)
(prop. 1.9.4). It follows that j has the desired properties. D

This has the following consequence.

COROLLARY 1.11.3. — Let G be a simply connected complex Lie group.
Then G is Stein as a complex manifold.

This is a special case of the results ofMatsushima and Morimoto ([96]) who studied
the question which complex Lie groups are Stein as complex manifolds.

1.12. Fundamental groups

We will now apply the above mentioned linearity result to parallizable manifolds.
We start by the following observations.
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REMARK 1.12.1. — Let G be a connected (complex) Lie group. The universal
covering G of G admits a natural structure of a (complex) Lie group such that the
projection TT : G —> G is a homomorphism of (complex) Lie groups. Every action of G
on some space X can be lifted to a G-action on X (with ker TT being contained in the
ineffectivity). If F is a discrete subgroup of G, then G/F ̂  G/TT'^F) and X = G/F
is a manifold with G as universal covering and Tr"^!") as fundamental group.

PROPOSITION 1.12.2. — Let X be a compact complex parallelizable manifold and
X its universal covering.

Then X is a Stein manifold.

Proof. — The complex manifold X may be realized as a quotient of a simply con-
nected complex Lie group G by a discrete subgroup F (thm. 1.3.2) and a simply
connected complex Lie group is necessarily a Stein manifold (cor. 1.11.3). D

LEMMA 1.12.3. — Let G be a connected complex Lie group, F a discrete subgroup
and X = G/F.

Then the fundamental group 7Ti(X) can be embedded into some GLn(C).

Proof. — This follows with the help of prop. 1.11.1. D

COROLLARY 1.12.4. — Let G be a connected complex Lie group, T a finitely gener-
ated discrete subgroup and X = G/F.

Then the fundamental group TTI (X) is residually finite.

Proof. — Combine the preceding corollary with prop. 1.7.5. D

COROLLARY 1.12.5. — Let G be a simply connected complex Lie group and F a
lattice in G.

Then F ̂  71-1 (G/r) is residually finite.

Proof. — This follows from thm. 1.8.1 in combination with prop. 1.7.2. D
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CHAPTER 2

ARITHMETIC GROUPS

2.1. Survey

The single most important method of constructing lattices in Lie groups is to use
arithmetic groups. In this chapter we first discuss lattices in nilpotent Lie groups,
where arithmeticity statements take a particularly simple and complete form. Later
we discuss arithmetic groups in arbitrary Lie groups. We quote the main arithmeticity
results for lattices, in particular Margulis5 superrigidity theorem. We also cite a
criterion determining whether a given arithmetic group is a lattice or cocompact.
These criteria are used to deduce some partial answers to the following question
"Which complex Lie groups do contain discrete cocompact subgroups ?"

Most of the material in this chapter is well-known and covered in the standard
literature on arithmetic groups (see e.g. [19, 65, 92, 123]).

2.2. Lattices in nilpotent Lie groups

For lattices in real simply connected nilpotent Lie groups there is a very complete
theory going back to the work of Malcev [89]. There are many expositions of this
theory, see e.g. [123].

THEOREM 2.2.1 (Malcev). — Let G be a simply connected real nilpotent Lie group
and r a discrete subgroup. Let V be the (Q-vector subspace of Cie{G) spanned by
exp'^r) and let H denote the intersection of all connected Lie subgroups of G con-
taining r. Then the following assertions are true:

- H/F is compact.
- V is a Q)-Lie algebra and the embedding ofV into Cie(G) induces an isomor-

phism between V 0Q M and Cie(H).

Conversely, let n be a nilpotent Q)-Lie algebra n with a Q-vector space basis (ai,..., a^)
and let N denote the simply connected real nilpotent Lie group corresponding to n0QR.

Then there exists a natural number M such that exp ((Mai,..., Mar)j) is a dis-
crete cocompact subgroup of N.
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Thus there is of one-to-one correspondence between (commensurability classes of)
lattices in simply connected nilpotent Lie groups and Q-structures of the correspond-
ing Lie algebra.

COROLLARY 2.2.2. — Let G be a simply connected real nilpotent Lie group with Lie
algebra Cie(G). Then there exists a discrete cocompact subgroup T C G if and only if
there exists a nilpotent Q)-Lie algebra n such that Cie(G) c^ n 0Q R.

COROLLARY 2.2.3. — Let r be a discrete cocompact subgroup in a simply connected
real nilpotent Lie group G. Let G^ denote the derived series (i.e., G^ = G and
^(fe+i) ^ [GW,G^]}, Gk the (descending) central series (i.e., G1 = G and G^1 =
[G.G^) andCk the ascending central series (i.e., Co = {e} andC^i/Ck is the center
of G/Ck). Then all the quotients G^/(G^ D F), Gk/(Gk U F) and Ck/(Ck H F)
are compact for all k.

Proof. — If Cie(G) can be defined over Q, the same is true for all the Lie algebras
of all the groups in the derived and descending resp. ascending central series. D

Since evidently there exist only countably many non-isomorphic Q-Lie algebras,
this correspondence can be used to prove that there exist real and complex nilpotent
Lie groups without lattices.

PROPOSITION 2.2.4. — There exists simply connected complex nilpotent Lie groups
which do not admit any discrete cocompact subgroup.

Proof. — It suffices to show that there exist uncountably many non-isomorphic real
nilpotent Lie algebras admitting a complex structure. Let V, W be complex vector
spaces of dimension n, m respectively. Let Horn* (A2 V, W) denote the set of all alter-
nating bilinear maps (f) : V x V —> W for which (f)(V x V) generates TV as a vector
space. Then the double coset space

5n,m = GL^V^Hom^V^/GL^W)

enumerates all equivalence classes of real nilpotent Lie algebras n which admit a
complex structure and fulfill dim^n/n') = 2n, dim^n') = 2m and [n^n'} = {0}.
Now diniR Hom^A2^ W) = mn(n - 1) while dimp GL^{V) x GL^(W) = 4n2 + 4m2.
Hence for mn{n — 1) > 4n2 + 4m2 the set Sn,m can not be countable. D

2.3. Arithmetic subgroups

In this section we discuss general properties of arithmetic groups.

THEOREM 2.3.1 ([21, 107]). — Let G C GLn be an algebraic subgroup defined over
Q, r = C?(Z) = GnGL^Z) and let XQ(G) denote the group of Q- characters, i.e., the
group of all Q-group morphisms from G to the multiplicative group Gm-

MfiMOIRES DE LA SMF 72/73



2.4. ARITHMETICITY OF LATTICES 19

Then F is a discrete subgroup of the real Lie group G(R) with the following prop-
erties:

1. The quotient manifold G(R)/T has finite volume with respect to a G-left invari-
ant Borel measure on G(R)/T if and only if^(G) = {1}.

2. The quotient manifold G(R)/T is compact if and only ifG is Q)-anisotropic.

REMARK 2.3.2. — If we replace Q by an arbitrary number field K, the corresponding
statements still hold with Z replaced by the ring OK of algebraic integers of K and
R being replaced by ILeTZoo^ where T^oo is the set of all archimedean valuations of
K and Ky is the completion of K with respect to the valuation v.

However, this yields no new examples of lattices, since G(Z) ^ H(OK) and G(M) ^
Tl^€naaH(I^v) for G = Rp/qH if K is a number field and H a K-gronp (where RK/Q
denotes the restriction of scalars functor).

REMARK 2.3.3. — For a field K of characteristic zero and an algebraic K-group G
the following conditions are equivalent:

1. G is JC-anisotropic.
2. G does not contain any K-split torus.
3. XK^G) = {1} and every unipotent element ofG{K) is contained in the unipotent

radical Rn (G) ofG.

Since every complex semisimple Lie group can be defined over Q it is immediate
that every complex semisimple Lie group contains a lattice, e.g. 5Ln(Z[z]) is a (non-
cocompact) lattice in SLn(C). Constructing cocompact lattices is more intricate.

THEOREM 2.3.4 (Borel). — Let G be a (real or complex) semisimple Lie group.
Then there exists a discrete cocompact subgroup.

Borel's proof (as given in [18]) for the existence of discrete cocompact subgroups
in every semisimple (real) Lie group may be sketched as follows. Given a real simple
Lie group G one can show that there exists a compact semisimple real Lie group Gu
and an algebraic group H defined over Q such that H is simple over Q but isomorphic
to G x Gu over R. A faithful representation of H over Q yields a discrete arithmetic
subgroup F C H(Q) cGxGn. Q-simplicity of AT implies that Jf(Q)nG is finite, hence
7T2 : H((Q)) —^ Gu is almost injective. Therefore H(Q)) has no unipotent elements, i.e.,
H is Q-anisotropic. It follows that F is cocompact in H(R), implying that ^(F) is a
discrete cocompact subgroup of G. (For details see [18], [123].)

2.4. Arithmeticity of lattices

In many cases one can prove that lattices are necessarily arithmetic in a certain
sense.
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For instance, the theory of Malcev for lattices in nilpotent Lie groups implies the
following.

PROPOSITION 2.4.1. — Let G be a simply connected real nilpotent Lie group and F
a lattice in G.

Then there exists a unipotent algebraic group U defined over Z such that there exists
an isomorphism of Lie groups (j) : U(R) —^ G such that (j)(U(Z)) is commensurable
to r (i.e., the intersection 0(L^(Z)) D r is a subgroup of finite index in both (J)(UCK))
and T).

For solvable groups one has the following result of Mostow.

THEOREM 2.4.2 (Mostow, see [123], thm. 4.34). — LetF be a lattice in a real simply
connected solvable Lie group G.

Then there exists an injective Lie group homomorphism p : G —>• GLn(K) with
p{r)cGL^W.

Later on arithmeticity results have been obtained for lattices in many classes of
groups. For lattices in complex semisimple groups, this culminated in the following
arithmeticity theorem of Margulis.

THEOREM 2.4.3 (Margulis, [92]). — Let T be a lattice in a semisimple complex
Lie group S. Assume that F is irreducible, i.e., there does not exist any normal
Lie subgroup H C S for which H D r is a lattice in H. Assume furthermore that
S^SL^C).

Then F is arithmetic in the following sense: There exists a Q-group H and a proper
morphism of Lie groups r : H(]K) —>• S such that F is commensurable to r(H ('£)).

Cocompact lattices in SL^((C) are not necessarily arithmetic. However, at least
they fulfill the following weak "arithmeticity" condition (see [123], thm. 7.67):

PROPOSITION 2.4.4. — Let F be a discrete cocompact subgroup of SL^(C).
Then there exists a number field K and an element g G SL^(C) such that g^g~1 C

sw).

2.5. Superrigidity

We will need the following special case of Margulis5 superrigidity theorem [92].

THEOREM 2.5.1 (Superrigidity). — Let S be a simply connected semisimple complex
Lie group and Y a lattice. Assume that no factor of S is isomorphic to 51/2 (G).

Then there exists a simply connected compact real semisimple Lie group K, a sub-
group Fo C r of finite index and a group homomorphism $ : To —>• K such that the
following condition is fulfilled:
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Given a real linear algebraic group H and a group homomorphism p:V -> H there
exists a subgroup Tp C Fo of finite index and a real-algebraic group homomorphism
p : S x K —^ H such that p\ro coincides with p o (z,^) : Fo —^ H.

Superrigidity is used in the proof of the arithmeticity results of Margulis stated
in the preceding section. Margulis proved the above stated superrigidity result us-
ing methods from ergodic theory. Later, different proofs using harmonic maps were
developed ([34, 49, 70, 99]).

We will also make use of the following related result.

THEOREM 2.5.2 ([92]). — Let G be a simply connected complex Lie group without
SL^ (C) -factors, F a lattice and A a normal subgroup ofT.

Then either A or F/A is finite.

COROLLARY 2.5.3. — Under the assumptions of the theorem r/[F,r] is finite and
every group homomorphism from F to (Z, +) is constant.

2.6. Cohomology groups of arithmetic groups

PROPOSITION 2.6.1 (Margulis). — Let S be a simply connected semisimple complex
Lie group without SL^-f actor, let T C S be a lattice and let p be a finite-dimensional
representation ofF (over C, IR or any field of characteristic zero).

Then ^(T.p) = {0}. Moreover, p is completely reducible.

Proof. — For the vanishing of H1^,?) see [92]. Here we explain how the vanishing
result implies the complete reducibility. Let

(*) 0 -^ Vi -^ V2 -^ Vs -^ 0

be a short exact sequence of F-modules (over a field of characteristic zero). We have
to show that it splits. Taking the tensor product with V^ yields another short exact
sequence of G-modules:

0 —> V^ 0 Yi —^ ^3* 0 V2 —^ Vs* (g) ¥3 —^ 0.

The vanishing of ^(F, •) for every finite-dimensional representation implis that the
associated sequence of invariant submodules is exact. In particular (V^ (g) V^ —>
(V^ (g) V^ is surjective. Hence the identity homomorphism id^ C Hon^V^yg) lifts
to an element in Hom(V3, V^)°, i.e., (*) splits as a sequence of G-modules. D

There is another vanishing result going back to Kazdan. Kazdan introduced what
is now called "property T" ([72]). By definition, a locally compact topological group
has this property if the trivial representation is isolated in the space of all unitary
representations. This property is equivalent to the vanishing of H1^,?) for every
unitary representation p. If F is a lattice in a Lie group G, then T has property T if
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and only if G has property T'. A simply connected semisimple complex Lie group has
property T if and only if none of its simple factors is isomorphic to SL^(C).

See [72] and [92], Ch. Ill for more information about property T.

2.7. Non-arithmetic lattices

SL^(C) is the only simply connected simple complex Lie group which admits non-
arithmetic lattices, see [86, 148].

Certain discrete cocompact subgroups in SL'z(C) arise from differential geome-
try. There is a well-known link between three-dimensional real hyperbolic manifolds
(hyperbolic in the sense ofRiemannian geometry, %".e., constant negative sectional cur-
vature) and complex-parallelizable manifolds of the form X ^ SL^ (C)/T. See [142]
for more information about three-manifolds.

THEOREM 2.7.1. — Let M be an oriented connected compact Riemannian manifold,
dimR(M) = 3, with constant negative sectional curvature.

Then 71-1 (M) may be embedded into PSL^{C) = SL^(C)/{±I} as discrete cocom-
pact torsion-free subgroup. The preimage r~l(T) in SL^ (C) (where r : SL^(C) —>
PSL'z(C) denotes the natural projection) is again a discrete cocompact group.

REMARK 2.7.2. — Evidently the preimage T~l(^) is not torsion-free, because
kerr == {^1}- However, every discrete cocompact subgroup in a linear Lie group
contains a torsion-free subgroup of finite index (prop. 1.7.2).

In this way the above procedure yields discrete cocompact torsion-free subgroups
in 51/2 (C).

Proof. — The universal covering M of M is isometrically diffeomorphic to the quo-
tient PSL^(C)/K where K is a maximal compact subgroup of PSL^(C). Moreover
PSL^{C) is the full group of orientation preserving isometries of M. Thus the action
of TTi (M) on M by deck transformations induces an embedding 71-1 (M) ^-> PSL^^C).
The image of this embedding is obviously discrete. The cocompactness follows from
the compactness of M and K^ because 7r^(M)\PSL^(C)/K c^ M. It is torsion-free,
because no finite group can act freely on the real manifold M ̂  R3. D

Such considerations produce the following result of j0rgensen, which is a key element
in constructing a number of examples involving SL^(C). Similar examples were also
constructed by Millson [97].

PROPOSITION 2.7.3 (see [69]). — There exists a discrete cocompact subgroup F C
SL^{C) with a surjective group homomorphism p :T —> Z.^

^ J0rgensen has proved more, namely that such a p can be choosen in such a way that kerp is
finitely presentable.
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Thurston even conjectured that every discrete cocompact subgroup of SL^ (C) ad-
mits a subgroup of finite index TQ such that rankz^o/Fo) > 0 ([141]).

2.8. Arithmeticity and complex structure

Given a simply connected simple complex Lie group G, the result of Borel (theo-
rem 2.3.4, [18]) proves that there is a Q-simple group H such that Jf(Z) is cocompact
in H(R) and H(R) is isomorphic as a real Lie group to a direct product of G and a
compact real semisimple Lie group U. Naturally, one would like to know whether this
compact real factor U can be avoided. The answer is the following.

PROPOSITION 2.8.1 (Otte, [116]). — Let G be a semisimple C-group. Then there
exists a Q-anisotropic Q)-simple (Q-group H with G(C) ̂  H(R) as topological groups
if and only if G ̂  Gf for some d G N where G\ is a simple C-group of type An, i.e.,
isomorphic to some SLn-^-i.

Sketch of proof. — For a finite separable field extension K / k let Rp/k denote the
"restriction of scalars functors55 as explained in [19, 92]. Then G(C) ^ H(R) is
equivalent to Rc/pG ^ H and it follows that H ^ RK/^I for some totally imaginary
extension field K of Q and a JC-group I with I ^ G over C. Hence the existence of
such a Q-anisotropic group H is equivalent to the existence of a jRT-anisotropic K-form
of G for some totally imaginary extension field K. Now K-forms can be parametrized
by Galois cohomology and results on Galois cohomology (see [51, 133, 134, 31])
imply that such a K-form exists if and only if G is of type An. D

This has consequences for the existence of cocompact lattices in "mixed55 (i.e.,
neither solvable nor semisimple) complex Lie groups.

PROPOSITION 2.8.2 (Otte-Potters [117]). — Let G be a simply connected complex
Lie group, R its radical, and S = G/R. Assume that one of the simple factors of S
is not of type An and acts non-trivially on R by conjugation.

Then G does not admit a discrete cocompact subgroup.

Sketch of the proof. — Assume that there exists a discrete cocompact subgroup F.
Let TT : G —>• S denote the natural projection. Then Ai = 7r(T) is a cocompact
lattice in S (thm. 3.5.3). Let N denote the nilradical of G and N1 its commutator
group. Then S acts non-trivially on N / N ' and A2 = (F H N ) / ( T H N ' ) is a lattice
in N / N 1 (cor. 2.2.3). Thus Ai K As is a cocompact lattice in S ix ( N / N 1 ) . Therefore
there is no loss in generality in assuming that R is a vector group (Cd,+). If we
forget the complex structure of R, then Ai C (7.L(2d,Z) after a suitable change of
coordinates on R, since Ai stabilizes the lattice Aa in R. Thus Rc/pS is defined over
Q and by cocompactness of Ai it follows that it is Q-anisotropic. Hence the result by
prop. 2.8.1. D
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Conversely there exist such semi-direct products with SLn(C) containing cocom-
pact lattices.

PROPOSITION 2.8.3. — For every n > 2 there exists a complex vector space V and
an irreducible representation p : SLn{C) —>• GL(V) such that SLn{C) x (V, +) admits
a discrete cocompact subgroup.

Let S = S'Z/2(C) and ^ : S —>• GL(W) be an irreducible representation.
Then S ix^ (TV, +) contains a discrete cocompact subgroup if and only if dim(TV) is

odd.

Proof. — We will check later in detail that for every n > 2 and every imaginary
quadratic number field K there exists a J^-anisotropic K-form of SLn (see §2.9).

Now let us discuss SL^. We are looking for an imaginary quadratic number field K
and K-form S of SL^ such that there exists a absolutely irreducible ^-representation
of 6'. For n = 2A;+1 an n-dimensional absolutely irreducible JC-representation can be
obtained as an irreducible component of Cx^Ad where Ad is the adjoint representation.
Thus for every X-form of SL^ and every odd number n there exists an absolutely
irreducible n-dimensional K -representation. Conversely, assume that S is a .RT-form
with an absolutely irreducible ^-representation p of dimension n = 2k. Let r be an
absolutely irreducible ^-representation of dimension 2k — 1. Then p 0 r contains a
two-dimensional representation, implying that there is a X-morphism from S to SL^.
It follows that S must be K-split as soon as it admits an even-dimensional absolutely
irreducible representation. D

2.8.1. Example for SL^. — We will now describe an elementary way to find a
fc-anisotropic fc-form over a quadratic imaginary number field k for SL^ (~ Ai).

For a three-dimensional simple Lie algebra over a field k of characteristic zero there
is an easy criterion to determine whether there exists an non-zero element v with ad(^)
nilpotent: ad(v) is nilpotent if and only if Kill('y, v) = 0. Thus a three-dimensional
simple A*-Lie algebra is A;-anisotropic if and only if Kill^, •) is a A'-anisotropic quadratic
form, i.e., if and only if Kill(-, -) does not represent zero.

For every a, /? C k^ a simple three-dimensional A*-Lie algebra with vector space
basis A, B, C is given by

[A, B] = C, [B, C] = aA, [C, A] = /3B.

The Killing form is given by

Kill^A + yB + zC, xA + yB + zC) = -2(f3x2 + ay2 + aftz2).

Hence what we need is an imaginary quadratic field extension A-/Q and numbers
a,/? G k such that

(*) ax2 + (3y2 + af3z2 = 0
has no non-trivial solution.
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For instance, let k = Q[z], a = %, (3 = 1 + 2i. If (*) has a non-trivial solution,
then it has a non-trivial solution in Ok = Z[%] with x , y , z coprime. But calculations
modulo 4 show that (*) implies that all a-2, y2, z2 equal 2z or 0 modulo 4. This implies
that x , y , z are all divisible by 1 + i, contrary to x , y , z coprime. Hence (*) has no
non-trivial solution.

2.8.2. Arithmetic subgroups of solvable groups. — In order to find discrete
cocompact subgroups of solvable (non-nilpotent) linear algebraic groups one needs
tori anisotropic over a number field.

A one-dimensional A;-torus is a A;-form of the multiplicative group Gm' Thus one-
dimensional A'-tori are classified by

^(Gal^/^Au^G^)) ^ Hom(Gal(A^),Z/2Z)

It follows that anisotropic one-dimensional k-ion correspond to quadratic extension
fields of A*. This correspondence can be made explicit in the following way: For every
non-square q C k define

Then Hq is a one-dimensional fc-torus, split over k[^/q\, but not split over k.
More generally anisotropic tori can be constructed by restriction of scalars. Let H

be an n-dimensional K-torus and K / k a separable field extension of degree d. Then
Rp/kH is a dn-dimensional fc-torus with Tankk(RK/kH) = rankj<(^f) < n. Thus
RK/kH contains a A'-anisotropic subtorus of dimension at least (d — l)n.

The example of Otte and Potters (example 1.4.1) may be interpreted in this way.
Namely, let H = Gm iXp Ga where p denotes the natural action of the multiplicative
group Gm on the additive group Ga, k a totally real number field of degree d and
K = k[i}. Then RK/q[i] Gm ^ Gm x A for some (d — 1)-dimensional Q[%]-anisotropic
Q[z]-torus A and in this way RK/W H contains a Q[z]-subgroup G = A K Pp/wCa ^
A K G^. Now G\ (^[i]) is a discrete cocompact subgroup in G\ (C) and this is precisely
the example described in ex. 1.4.1.

2.9. Arithmetic groups arising from Division algebras

There is a standard method to construct cocompact arithmetic subgroups of SLn(C)
using division algebras.

Let A be a finite-dimensional division algebra over a number field K. (This means
A is an associative algebra with 1, not necessarily commutative, such that every
non-zero element admits a multiplicative inverse. Sometimes division algebras are
called skewfields.) The norm homomorphism N ^ / K : A —^ K is defined as follows:
N A / K { x ) = del (La.) where Ly, denotes left multiplication by an element a* € A, re-
garded as ^-linear endomorphism of the X-vectorspace A. The norm is a polynomial
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function on the vector space A. Let SL\{A) denote the set of all elements x of A
with N A / K ^ ) = 1- Then we obtain a K -group G such that G(K) ^ 5I/i(A) and
G c^ 5Lrf over the algebraic closure of K (with d2 = dim^(A). Since A is a division
algebra, ( I — a * ) is nilpotent only if 1 = x. Therefore G(K) contains no unipotent
elements except 1. Thus the associated arithmetic subgroup G{OK) of 11^7 (̂5(1 )̂
is cocompact.

We now want to verify that this method yields cocompact arithmetic subgroups
of SLd(C) for every d G N. For this it suffices to construct a division algebra of
dimension cP over a imaginary quadratic field extension of Q for every d. In fact,
division algebras of arbitrary dimension d2 exist over any number field. Just to be on
the safe side, we prove this in detail.

PROPOSITION 2.9.1. — Let k be a number field and d G N. Then there exists a
division algebra A, defined over k, with dimfc(A) = d2 such that the center of A is
isomorphic to k.

Proof. — Every division algebra A over a number field k arises in the following way:
There is a cyclic Galois extension l / k of degree c?, a generator a of the Galois group
Gal((/^) and an element A ^ A^/^*), A ̂  0 such that the elements a of A are given
by a = ^^o d-ia^ wltn a^ e ^ anc^ tne multiplication on A is determined by
pi = ta(p) for p e l and ^ = A. (see e.g. [130]).

Hence the statement of the proposition is equivalent to the assertion that there
exists a cyclic Galois extension l / k of degree d for every given number field k and
d C N\ {1} and that the norm endomorphism N i / k : F -> fc* for such a field extension
is not surjective. These two assertions are shown below. D

LEMMA 2.9.2. — Let K/Q be a finite extension, d G N, d > 2.
Then there exists a cyclic field extension L/K with d = [L : K].

Proof. — Let n = [K : Q]. There is a prime p with p = 1 mod dn, because every
arithmetic progression contains infinitely many primes. Let C,p be a primitive p-th
root of unity and F = K{Q. Since Q(Cp) C K(Q and [Q(Cp) : Q] = p - 1, it
follows that [F : Q] is divisible by dn. Since [K : Q] = n, it follows that [F : K] is
divisible by d. Now observe that Q(Cp)/Q is a cyclic Galois extension. This implies
that K ( ( p ) / K is a Galois extension such that Gal(F/K) is isomorphic to a subgroup
of Gal(Q(Cp)/Q). Subgroups of cyclic groups are again cyclic, hence F / K is a cyclic
extension. Since d divides [F/K}^ it follows that there exists a cyclic extension L / K
of degree d (with L C F). D

LEMMA 2.9.3. — Let L/K be a finite abelian Galois extension of number fields.
Then N^/K : Li* —> K* is not surjective.

Proof. — Let P € K[X] denote the corresponding irreducible polynomial. Using the
Chebotarev Density Theorem (see e.g. [Ill]) it follows that there exists a completion
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K ^-> k with respect to some valuation v such that P is irreducible in k[X}. Hence v
can be extended to L in such a way that the completion I of L is a non-trivial finite
extension of fc. Now ^/fc is abelian, because L / K is abelian. Hence we obtain from
local class field theory that M/fc(F) is a non-trivial closed subgroup in k * . Since K
is dense in k, this implies that N ^ / ^ '• L* -> K* is not surjective. D

As a consequence, we obtain the following existence result.

COROLLARY 2.9.4. — For every d^g G N (d > 2) and every quadratic imaginary
number field K there exists a K-simple K-group H such that H(OK) is an irreducible
discrete cocompact subgroup in H{C) ̂  (SLd(C))9.

COROLLARY 2.9.5. — For every d,g G N (d > 2) there exists a discrete cocompact
subgroup in a non-trivial semi-direct product G = (SLd(C))9 K (C^ -1^).

Proof. — Take K and H as in the preceding corollary and consider the semi-direct
product G = H ix Ad ̂ e H. Then G(OK) is a discrete cocompact subgroup in G(C).

D
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CHAPTER 3

CLOSED ORBITS AND DENSITY RESULTS

3.1. Survey

In this chapter we collect a number of basic facts on lattices and Lie groups which
we will need in the sequel. Particular emphasis is given to density results for lattices
and the question : "Given a lattice F in a Lie group G, which Lie subgroups of G
have a closed or compact orbit in GIT ?"

The density results include generalizations of the Borel density theorem and gen-
erally state that, given a lattice F in a complex Lie group G, certain F-invariant
mathematical objects are automatically G-invariant. For instance, this is true for
vector subspaces of finite-dimensional representations of G as well as for plurisubhar-
monic functions on G.

The results on closedness of orbits include Mostow's theorem which for lattices
in complex Lie groups implies that both the radical and the nilradical of the Lie
group have closed orbits in the quotient of the Lie group by the lattice. A very basic
closedness result concerns centralizers: If F is a discrete subgroup in a Lie group G and
S C F is a subset, then CG(S)F is closed in G. This is the first step toward a collection
of results on closed orbits of non-normal abelian subgroups. The investigation of closed
orbits culminates in theorem 3.10.1 which states that G is generated as a group by all
connected complex commutative Lie subgroups H for which H / ( H D F) is compact.
To our knowledge this is a new result. We conclude with the derivation of some basic
complex-analytic properties of quotients X = G/F of a complex Lie group G by a
lattice r. For instance we show that there are no non-constant plurisubharmonic
functions on such a quotient, that the algebraic reduction maps such a quotient onto
an abelian variety and that such a quotient carries a Kahler metric if and only if it is
a compact complex torus. Furthermore we introduce the Albanese torus and consider
group actions on cohomology groups.

Most of the results of this chapter are well-known.

3.2. Centralizer Orbits

Given a (discrete) subgroup F in a Lie group G we are interested in subgroups
H C G such that the H-orb'it H / { H D F) through eF in G/F is closed.

Using centralizers is a good starting point in constructing such subgroups.
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LEMMA 3.2.1. — Let G be a (real) Lie group and F a discrete subgroup. Let A be a
subset of F and C = CG(A) = [g G G : g6 = Sg MS G A} its centralizer. Then C • F
is closed.

This is stated in [123], [136] under the additional assumptions that G/F has a
finite G-invariant measure and A is finite. However, the first of these two additional
assumptions is simply superfluous, while the second can be circumvented.

Proof. Case A finite. — Let Cn C C, 7n G F with lim^(cn7n) = z. We have to show
z G CT. For any d e A we have

z^dz = lim^c^dcn-fn = lin^^n.

Since d G F and T discrete, this implies that there is a number N{d) (depending on
d C A) such that z-^dz = 7^7 for all n > N(d). Let N = max^A^). Then
7A^-lcb7^1 = d for all d C A. Hence z^1 C C and thereby z C CT.

General case. — Let (A^-ej denote the family of all finite subsets of A. All the
CG(A^)F are closed, hence H = f^. (CGf(A^)r) is closed. Now it is easy to show
that there exists a finite subset Ao C A such that dim(H) = dim((7G(Ao)r) =
dim(CG'(Ao)). It follows that Cc^j)0 D C^Ao)0 for all j G J . Thereby CG(A) D
CG(A())° = H°. This implies

^°c (n^(A,))rc [n^(A,)r] =H.
\ j ) \J )

Since H / H ° is discrete, it follows that CG(A)F = (Q ̂ (A^-)) F is closed in G. D

Note. — For the case A finite it is enough to assume that G is a topological group
with a topology fulfilling the first axiom of countability. However, in the proof of the
general case we used the assumption that G is a Lie group.

3.2.1. Abelian subgroups. — Our goal here is to show that there are abelian
subgroups with closed orbits. For this we recall the following fact.

LEMMA 3.2.2. — Let G be a connected non-commutative complex Lie group, and
ZG its center. For g G G let C(g) be the centralizer of g. Then

(*) dim C(g) > dim ZG + 1.

Proof. — Consider the map ^ : G x G —^ G x G, (g,h) ̂  {g.ghg^h'1). Let C be
the irreducible component of the preimage of G x {e} which contains G x {e}, and
JS : C —> G x {e} ^ G the induced map. Note that iS""1^) is a union of components
of C(g), among which is always C(g)°. Now there is an open set of elements g e G
which are in the image of exp and are not in ZG' For such elements (*) holds. The
result then follows from the semi-continuity of the fiber-dimension of the holomorphic
map IJL. D
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LEMMA 3.2.3. — Let G be a connected complex Lie group and F a discrete subgroup.
Then there exists a positive-dimensional connected complex abelian subgroup H with
H ' F closed, i.e., the H-orbit through the neutral point eF in G/F is closed.

Proof. — First assume that F is not central in G. Then there exists an element
7 C r which is not central in G, and (7(7) is a Lie subgroup with a closed orbit and
0 < dim(7(T) < G. Thus we may complete the proof using induction on dimG.

Second, let us assume that F is contained in the center Z of G and that dim Z > 0.
Then Z = ZY is closed and abelian.

Finally, we have to consider the case where the center Z of G is discrete and F C Z.
Complex semisimple Lie groups have finite center, hence R D F is of finite index in
r. As usual, let R resp. N denote the radical resp. nil-radical of G. Let K = kerp
where p : R —>• Aut(TV) is the natural group homomorphism given by conjugation.
Then F D R C K and the connected component of K equals the center of N which
is positive-dimensional and commutative. Thus K° is commutative with K°T closed
and dim(K°) > 0. D

3.3. Cartan subgroups

DEFINITION 3.3.1. — Let g be a Lie algebra. A subalgebra h is called Cartan
subalgebra if the following conditions are fulfilled:

1. The Lie algebra h is nilpotent.
2. h equals its own normalizer, i.e., h contains all a* G g for which ad(.r) stabilizes

h.

Correspondingly, we call a connected Lie subgroup H of a Lie group G a Cartan
subgroup if its Lie algebra Cie(H) is a Cartan subalgebra of de(G)S1^

If G is a linear algebraic group, then it contains a Zariski open subset n such that
for every g G fl the connected component of the centralizer C(gss) of gss is a Cartan
subgroup, where gss denotes the Jordan semisimple part of g G G.

As a consequence we obtain the following result.

PROPOSITION 3.3.2 (Mostow, see [105, 106]). — Let G be a complex linear al-
gebraic group and F a discrete Zariski dense subgroup. Then there exists a Cartan
subgroup H of G such that HT is closed in G.

Proof. — Since F is Zariski dense, it has non-empty intersection with the Zariski open
subset fl mentioned above. Thus the statement follows from lemma 3.2.1. D

Aided by the theorems 3.4.1 and 3.9.1 obtained later this has the following impli-
cation.

^ Mostow used a slightly different notion in [105]. Our Cartan subgroups are the connected
components of Cartan subgroups in the sense of Mostow.
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COROLLARY 3.3.3. — Let G be a complex semisimple linear algebraic group and F
a lattice in G.

Then there exists a maximal torus^ T C G such that T /(T D F) is compact.

The next corollary will turn out to be useful in our examination of the cycle space
in section §4.11.

COROLLARY 3.3.4. — Let G be a connected complex Lie group, F a lattice and
assume that G is not nilpotent. Then there exists a connected complex Lie subgroup
H C G such that H/(H H F) is compact and H is not normal in G.

Proof. — Since G is not nilpotent, a Cartan subgroup of G can not equal the whole
group G. Condition (z'z) of the definition 3.3.1 then implies that Cartan subgroups of
G are non-normal Lie subgroups. D

3.4. Density results

For a discrete subgroup F of a locally compact group G the property of being a
lattice can be interpreted as the property that G/F is "small" in a certain sense, %.e.,
as the property that F is large in G in a certain way. This interpretation is a key
idea in many results on lattices. This is particularly true for results stating that in
many cases lattices in linear algebraic groups over locally compact fields are dense
with respect to the Zariski topology. The first such result is due to A. Borel who
proved in [17] that a lattice in a real semisimple group without compact factors must
be Zariski dense. For lattices in complex Lie groups we have the following density
result.

THEOREM 3.4.1 (Moskowitz). — Let G be a connected complex Lie group, F C G a
lattice and p : G —>• G?L(n,C) a holomorphic representation.

Then the Zariski closures of p(T) and p{G) coincide.

This was proved by Moskowitz in 1978 (see [102]). Apparently independently, it
was later reproved by Iwamoto ([67]). Here we will give a slightly different, more
geometric proof.

LEMMA 3.4.2. — LetG be a complex linear algebraic group, H an algebraic subgroup.
There does not exist a G-left invariant probability measure on G/H unless dim(G) =
dim(H).

Proof. — Assume the converse and let A be a connected one-dimensional algebraic
subgroup of G which is not contained in H. Then A is isomorphic either to the
multiplicative group C* or to the additive group C. The quotient X = G / H may
be embedded equivariantly into some projective space and by the Flag theorem X

^ torus in the sense of linear algebraic groups
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contains an open quasi-affine A-invariant subvariety fl. We consider the A-action on
C[n]. Every / G C[n] is contained in a finite-dimensional A-invariant vector subspace
C[n]. If A ^ C*, then C[f^] is generated as vector space by functions / G C[f^] such
that /(A • x) = ^ / { x ) for some n = n(f) G Z. If A ^ C, then A acts on C[^] as a
unipotent group and we can find a finite-dimensional vector subspace V of C[f^] and
an element /o ^ C[n] such that

— A acts trivially on V,
— A stabilizes V © (/o)c an(!
— /o ^s not A-invariant.

It follows that fo(t-x) = fo{x)-{-tg{x) for some ^ G V. In this case /(.z:) = fo(x)/g(x)
defines an A-equivariant map from f^i = {x G fl : g{x) ~^- 0} to C.

Thus in any case there exists an open subset f^i C X and an A-equivariant map
from Hi to C or C*. The existence of such an equivariant map implies that there is
a non-empty open (in the euclidean topology) subset W C n and an element a G A
such that all the an(W) (n C Z) are disjoint. It follows that p(W) == 0 for every
A-invariant probability measure p on X. Thus X contains an open subset of measure
zero. But the measure was assumed to be G-invariant and G acts transitively on X.
This implies p(X) = 0 contradicting the assumption that p is a probability measure.
Hence there is no G-invariant probability measure on X. D

LEMMA 3.4.3. — Let G be a connected complex Lie group and H a closed subgroup
such that G I H admits a G-left invariant probability measure.

Then there does not exist any non-constant G-equivariant map to aprojective space.

Proof. — Let ^ : X —> P^y be an equivariant holomorphic map and p : G —> GL(n, C)
denote the corresponding homomorphism of complex Lie groups. Then p ( G ' ) is al-
gebraic (prop. 1.9.4) and has closed orbits in (j)(X) = G / I . Hence G ' l is closed in
G. The invariant probability measure p, on G / H can be pushed down to an invariant
probability measure on G / G ' I . Since G / G ' I is an abelian group, this implies that
G / G ' I is compact. On the other hand G / G ' I can be embedded in a linear alge-
braic group, hence compactness of G / G ' I implies G = G ' l . In other words, G' acts
transitively on (f>(X) = G / I . Since p(G!) is linear algebraic, we may now apply the
preceding lemma and conclude that (f) must be constant. D

COROLLARY 3.4.4. — Let G be a connected complex Lie group, H a closed subgroup
such that G I H admits a G-left invariant probability measure and p : G —> GL(n, C)
be a holomorphic group homomorphism.

Then the Zariski closures of p{G) and p(H) in GL(n,C) coincide.

Proof. — The quotient p ( G ) / p ( T ) is a quotient of linear algebraic groups and there-
fore admits an equivariant embedding into a projective space. D
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COROLLARY 3.4.5. — Let G, H and p : G —^ GL(n,C) be as above and assume that
W C C77' is a p{H)-stable vector subspace.

Then W is p(G)-stable.

REMARK 3.4.6. — It is crucial that p is a finite-dimensional representation. For
instance, consider V = L2(G/H} with p : G —^ GL(V) being the action induced by
the G-left action on G / H and W = {f G V : f(eH) = 0}. Then W is p(T)-stable,
but not p(G)-stable.

COROLLARY 3.4.7. — Let G be a connected complex Lie group, H a closed subgroup
such that G/H admits a G-left invariant probability measure, I be a connected complex
Lie subgroup of G and Nc{I) = {g € G : glg~1 = I}.

If H C NG(I), then No(I) = G, i.e., I is normal in G.

Proof. — Apply the preceding corollary to the adjoint representation Ad : G —)•
GL(CieG). D

COROLLARY 3.4.8. — Let G be a connected complex Lie group and H a closed
subgroup such that G/H admits a G-left invariant probability measure.

Then the connected component H° of H is normal in G and G/H is a complex
parallelizable manifold.

Proof. — Evidently H C NG(H°), hence we may invoke the preceding corollary with
I = H ° . D

COROLLARY 3.4.9. — Let G be a complex Lie group, F a lattice in G and I C G a
closed complex Lie subgroup with Y C I.

Then the connected component 1° of I is normal in G and 1 / 1 ° is a lattice in G / 1 .

Proof. — This is a corollary of the preceding results, because G / I admits a G-left
invariant probabiliy measure due to lemma 1.5.2. D

We would like to remark that for semisimple groups there exists a stronger density
result due to Borel which implies the following.

THEOREM 3.4.10 (Borel [17]). — Let G be a simply connected semisimple complex
Lie group, T a lattice, p : G —^ GL^(C) a continuous (not necessarily holomorphic)
group homomorphism. Then p(T) and p(G) have the same Zariski closure in GLn(C).

This can be generalized to the following result.

PROPOSITION 3.4.11. — Let G be a simply connected complex Lie group with
G = G', F a lattice, p : G —)• GLn{C) a continuous (not necessarily holomorphic)
group homomorphism.

Then p{Y) and p{G) have the same Zariski closure in GLn(C).
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REMARK 3.4.12. — For G' ^ G there often exists a surjective continuous group
homomorphism p : G —^ S1 = {z G C* : \z\ = 1} with F C kerp. Thus the assumption
G = G' is crucial.

Proof. — Let H denote the Zariski closure of p{G) in GLn(C). Then H = H ' . It
follows that the radical RH is unipotent. Now F D RG is cocompact in RG (see
thm. 3.5.3), RG is nilpotent (because G = G') and p\R^ is a (real) unipotent repre-
sentation. By a result ofMalcev ([89]) it follows that the Zariski closure ofp(mJ?G')
coincides with the Zariski closure of p{Rc)' Consider the induced group homomor-
phism G/RG —^ H/?(RG) = I . Now I is a linear algebraic group and the image of
G / R is Zariski dense in I . Thereby semisimplicity of G / R implies semisimplicity of
I . This is equivalent to the property that p(Rc) is Zariski dense in RH. By this
argumentation the problem is reduced to the semisimple case and we can invoke the
preceding theorem in order to conclude that p{G) and p(T) have the same Zariski
closure. D

Next present some applications of the density result.

COROLLARY 3.4.13. — Let G be a simply connected complex Lie group, F a discrete
subgroup, and H a connected complex subgroup for which H H F is a lattice in H.
ThenCcW =CG(HnT).

Proof. — We may assume that G C GLm(C} (prop. 1.11.1). Since conjugation is an
algebraic operation on G, it follows that Cc(A) = CG'(A) for every subgroup A C C?,
where A denotes the closure in GLm(C) with respect to the Zariski topology. Hence
CG(H) = CG(H) = CG(HWT) = CG(F). D

COROLLARY 3.4.14. — Let G be a simply connected complex Lie group, F a lattice
in G and let Z denote the center of G.

Then ZT is closed in G.

Proof. — Applying the preceding corollary with H = G yields Z = CG^F). Thus
closedness of 2T follows from lemma 3.2.1. D

REMARK 3.4.15. — A result obtained below (thm. 3.9.1) implies that moreover
z r / r = z / ( z n r) is compact.
COROLLARY 3.4.16. — Let G be a linear complex Lie group and F a lattice in G.

Then G is abelian, nilpotent or solvable if and only if F is abelian, nilpotent
resp. solvable.

Proof. — This follows from the density result, because these properties may be de-
fined through the vanishing of certain relations involving commutators. D
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By passing to the universal covering one can deduce:

Let G be a connected complex Lie group and T a lattice in G. Then G is solvable
or nilpotent if and only if F is solvable resp. nilpotent.

This follows, because the classes of solvable resp. nilpotent groups are stable under
central extensions. (The universal covering of a connected Lie group is a central
extension.)

However, commutativity is not preserved under central extensions.

EXAMPLE 3.4.17. — Let G the three-dimensional Heisenberg group, i.e., G ^ C3

as manifold with group multiplication given by

(a*, y, z) . (x', y ' , z') = (x + x',y + y ' , z + z' + xy').

Let C = {(0,0, z) : z C Z + zZ} and f = {(x, y , z) : x , y , z C Z + zZ}. Then F = F / C
is a discrete cocompact subgroup of G ==• G / C , but F is commutative while G is not.

3.5. Mostow fibration

Given a Lie group G, the maximal connected normal solvable Lie subgroup is called
the radical of G and the maximal connected normal nilpotent Lie subgroup is called
the nilradical of G.

By a result of Mostow [106] both the radical and the nilradical of a complex Lie
group G have closed orbits in any quotient of G by a lattice F. Here we will deduce
this result from a theorem of Auslander.

THEOREM 3.5.1 (Auslander). — Let G be a real Lie group, H a discrete subgroup
and R a normal solvable Lie subgroup.

Then the connected component U = (RH)° of the closure of RH in G is solvable.

COROLLARY 3.5.2. — Let G be a linear algebraic group defined over k with k = R
or k = C, R its radical and F C G(k) be a Zariski dense discrete subgroup.

Then R(k)F is a closed subgroup of G(k).

THEOREM 3.5.3 (Mostow). — Let G be a connected complex Lie group, T a lattice,
R the radical and N the nilradical of G.

Then both TV/(TV H F) and R/(R H F) are compact.

Now we show how to deduce the theorem of Mostow from Auslander's theorem.

Proof. — Let U = (RT)°. Then U is solvable and normalized by F. Let Cie(U) be the
corresponding real Lie subalgebra of Cie(G) and a be the smallest A;-Lie subalgebra
of Cie{G) containing Cie(U). Then a is a solvable Lie subalgebra of £ie(G). F
normalizes U. It follows that Ad(F) stabilizes both Cie(U) and a. Since the adjoint
representation is algebraic, it follows that a is an ideal. By the maximality property
of the radical this implies that a = Cie(R). It follows that R = U and consequently
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RT must be closed. Closedness of RF implies compactness of R/{R n F) thanks to
cor. 3.6.3. Finally compactness of R/(R H F) implies compactness of N / ( N D F) by
another result of Mostow (see [103] or [123], p. 46). D

REMARK 3.5.4. — The result of the closedness of the JR-orbits holds also for real Lie
groups which do not contain any non-trivial normal compact semisimple Lie subgroup.

On the other hand, if G ^ K x H with K compact and semisimple and F is a lattice
in 7f, then for any group homomorphism p : F —>• K the group F == {(^(7)5 7) : 7 G F}
is a lattice in G. If H has a non-trivial radical R and p(Y D R) is infinite, then R is
also the radical of G and F is a lattice in G such that R/{R D F) is not compact.

WARNING 3.5.5. — The proof of Mostow's theorem given in [123], 8.28 is wrong,
see [162] for details.

3.6. Cocompactness of lattices

3.6.1. Lattices in solvable Lie groups are cocompact. — Examples of non-
cocompact lattices occur in the context of semisimple Lie groups. For instance,
5Z/(2,Z) is a non-cocompact lattice in 5'L(2,R). However, a lattice in a solvable
real or complex solvable Lie group is always cocompact. Here we will prove this only
for lattices in complex Lie groups, for the general case see [123], thm. 3.1.

First we would like to recall that a locally compact topological group has finite vol-
ume with respect to a left- or right invariant Haar measure if and only if it is compact.
Hence lattices in commutative locally compact topological groups are cocompact.

We also need the following auxiliary lemmata.

LEMMA 3.6.1. — Let G be a group, F a subgroup and A a normal subgroup ofY.
Then F normalizes the centralizer CG?(A) and consequently CG{A)F is a subgroup of
G.

Proof. — Let 7 e F, c G Co{A) and a G A. Then

(7C7-l)a == 7c(7-la7)7-l = 7(7'-la7)c7~-l = a(7C7-l).

D

LEMMA 3.6.2. — Let G he a simply connected solvable complex Lie group and F C G
a lattice. Assume that G is not commutative. Then there exists a closed complex Lie
subgroup I with F C I C G such that 0 < dimJ < dimG, i.e., there is a non-trivial
holomorphic fibration G/F —>• G/I.

The assumption of F being a lattice is superfluous, cf. [61], thm. 4.1.

Proof. — Let S denote the intersection r\ggTg~1. This is the ineffectivity of the
r-action on G / F . By replacing G and F by their respective quotients by S we may
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assume that F acts effectively on G/F, i.e., that S = {e}, i.e., that F does not contain
any normal subgroup of G.

Since G is non-commutative, the density results imply that F is non-commutative
(see cor. 3.4.16). Let N denote the nilradical of G. Since [r,F] c [G,G] C TV, it
follows that r D N ^ {e}. Consider the centralizer Cc(r D N). It contains the center
of N and therefore is positive-dimensional. On the other hand, since F contains no
normal subgroup ofG, it is clear that CG^^N) ̂  G. Now I = CG(rn7V)r is closed
(lemma 3.2.1) in G and it is a subgroup by lemma 3.6.2 above. Thus I = (7G(rnA^)r
is a subgroup with the desired properties. D

COROLLARY 3.6.3. — Let G be a connected solvable complex Lie group and F a
lattice.

Then G/T is compact.

Proof. — The assertion is trivial for dimc(C?) = 1. For dimc(G) > 1 lemma 3.6.2
above yields a fibration G/F -> G / I such that both I / T = I ° / ( I ° D F) and G / I are
of lower dimension. Hence we may argue by induction on the dimension of G. D

REMARK 3.6.4. — It is easy to see that lattices in arbitrary nilpotent locally com-
pact topological group are cocompact. However, we do not know whether lattices in
arbitrary solvable locally compact topological groups are neceassarily cocompact.

3.6.2. A general cocompactness criterion

THEOREM 3.6.5 (Kazdan-Margulis, [73]). — Let G be a semisimple real or complex
linear algebraic group and F a lattice.

Then G/T is compact if and only if T contains only semisimple elements.

This has first been proved for arithmetic lattices by Mostow and Tamagawa [107],
later by Kazdan and Margulis for arbitrary lattices.

Together with thm. 3.5.3 this yields a complete criterion determining which lattices
in complex Lie groups are cocompact.

COROLLARY 3.6.6. — Let G be a connected complex Lie group, T C G a lattice, R
the radical of G and TT : G —> G/R the natural projection.

Then T is cocompact in G if and only if none of the elements 7r(^) with 7 G
r \ (r D R) is unipotent in S.

For linear algebraic groups this may be reformulated in the following way, yielding
a close parallel of the cocompactness criterion for arithmetic groups mentioned in
thm. 2.3.1 (ii).

COROLLARY 3.6.7. — Let G be a complex linear algebraic group and F a lattice.
Then F is cocompact in G if and only if every unipotent element in T is already
contained in the unipotent radical of G.
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EXAMPLE 3.6.8. — Evidently 5'L(n,Z + %Z) contains unipotent elements, hence it
can not be cocompact in S'-L(n,C).

3.7. Density results II

Semisimple complex Lie groups are intrinsically algebraic. In this context it is
reasonable to assume that many analytic objects on a semisimple complex Lie group
are already constant, if they are invariant under a Zariski dense subgroup. The first
result in this spirit is due to Barth and Otte who proved that, given a reductive
complex Lie group G and a discrete Zariski dense subgroup F, every r-invariant
holomorphic function on G is constant [11]. Akhiezer proved that every meromorphic
function on a complex semisimple Lie group S is constant as soon as it is invariant
under a Zariski dense subgroup F provided F C S(Q)) [1]. In general, i.e., without
the assumption F C 5(Q), this was proved by Huckleberry and Margulis [58]. Later
K. Oeljeklaus and Berteloot showed that for an infinite discrete subgroup F in a
semisimple complex Lie group S there does not exists any strictly plurisubharmonic
r-invariant function on S [12]. Using similar methods we will here give a proof for
the fact that there are no r-invariant plurisubharmonic functions on a complex Lie
group if r is a lattice.

THEOREM 3.7.1. — Let G be a connected complex Lie group and V a lattice. Then
every holomorphic or plurisubharmonic function on G/F is constant.

Proof. — Let R denote the radical of G and consider TT : G/T —> G/RT. Recall that
RT is closed and that R/(RF\r) is compact (thm. 3.5.3). By the maximum principle
for plurisubharmonic functions every plurisubharmonic function is constant on the
compact complex space R/(R D F). Hence every plurisubharmonic function on G/F
is a pull-back of a plurisubharmonic function on G/RT and the theorem follows from
the proposition below. D

PROPOSITION 3.7.2. — Let S be a semisimple complex linear algebraic group and
r a Zariski dense discrete subgroup. Then every holomorphic or plurisubharmonic
function on S/F is constant.

Proof. — We start be deriving an auxiliary claim.

CLAIM 3.7.3. — Let H ^ (C*)7' and h e H be an element such that A = [h^ : n (E
Z} is an infinite discrete subgroup.

Then there exists a connected complex Lie subgroup A C H with dim A > 0 such
that every A-invariant plurisubharmonicfunction on H is already A-invariant.

To prove this claim, consider exp : jCie(H) —>• H. Let Vz = exp"1^/^ : n C Z})
and let Vp denote the R-vector space generated by Vz. Then dim^VR) = r + 1.
Hence W == Vp r\iVp is a one-dimensional complex vector space. Define A = exp(FF).
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By construction the image of r(A) of A under the projection r : H -> H / A is
relatively compact. It follows that for every plurisubharmonic function / on H / A the
restriction of / to r(A) must be bounded. Since every bounded subharmonic function
on C is constant, it follows that every A-invariant plurisubharmonic function on H is
A-invariant. This proves the claim.

Now let I denote the set of all g € S such that f(g) = /(e) for every F-right
invariant plurisubharmonic function on S. Then I is a closed subgroup of S. Let 1°
denote its connected component and let J denote the maximal connected complex
Lie subgroup of 1° (i.e., Cie(J) = Cie(I) D ijCie(I)). Clearly J is invariant under
conjugation by elements of T. The normalizer of a connected complex Lie subgroup
J of S equals {g E S : Ad(g)(Cie J ) C Cie J} and therefore is an algebraic subgroup
of S. Since F is Zariski dense in 5, it follows that J is normal in S.

Since S is semisimple and may be assumed to be simply connected, we may assume
that S = So x J for some semisimple complex Lie group So- Let TT : S —>• So = S / J
denote the natural projection.

Assume dim So > 0. Due to lemma 1.7.12 and prop. 1.7.2 the group 7r(r) contains
a subgroup A which is torsion-free and still Zariski dense in So. Since the set of
all semisimple elements of So contains a Zariski open subset of So, it follows that A
contains a semisimple element of infinite order. But now the claim implies that there is
a Lie subgroup A C So with dim (A) > 0 such that every A-invariant plurisubharmonic
function on So is already A-invariant.

This is a contradiction, since (by construction of J) it is clear that 7r(r)-invariant
plurisubharmonic functions separate 7r(r)-orbits in So.

Thus dim(So) > 0 is impossible, i.e., S = J , i.e., every F-invariant plurisubhar-
monic function on S is constant. D

REMARK 3.7.4. — Later, in chapter 10, we will prove another result in this area:
If G is a linear algebraic group with G = G1 such that the generic element in G is
semisimple and F is a discrete Zariski dense subgroup, then every plurisubharmonic
function on G/T is constant, (see prop. 10.7.1).

Finally we state a consequence of the non-existence of non-constant holomorphic
functions.

PROPOSITION 3.7.5. — Let G be a linear complex Lie group and T a discrete
subgroup such that every holomorphic function on G/F is constant. Let (f) be an
holomorphic Lie group automorphism of G such that (f)\r == idr.

Then (f) = ido-

Proof. — Consider the map ( : G —^ G given by ((g) = (/)(g)g~1. Note that (f)\y = idr
implies CQn) = C(^) f01' all ^ G G and 7 6 F. Therefore C induces a holomorphic
map from G/F to G which is constant by the assumptions of the proposition. Hence
C = C(e) = e, i.e., (f) = idc. D
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3.8. Closed orbits of Abelian subgroups

THEOREM 3.8.1. — Let G be a complex linear algebraic group, F a Zariski dense
discrete subgroup and Go the algebraic subgroup ofG generated (as algebraic subgroup)
by all connected abelian linear algebraic subgroups A C G with AT being closed in G.

Then G= Go.

The first step in the proof of the theorem are the lemmata below.

LEMMA 3.8.2. — Let G be a Lie group, I C H closed subgroups of G and T a
discrete subgroup of G such that HT is closed and H C\r C I. Then IF is closed, too.

Proof. — Let x G I F . Then x = liman7n for some On G I , 7n G F. Since HY is
closed, x = h^ for some h G H, 7 C F. Then h = limQ/n(7n7-l). Closedness of HT in
G implies that HY is a submanifold, therefore H is open in HT. Thus ̂ r^r^"1) ^ H
for n sufficiently large. In this case (7n7-l) € J, because On G I C H and H r\r C I .
It follows that a^7n7~1 C I for n sufficiently large. Hence h G I and a* G 7T. D

LEMMA 3.8.3. — Let G be a complex linear algebraic group, T a discrete subgroup
and 7 G r.

Then there exists an abelian algebraic subgroup A C G such that AT is closed in G
and 7 G A.

Proof. — We will construct two sequences of algebraic subgroup Cm Dn- We start
by choosing the centralizer (7^(7) == {g G G : (77 = ^g} as Co- For given Cn {n > 0)
we define Dn as the Zariski closure of Cn H F in G. If Dn is non-abelian, then Cn H F
is non-abelian and we choose an element 7n G Cn D F which is not central in Cn H F
and let Cn+i = Dn n C7G?(7n). If -Dn is abelian, we set A = Dn-

Note that by construction 7n is central in Cn+i. This implies that the sequences
of subgroups (7n H r and Dn are strictly decreasing. Since the Dn are algebraic
subgroups, it follows that the sequence must terminate, i.e., there must be a number
n such that Dn is abelian.

Furthermore by construction it is clear that 7 is contained in all the Cn and Dn-
Finally we have to show that CnF and D^T are closed in G. This follows from the

centralizer lemma (lemma 3.2.1) combined with lemma 3.8.2 above. D

COROLLARY 3.8.4. — Let G be a complex linear algebraic group, T a discrete
subgroup and 7 G F.

Then there exists a connected abelian algebraic subgroup A C G and a number
n G N such that AT is closed in G and 7^ G A.

Proof of the theorem. — It is clear that F normalizes Go, since closedness of AF im-
plies closedness of 7A7-1^ = 7AF for any A C G, 7 G F. Since F is Zariski dense in
G, it follows that Go is normal in G. Thus the quotient G/Go is an algebraic group
and the projection TT : G —^ G/Go is a morphism of algebraic groups. Cor. 3.8.4
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above implies that for every 7 e F there is a number n such that 7" G Go. Hence
A = 7r(r) containing only torsion elements. Let K denote the closure of A in G/GQ
with respect to the euclidean topology. Lemma 1.7.11 implies that K is compact with
commutative connected component. Since 7r(r) is Zariski dense, it follows that G/GQ
is a commutative reductive group, i.e., a torus in sense of theory of algebraic groups.
By general theory of linear algebraic groups it follows that there exists a commutative
reductive group T C G such that 7r|r : T -^ G/GQ is a finite surjective morphism.
Now 7r(r) being relatively compact in G/GQ implies that 7T is closed in G. But this
implies T C Go, since T is connected and commutative. Hence T and therefore G/GQ
must be trivial, i.e., G = Go. m

3.9. Closed orbits in quotients of finite volume

We will show that closed orbits of abelian subgroups in finite volume spaces are
necessarily compact.

THEOREM 3.9.1. — Let G be a locally compact topological group, H an abelian
closed subgroup and T a lattice in G.

Assume that HT is closed in G.
Then H / ( H n F) ^ H F / F is compact

We are convinced that this is just a special case of a more general fact.

CONJECTURE 3.9.2. — Let G be a locally compact topological group, H a closed
subgroup and F a lattice.

Then HF is closed in G if and only if H H F is a lattice in H.

For a cocompact lattice F this is an easy exercise and for abelian H it is a conse-
quence of the theorem above. Raghunathan proved the implication "H n F being a
lattice in H implies HF closed" in general and the converse for normal H (see [1231
Thm. 1.13).

To prepare the proof of the theorem we need the following auxiliary lemma.

LEMMA 3.9.3. — Let A be a non-compact locally compact topological group and
Wo C A be a relatively compact open subset. Then there exists an infinite subset
Ao C A such that \W H rjW = 0 for all A, T] C Ao with X ̂  n.

Proof. — Choose a sequence (An)neN in A recursively in such a way that

An 1 Uk<n\kWo(Wo~1)

This is possible since the set on the right hand is relatively compact in A Finally set
Ao = {An : n G N}. Q
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LEMMA 3.9.4. — Let G be locally compact group, H a closed subgroup and Y a
discrete subgroup of G such that HY is a closed subset of G.

Then the quotient H\Hr is discrete.

Proof. — The quotient Q = H\HF is a closed countable subset of H\G. Every closed
countable subset of a locally compact space contains an isolated point. (This follows
from the Baire Category Theorem.)^3) Since Q is a F-orbit, this implies that Q is
discrete. Q

Now we are in a position to prove the theorem.

Proof of the theorem. — Let TV be a relatively compact open neighbourhood of e in
G. Since H is abelian, HnT is normal in H. Thus A = H/(Hr\T) is a locally compact
topological group. Assume that A is non-compact. By the lemma we may choose an
infinite subset A C H such that \(W H H)(H H F) H rj(W H H)(H H F) = 0 for all
A, rj G A with A / T ] , Next we choose a decreasing sequence of open sets Wn C W such
that C\nWn = {e}. By assumption the quotient G/T has finite volume. Every Wn is
open and therefore has positive measure. Since A is infinite, it follows that there exists
a divergent sequences On, (3n G A with On -^ /3n such that OnWn^ H f3nWn^ / 0. It
follows that there are sequences Wn.Vn e Wn and 7n e F such that OnVn = Ai^n7n
for all n. Now F\nWn = {e} implies that \imVn = e and limwn = e. It follows
that limo^1/^^ = e. Observe that a^ftn^n € HF. Discreteness of H\HT implies
that 7^ G H for n sufficiently large. Then ^n ^ H D F. With H being abelian and
lima^1/^^ = e this implies that

a,ov n H)(H n r) n /3n(FF n H)(H n r).
But this contradicts the fact that On / /?n and o^,/^ G A. Hence it is not possible
that H / ( H n r) is non-compact. D

3.10. Subgroups with a bounded orbit

Given a Lie group G and a lattice F in G we will show that there are many Lie
subgroups H of G such that the H-orbit through eT is relatively compact in G/F.

THEOREM 3.10.1. — Let G be a connected complex Lie group, T a lattice and Go
the subgroup of G generated by all connected commutative complex Lie subgroups A
of G with A/(A n r) compact.

Then Go = G.

(^In our notation, locally compact topological groups are always assumed to have a countable
basis of topology and therefore are metrizable as topological spaces.
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Proof. — If G is commutative, then G/T is a topological group with finite volume
and therefore compact.

Now let us consider the case where G is not abelian, but solvable. Here we argue
by induction over dim(G). Thus let G, F and GQ be as above and assume that
the proposition is valid for all solvable complex Lie groups of lower dimension. Let
7 G r \ Z (where Z denotes the center of G) and let G°(7) denote the connected
component of the centralizer of 7 in G. Then 0 < dim G° (7) < dimG. Moreover
G°(7)r is closed in G. Since G is solvable and F a lattice, the quotient G/T must be
compact (Cor. 3.6.3) and therefore closedness of C° (7)? implies that (7° (7) D F is a
lattice in G°(7). Hence G° (7) C Go by the induction hypothesis. This is equivalent to
the assertion that V^^ c £ie{Go) where V = CieG. Let H C GL(V) denote the
Zariski closure of Ad(G). Then H is also the Zariski closure of Ad(F). Let k denote
the generic dimension of Vh = {v : hv = v} for h G H and 0 the set of all h G H for
which dimY^ = k. Then n is a Zariski open subset of H . Now Vh C Cie(Go) for all
h C r H 0 and therefore for all h (E n. It follows that v C Cie Go for all v G Ad"^).
Since Ad'^H) is a non-empty open subset of Cie G, this implies that G = Go'

Finally we consider the general case. Let R denote the radical of G and consider
the projection TT : G/ —>• G / R = S. The quotient group S is semisimple and therefore
linear algebraic. The image 7r(r) is a lattice in 5. Let A C S be an abelian subgroup
with closed orbit in Y = S/7r(T). By thm. 3.9.1 such an orbit is compact. Hence
TT'^A) is a solvable subgroup of G with compact orbit in G/T. Thus it follows
from the proof for the solvable case that 7^~1(A) is generated by connected complex
commutative subgroups with compact orbits in G/T.

Now let H be the subgroup of S generated by all those A. It is clear that H is
arcwise connected and by thm. 3.8.1 it is also clear that H is Zariski dense in S. But
arcwise-connected subgroups of Lie groups are necessarily Lie subgroups ([43]) and for
a Zariski dense Lie subgroup H of a, linear algebraic group S one has [5, S] C H C S
(prop. 1.9.4). Thus S = [S, S} implies H = S. D

We will now deduce another variant of this theme, this time strengthening the as-
sumption on the subgroups (requiring unipotency) while relaxing the assumption on
the orbits (only relatively-compact instead of compact).

PROPOSITION 3.10.2. — Let G be a simply connected complex Lie group and T a
lattice.

Let GI denote the subgroup of G generated by all unipotent subgroups U C G' for
which there exists a compact subset F C G such that U C FT'.

ThenG^ = G1.

REMARK 3.10.3. — For a simply connected complex Lie group G the commutator
group G' carries a unique structure of a complex linear algebraic group. Hence it
makes sense to speak about unipotent subgroups of G ' ' .
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Proof. — First we note that we may assume R^}G' = {e}, because RUG' is a normal
unipotent subgroup with compact orbits (prop. 3.11.2). This assumption implies that
R is central and G = S x R with S semisimple. Let TT : G -> G / R ̂  S be the natural
projection.

CLAIM 3.10.4. — Let H be a one-dimensional unipotent subgroup of S such that
Hn7r(r)^{e}.

Then^cGi.

Proof. — Let u G S, r G R such that ur G F and 7r(n) ^ H \ {e}. Let (7 denote
the connected component of the centralizer of u in S. Clearly, H is contained in the
center of C. Now C • J? is the centralizer of ur in G. Hence the (7^-orbit through eT
is closed (lemma 3.2.1). Let N denote the nilradical of C. Then NR is the nilradical
of CR. It follows that the NR-orbit through eT is compact (thm. 3.5.3). Now H is
central in (7, hence H C N and consequently H C G\. D

Next let V denote the subgroup of G / R generated by all one-dimensional unipotent
subgroups having non-trivial intersection with 7r(F). Then V is normalized by 7r(r).
The Borel Density theorem (thm. 3.4.10) thus implies that V is a normal subgroup
of S. It follows that S = So x V for some semisimple complex Lie subgroup So C S.

CLAIM 3.10.5. — The So-oi^bit through eF in G/F is relatively compact.

Proof. — By a criterion of Kazdan-Margulis (see [123], Cor. 11.12) we have to
show that given a sequence Sn e So there is no sequence 7n G F \ {e} such that
limSn^nSn1 = e- Assume there are such sequences. Let Un 6 S and r^ e R such
that UnTn == 7n- Then \imSnUnS^1 = e (because R is central). Since 7r(r) is a lattice
in 5, it follows that Un is unipotent for n sufficiently large ([123], Cor. 11.18). But
in this case Un G V by construction and this implies that SnUnS^1 = Un for all n.
Contradiction! D

Finally note that So is a semisimple complex Lie group and therefore generated by
its unipotent subgroups. D

3.11. Orbits of the commutator group

For a group G we always denote the commutator group by G1'. This is the subgroup
generated by all the commutators ghg^1^1 with g , h G G. For a connected complex
Lie group G this is a connected closed complex Lie subgroup, namely the connected
Lie subgroup corresponding to the commutator algebra of the Lie algebra of G. For
most (though not all) parallelizable manifolds the orbits of the commutator group are
closed.
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LEMMA 3.11.1. — Let G be a complex Lie group, F a discrete subgroup and A
a normal simply connected commutative complex Lie subgroup of G. Assume that
A/(Anr) is compact and that the Zariski closures of Ad(F) and Ad(G) in GL(Cie G)
coincide.

Then [F, A Fl F] is a lattice of [G, A] and a subgroup of finite index in [G, A] H F.

Proof. — The group A is a complex vector space and conjugation in the group G in-
duces a representation p : G/A —>• GL(A). This representation is naturally isomorphic
to the restriction of the adjoint representation Ad to Cie A.

For g G G define C,g G End(A) by (,g = p(g) - idA. Let A = ©^^(A H F).
Clearly, [F, A D F] is the subgroup generated by A. Since A D F is cocompact in A,
(A D r)^ = (AnF)^. This implies that (A)j^ = (A)(Q and consequently that (A)^ is
a lattice in the complex subspace V = (A)(^. We claim that [A,C?] = V. Indeed,
Ad(^)(Cie A) C Cie V for all 7 G F implies that Ad(g)(Cie A) C Cie V for all g G G,
because we assumed that the Zariski closures of Ad(F) and Ad(C?) coincide. D

PROPOSITION 3.11.2. — Let G be a simply connected complex Lie group, R its
radical and T a lattice.

Then (G1 H -R)r is closed in G, Rr\T1 is a subgroup of finite index in G' D R D F
and a cocompact lattice in G' D R.

Proof. — First recall that a normal Lie subgroup in a simply connected Lie group is
also simply connected.

Let N denote the nilradical and TV^ the central series of N. By the theorems of
Mostow (thm. 3.5.3) and Malcev (cor. 2.2.3) all of the groups N and TV^ (k G N) have
compact orbits in G / Y . Furthermore Nk / N ^ 1 is a simply connected commutative
normal Lie subgroup of G / N ^ 1 for all k.

Thus we may apply the preceding lemma repeatedly and obtain that G' D N D F '
is of finite index in G' D N H F and a lattice in N D G ' .

This is the statement of the proposition, since G' H R C N. D

COROLLARY 3.11.3 (Barth-Otte, [10]). — Let G be a solvable complex Lie group
and r a lattice.

Then GT is closed in G.

THEOREM 3.11.4. — Let G be a simply connected complex Lie group, R its radical
and r a lattice. Assume that F'/^n F7) is a subgroup of finite index in T/(Rr\ F).

Then G'Y is closed in G, G' D F is a lattice in G' and Y' is a subgroup of finite
index in G' D F.

COROLLARY 3 .11 .5 . — Let G be a simply connected complex Lie group, R its radical
and F a lattice. Assume that no simple factor of G/R is isomorphic to SL^(C).
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Then GT is closed in G, G1 D F is a lattice in G' and T' is a subgroup of finite
index in G' D F. Furthermore (T D G')IY' is a finite group isomorphic to the torsion
part of the first homology group H^ (X, Z).

EXAMPLE 3.11.6
1. The exclusion of SL^(C) -factors is necessary. Recall that there exists a discrete

cocompact subgroup A C SL^{C) with a surjective group homomorphism r :
A -^ Z (2.7.3). Let r ^ A x Z2 be embedded in G = SL^C) x C by (A, m, n) ̂
(A, m + in + V2r(\)). Then the orbits of G' = SL^(C) in G/F are not closed.

2. Let

r / i . z\
G = < 1 /̂ : x , y , z e C

[\ 1 )
m G N and F C C? the set of those elements g = ( x , y , z ) G G for which
x, y^ mz C Z + %Z. Then F is discrete, cocompact and F' is a subgroup of index
m2 in G' U F.

3. For real nilpotent Lie groups the similar statement is true; this is a result of
Malcev. However, for arbitrary real solvable Lie groups no such result holds.
For instance, let V = R3 and F C V a lattice such that F D W = {0} where
W = {(a-,^/ ,0) : x,y C R}. Let S1 ^ IR/27rZ act on V by

{x , y , z ) i—> (cos Ox + sin Oy^ cos 6y — sm0x,z).

Then {e} x T is discrete, cocompact in S1 ix (V, -(-) and the G'-orbits are not
closed.

4. It is crucial that F is supposed to be a lattice, even for complex nilpotent Lie
groups. See [112] for an example of a nilpotent complex Lie group G and a
discrete subgroup F such that every holomorphic function on G/F is constant
and the G'-orbits in G/T are not closed.

3.11.1. Derived and central series. — Recursive application of the theorem
implies the following.

COROLLARY 3.11.7. — Let G and F be as in theorem 3.11.4 above. Let Gk denote
the k-th term of the derived series of G. Then Gk^ is closed in G, Gk nr is a lattice
in G1^ and 1^ is a subgroup of finite index in G^ H F.

Proof. — By the above proposition it suffices to consider the case where Rr\G' = {e}.
Then R is central in G. Since G is simply connected, this implies G = R x S for a
semisimple complex Lie group S. Let TT : G —> S denote the natural projection. Then
7r(r) is a lattice in 5. A theorem of Margulis (see 2.5.2) implies that ^(F7) is also a
lattice in S. It follows that (F n R) ' (F H S) D (F H R) ' r' is already a lattice in G.
In particular, F' is a lattice in S and hence of finite index in.S'nl^G'nr. D
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PROPOSITION 3.11.8. — Let G be a simply connected complex Lie group, F a lattice.
Let Z = C\ denote the center of G and define Ck recursively such that Ck/Ck-^i is
the center of G/Ck-^-i.

Then all the orbits of all the subgroups Ck are closed.

Proof. — Zr is closed in G by cor. 3.4.14. Hence G/ZT = ( G / Z ) / ( T / Z H r) is
again a quotient of a simply connected complex Lie group (viz. G/Z°) by a lattice
(viz. r/(Z° nr)). Thus closedness of C^F in G can be proved by induction over k. D

By a result of Barth and Otte (see [10]) the assumption of F being a lattice may
be weakened for nilpotent G.

PROPOSITION 3.11.9. — Let G be a complex nilpotent Lie group, F a discrete
subgroup such that every holomorphic function on G/T is constant. Let Ck be defined
as above. Then all the Ck-orbits in G/F are closed.

3.11.2. Invariant plurisubharmonic functions. — Although in general G' D F
is not a lattice in G ' , it is still large in a certain sense.

PROPOSITION 3.11.10. — Let G be a complex Lie group, Y a lattice in G.
Then every V-invariant plurisubharmonic function on G' is constant.

Proof. — Since ( R ^ \ G t ) / ( R ^ } ^ t ) is compact, it is clear that r'-invariant plurisub-
harmonic functions are constant along the R D G'-orbits. Thus we may assume that
R D G' = {e}. Then G is a direct product of an abelian complex Lie group R and a
semisimple complex Lie group 5'. Now S is a linear algebraic group and thm. 3.4.1
implies that r(r) is Zariski dense in S where r : S x S —>• S is the projection onto
the second factor. From lemma 1.9.3 it follows that T^) is Zariski dense in S == S ' .
With F ' = {e} x (S H F)' this in turn implies that F n S is Zariski dense in S. Thus
the proof is completed by prop. 3.7.2. D

3.12. On the number of compact orbits

The main goal of this section is to show that there is no non-trivial continuous family
of compact orbits in G/F, where G is a complex Lie group and F is a discrete subgroup.
In the case of real Lie groups such families can arise.

EXAMPLE 3.12.1. — Let E = S02 ix M2 be the group of orientation preserving
Euclidean motions. Recall that SO^ ^ S1 so that the universal cover G is a semi-
direct product R K M2. Let F be the center of G, i.e., a copy of Z in the first factor
which realizes the universal covering of S1. Let H be the first factor itself. Note
that the H -orbit in G/T = E is just the first factor in E. Conjugating H yields the
continuous family of semi-simple factors of E. Of course all such conjugates contain
r.
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The above phenomenon does not occur in the case of complex Lie groups.

PROPOSITION 3.12.2. — Let G be a complex Lie group and T a discrete subgroup.
Then there exist only countably many connected complex Lie subgroups H in G with
H/H H r compact.

Proof. — First note that it is enough to handle the case where G is simply connected.
Further recall that, since the fundamental group of a connected compact manifold is
finitely generated, if the orbit H / H H F is compact, then H H F is finitely generated.
Hence it is enough to prove the following statement:

Let G be a simply connected complex Lie group and T a finitely-generated
discrete subgroup. Then there exist at most countably many connected
complex subgroups H in G with F C H and H/Y compact.

Since G is simply connected, we may replace it by its Zariski hull in some linear
realization, i.e., we may assume that G is a linear algebraic group. Now H/T being
compact implies A := F = ~H (thm. 3.4.1). Furthermore ~H' = H ' = A' (prop. 1.9.4).
Thus it suffices to consider only the groups H with H ' = A' and H / F compact. In
particular H D B := AT , where denotes the closure in the complex analytic
Zariski topology. It is therefore sufficient to count the complex groups H in the
abelian group A = A/B° which contain the discrete group F := B/B° such that H / F
is compact. Thus it only remains to prove the proposition in the abelian case.

Now assume that G is abelian and simply connected. Then any connected Lie
subgroup H with H / T compact is just the linear span of H Fl F and is therefore
determined by H D F which is a finitely generated subgroup of F. Of course F has
only countably many such subgroups. D

3.13. On the number of parallelizable manifolds

In a certain sense, only few Lie groups admit lattices. In particular, one can prove
the following ([157]).

PROPOSITION 3.13.1. — Let k = R or k = C. Then up to isomorphism as k-
Lie groups there are only countably many simply connected k-Lie groups admitting
lattices.

As mentioned above, for every semisimple complex Lie group there exists a discrete
cocompact subgroup. Here we want to show that up to conjugacy there are only
countably many such subgroups. This is equivalent to the assertion below.

PROPOSITION 3.13.2. — There exist only countably many compact complex paral-
lelisable manifolds X = G/T with G semisimple (up to biholomorphic equivalence).
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Proof. — We have to consider compact quotients of semisimple Lie groups S by
discrete subgroups F. As usual, let us call S / F irreducible, if there does not exist any
almost direct product decomposition S = 5i -^ with 5i n^ and F/(5i nF) • (^ nF)
finite. Clearly it suffices to consider irreducible S / F . Recall that by standard theory
of linear algebraic groups there exists only countably many non-isomorphic complex
semisimple Lie groups. Thus it is sufficient to consider a fixed semisimple complex
Lie group S which we may take to be simply connected. As a fundamental group of
a compact manifold F ^ TT^S/F) is finitely presentable ([123], Thru. 6.16). Up to
isomorphism as abstract groups there exist only countably many finitely presentable
groups. Thus we may restrict our attention to irreducible lattices in a fixed simply
connected complex semisimple Lie group S which are isomorphic (as abstract groups)
to a fixed finitely presentable group Fo. Any such lattice may be regarded as image of
an injective group homomorphism p : To -). S. Thus the set of all irreducible lattices
corresponds to a subset R of Hom(ro,5). As outlined in [151], the set Hom(ro,5)
may be endowed with the structure of an affine variety. There is a natural faction by
conjugation on Hom(ro,51). Now local rigidity results ([123], Th. 7.66 & 6.7, [1511)
imply that R is a union of open 5-orbits in the variety Hom(ro,5'). Therefore R is
just a union of finitely many 5-orbits. However conjugate homomorphisms FQ -> S
define isomorphic quotients. Thus the proof of countability is completed. D

3.14. Kahler parallelizable manifolds

THEOREM 3.14.1. — Let G be a connected complex Lie group and F a lattice.
Assume that X = G/F carries a (not necessarily G-invariant) Kahler form.

Then X is a compact complex torus.

For compact quotients this result is due to Wang [149].

Proof for the compact case. — For arbitrary one-forms w and vector fields X, Y one
has the relation

dw(X, Y) = Xu(Y) - YUJ(X) - u;([X, Y]).

Holomorphic one-forms on X are in one-to-one correspondence with linear forms on
the Lie algebra Cie(G). The above equation implies that such a holomorphic one-
form is closed if and only if it vanishes on the commutator algebra of Cie{G). Hence
G/F admits non-closed holomorphic one forms if G is non-commutative. However,
on a compact Kahler manifold every holomorphic differential form is closed. Hence
Gyr compact Kahler implies that G is commutative, i.e., X is & compact complex
torus. ,-,

Proof of the general case. — Assume that X = G/F is Kahler. First we note that
this implies that every connected complex Lie subgroup H c G with compact orbit in
X must be commutative. Let R denote the radical of G and C denote the centralizer
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of R in G. Since the J%-orbits are compact, it follows that R is commutative, i.e.,
RcC. Now consider the Mostow-fibration (thm. 3.5.3) p : X = G/Y -> G/RT = Y.
Let TT : G —> G / R = S denote the natural projection. If A is an abelian subgroup of
S with compact orbit in V, then ^"^(A) has a compact orbit in G/T and therefore
TT'^A) must be abelian, i.e., TT^A C C. Since S = G / R is generated by such A
(thm. 3.10.1), it follows that R is central in G. Then p : X —>• Y is a torus principal
bundle. We may replace the Kahler form uj on X by its average over the torus principal
right action. Contraction with respect to the fundamental vector fields of the torus
action and their complex conjugates then yields a Kahler form on Y. But for an
infinite discrete subgroup in a semisimple complex Lie group there are no invariant
Kahler forms (This is a result of F. Berteloot and K. Oeljeklaus, see [12]). Hence Y
must be point, which implies that X is a compact complex torus. D

3.15. Algebraic reduction

Given an irreducible compact complex space X the field of meromorphic functions
M{X) is a finitely generated extension field of C by a theorem of Siegel. This implies
that there exists a dominant meromorphic map / from X onto a projective variety
V such that /* : M(V) —^ M(X) is an isomorphism of fields. Such a meromorphic
map / is called algebraic reduction of X. It is well-defined up to bimeromorphic
equivalence. For more information on the algebraic reduction see [125, 146].

For homogeneous complex manifolds (not necessarily compact) an algebraic reduc-
tion exists in the following sense:

THEOREM 3.15.1 (see [62]). — Let X be a complex homogeneous manifold. Then
there exists a surjective Anto(X)-equivariant holomorphic map f onto a meromor-
phically separable homogeneous complex manifold Y such that .M(X) == f"M.{Y).

Here being meromorphically separable can be defined in the following way:

DEFINITION 3.15.2. — A complex space Y is called meromorphically separable if,
given two points x and y on Y there always exists a meromorphic function / on Y
such that neither x nor y is contained in the indeterminacy set of / and f(x) ̂  f(y).

Meromorphically separable complex parallelizable manifolds are necessarily abelian
varieties.

LEMMA 3.15.3. — Let H be a connected complex Lie group and A a lattice. Assume
that Y = H / A is meromorphically separable.

Then H is commutative and Y a complex abelian variety.

Proof. — Recall that the radical Rof H has compact orbits in Y = H / A (thm. 3.5.3).
Thus we obtain a holomorphic fiber bundle r :Y —> Z = H/RA with compact fibers.
Using meromorphic separability of V, for any point y E Y and any natural number k
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with 0 < k < dim Y we can find a closed analytic subset W C Y of pure dimension k
containing y (simply by taking irreducible components of intersections of zero divisors
of meromorphic functions on Y). Since the projection map r : Y —^ Z is a proper
holomorphic map, this implies the existence of analytic hypersurfaces in W unless W
is trivial (i.e., a point).

Recall that a theorem of Huckleberry and Margulis [58] states a quotient of a
complex semisimple Lie group by a Zariski dense subgroup never contains analytic
hypersurfaces. Hence in our situation W must be a point, i.e., H is solvable. It follows
that H / A is compact. Finally observe that a meromorphically separable compact
homogeneous manifold is automatically projective and in particular Kahler ([45]).
But a parallelizable compact complex manifold is Kahler if and only if it is a compact
complex torus ([149] or thm. 3.14.1). D

Using this lemma, we can describe the algebraic reduction of complex parallelizable
manifolds in the following way:

THEOREM 3.15.4. — Let G be a connected complex Lie group and T a lattice. Then
there exists an abelian variety A and a closed complex Lie subgroup H C G with
r C H such that G/H c^ A as complex manifolds and such that the natural projection
TT : X -4- G/H = A induces an isomorphism between the function fields of A and X.

3.16. The Albanese torus

For a connected compact complex manifold X there exists a torus Alb(X), called
the Albanese-torus and a holomorphic map Alb^ : X —>• Alb(-X), called the Albanese-
map of X with the following universality property:

For every compact complex torus T and every holomorphic map f : X —>• T
there exists an affin-linear map F : A\b(X) —^ T such that f = F o Albjc.

For a compact Kahler manifold X the Albanese torus can be constructed as Alb(X) ==
^(Xy/rHi^X.Z) where r : H^(X,T) -^ ^(X)* is the natural map given by

r(7) : uj \—f LJ.
J^

The Albanese map is given by

Albx (x) : uj \-> \ uj
J X Q

where XQ is an arbitarily choosen fixed base point. This construction is possible,
because for Kahler manifolds every holomorphic one-form is closed and rH\ (X, Z) is
a lattice in f^(X)* (both properties follow from Hodge theory).

We will now demonstrate the existence of an Albanese torus for quotients of com-
plex Lie groups by lattices.
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PROPOSITION 3.16.1. — Let G be a complex Lie group and F a closed complex Lie
subgroup. Assume that every holomorphic function on G/T is constant.

Let I denote the smallest closed complex Lie subgroup of G containing G'T.
Then G/I is a commutative complex Lie group and the natural projection TT :

G/T —^ G/I has the following properties.

1. For every connected complex Lie group T and every holomorphic map f : G/T —>•
T there exists an element a G T and a holomorphic Lie group homomorphism
F : G/I -^ T such that f(x) = a • F o 7r{x) for all x C X .

2. If I == G'T, then every closed holomorphic 1-form on G/T is a pull-back from
G/I.

3. //r is a lattice in G, then G/I is compact.
4. If r is a lattice in G, then every meromorphic function on G/T is a pull-back

from G/I.

Proof
1. Let Ad denote the adjoint representation of T and Z the connected component

of the center of T. Since holomorphic functions on GL(£ie T) separate points,
it is clear that Ado/ is constant for every holomorphic map / : G/T —> T. Thus
there is no loss in generality in assuming Z = T.

The cotangent bundle T*(Z) is spanned by invariant closed holomorphic 1-
forms uji. Now

0 = df^X, Y) = /*^([X, V]) + X(r^)Y - Y(r^X) = r^([X, Y])

for every holomorphic map / : G/T —^ T, every closed holomorphic 1-form ̂  on
Z and every holomorphic vector fields X, Y on X = G/T (Note that (jf*^^)
is a holomorphic function on G/T and therefore constant.)

It follows that the G'-orbits are contained in the fibers of /. By construction
of I it follows that / fibers through G/T -> G / I .

2. The equation (*) implies that T(X,dO) ̂  Cie(G/G'y. Hence the assertion.
3. From lemma 1.5.2 it follows that G / I has finite volume. Since G / I is an abelian

group, this implies compactness.
4. This is a consequence of thm. 3.15.4.

D

3.17. Induced actions on cohomology groups

Let G' be a complex Lie group acting holomorphically on a complex space X.
Every g G G induces a biholomorphic map p,(g) : X —> X which in turn induces a
C-linear automorphism on the cohomology groups ̂ (X, C) and jy^^, 0). Thus we
obtain induced actions of G on the cohomology groups H'^^X.C) and ^(X,^)). If
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G is connected, then every p.{g) is homotopic to idx. Hence the induced action on
H*(X,C) is trivial for every connected Lie group G.

Let us now consider compact complex spaces X. Then Hk(X, 0) is finite-dimensio-
nal. We want to show that for every complex Lie group acting holomorphically on X
the induced action on H^^X.O) is holomorphic. For this purpose we fix an element
g G G and choose an open neighbourhood V(g) C G which is biholomorphic to a ball.
Then V(g) is Stein and a Leray spectral sequence argument for the projection map
TT : V x X -^ V yields that ^(V x X,0) is naturally isomorphic to the space of
holomorphic mappings from V to Hk(X, 0). The group action gives us a holomorphic
map ( f ) : V x X -^ X defined by (f>(h, x) = h • x inducing a C-linear map

^ : H k ( X , 0 ) - ^ ^ I k ( V x X , 0 ) .

Now for any a C Hk(X,0), g ^ G be the pulled-back element /*a which corresponds
to a holomorphic map f : V -> Hk{X,0) such that f(g) = g(a). Therefore the
induced action of G on H'^^X.O) is holomorphic. Of course the same argumenta-
tion yields that G induces a holomorphic action on the cohomology groups of other
canonically defined coherent sheaves like H^, the sheaf of holomorphic A'-forms.

Lescure gave a different proof for the holomorphicity of the induced actions on
Hq{X^P) based on the Dolbeault-isomorphism H^X^P) ̂  H^^(X) (see [82]).

It should be emphasized that, for a compact Kahler manifold, Hodge decomposition
yields a canonical injection of the Dolbeault groups H'^^X, f^) into HP+q{X, C). This
implies that for any connected Lie group acting holomorphically on a compact Kahler
manifold the induced action on the Dolbeault groups ^{X, W) is trivial.

On the other hand, Lie group actions on non-Kahler manifolds need not be trivial.
There are examples of Lescure (see [81]) of connected complex Lie groups acting
on non-Kahler compact complexs such that the induced action on H1 (X, 0) is non-
trivial. One such example is a solvmanifold, i.e., a quotient of a solvable complex Lie
group by a lattice.

Recently, D.N. Akhiezer proved that for a reductive linear algebraic group G with
cocompact lattice F the G-action on ^(G/T, 0) is always trivial [3].

3.18. Existence of Zariski dense subgroups

As explained above, every lattice in a complex linear algebraic group is Zariski
dense. Since there are obstructions to the existence of lattices (e.g. a Lie group con-
taining a lattice must be unimodular), one might how these obstructions are related
to the existence of discrete Zariski dense subgroups. However, it turns out that there
are many linear algebraic groups which do admit Zariski dense discrete subgroups
although they do not admit any lattice.

In particular, one can prove the following:
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THEOREM 3.18.1. — (see [156]^ Let G be a non-solvable connected complex linear-
algebraic group.

Then there exists a discrete Zariski dense subgroup F.

Since there are many such groups G which are not unimodular (e.g. any parabolic
subgroup in a semisimple complex Lie group), it is clear that there are many complex
linear algebraic groups admitting Zariski dense discrete subgroups, but no lattices.

The key idea for the proof of this result is to consider the projection TT : G —>• G / R
where R denotes the radical of G. The quotient G / R is a semisimple group. Using
"proximal elements" one can construct free subgroups of G / R which are Zariski dense
in S. (Alternatively one could also start with an arithmetic subgroup of S = G / R
and use the Tits-alternative (thm. 1.7.6) to deduce the existence of free subgroups.)
Naturally, an embedding of a free group into G / R lifts to an embedding into G. In
addition, it turns out that there is enough freedom in the choice of the subgroup and
the lifting to construct a free Zariski dense discrete subgroup of G.

3.19. Group homomorphisms coinciding on subgroups of finite index

Later on, in our study of vector bundles, we will need a (rather technical) result
concerning group homomorphisms which coincide on subgroups of finite index. Just
for convenience we state and prove them in an elementary way although they are
essentially contained in [92].

LEMMA 3.19.1. — Let r, H be groups, p, p : T —^ H group homomorphisms and
assume that p and p coincide on a subgroup of finite index Fi in r.

Then there exists a normal subgroup FQ C F of finite index and a map ^o : F/Fo —>
H such that

^(7) = C(7) • ?(7) V7 ^ r^

where ^ : F —^ H is the natural lift of (^Q .
Furthermore ^(7) and p(\) commute for every 7 G I\ A C Fo.

Proof. — Consider the F-action on the finite set F/Fi. Let Fo denote the ineffectivity,
i.e., the kernel of the natural group homomorphism F —)• Perm(r/ri), where for a
given set S the group of all permutations of S is denoted by Perm (S). Clearly Fo is
a normal subgroup of finite index in r.

Define €(7) := y^)^)"1. Now p(\) = p(\) for A € Fo implies C(7A) = €(7) for
all 7 G r, A G Fo. Since Fo is normal in r, we obtain furthermore C(^7) = €(7) f01'
all 7 € r, A G To.

Now observe that

y9(A7) = C(A7)?(A7) = C(7)?(A)?(7)
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and

p(A7) = p(A)p(7) = C(A)?(A)C(7)P(7) = ?(A)C(7)P(7)

for all 7 G r, A G Fo. It follows that €(7) and p(A) = p(\) commute for every 7 e F,
A G Fo. Q

COROLLARY 3.19.2. — Le^ G be a simply connected complex Lie group with G = G ' ,
F a Zariski dense^ discrete subgroup, Fo C F a subgroup of finite index, H a complex
linear algebraic group and p : F —^ H a group homomorphism.

Assume that p\ro extends to a holomorphic group homomorphism po : G —^ H .
Then there exists a group homomorphism C : F -> H with finite image such that

^(7) = €(7)^0(7) for all 7 G r. Furthermore po(g) and €(7) commute/or every 7 G F
and g G G.

Proof. — Due to lemma 3.19.1 it is clear that there exists a map < : F -> H such
that ^(7) = C(7)po(7) for all 7 G F. Let F = <(r). Then F is centralized by ^(Fo).
Since Fo is of finite index in F, it is still Zariski dense in G. Hence F is centralized
by p(Go). Now observe that

W)po(g)po(h) = p(gh) = p(g)p(h) = ̂ g)po{g)^(h)po(h)

for all g , h C F. Since F is centralized by po(G), it follows that ({gh) = C(^)CW for
g , h er, i.e., C is a group homomorphism. Q

Similarily one obtains the following variant.

COROLLARY 3.19.3. — Let G be a connected complex Lie group, F a lattice, Fo C F
a subgroup of finite index, H a complex linear algebraic group and p : T -> H a group
homomorphism.

Assume that p\ro extends to a holomorphic group homomorphism po : G —^ H.
Then there exists a group homomorphism C : F -)- H with finite image such that

P(7) = €(7)^0(7) for all 7 G F. Furthermore po(g) and €(7) commute/or every 7 C r
and g G G.

^A simply connected complex Lie group with G = G' carries naturally the structure of an linear
algebraic group, see prop. 1.9.1.
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CHAPTER 4

SUBVARIETIES

4.1. Survey

In this chapter we are interested in the compact complex subspaces of complex
parallelizable manifolds. A substantial part of the results in this chapter is joint work
with A.T. Huckleberry, published in [63].

In the case of hypersurfaces, tori play a central role: the Albanese mapping a :
X —^ Alb(X) is an equivariant surjective fibration a : X = G/F —> G / J == Alb(^C)
and, for every complex hypersurface H in X, there exists a unique hypersurface H
in Alb(X) with H = a^^H) ([GR]). Thus, in a certain sense, higher-codimensional
subvarieties are of more interest.

Naturally, the easiest way of finding submanifolds is to find them as closed orbits of
Lie subgroups. Recall that for every simply connected complex Lie group G and every
lattice r both the radical and the nilradical of G have compact orbits (thm. 3.5.3).
This is also true for the center of G (cor. 3.4.14). Furthermore, there are Cartan
subgroups with a closed orbit (prop. 3.3.2) and often the orbits of the commutator
group are closed (see §3.11). On the other hand, there are no continuous families.
Given a group-theoretically parallelizable complex manifold X = G/F and a point
x G X there exists at most countably many compact orbits of connected Lie subgroups
of G through x (see prop. 3.12.2).

If Z is a compact complex space with Kodaira-dimension ^(^), the canonical ring
induces a surjective meromorphic map (pj^ : Z -^ V, where dimY =- ^{Z) and the
"generic" fibers F satisfy i^(F) = 0 (cf. [146]). One of our main goals here is, to group
theoretically realize this "pluricanonical map" in the case of Z ̂  X = G / F . This is
carried out in §4.8. For example, if either G is semisimple and X compact or G is
solvable, then there is a closed complex subgroup H < G which, up to covering spaces,
can be identified with Auto(Z)°, where H ' F is closed, and the canonical map is given
by the quotient Z —>• Z / H . After a natural modification of F this fibration can be
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extended to a fibration of the ambient homogeneous space. It should be remarked
that the results in §4.5 and §4.8 are known in the case of tori (cf. [146]).

Applying our results on the canonical map, in §4.9 we give upper bounds on the
dimension of Z. For example, if G is simple, then codimZ > \/dim G.

For nilmanifolds we prove that there are no transversal submanifolds in the follow-
ing sense:

Assume that X = G/T is a compact complex nilmanifold, ^ : X —^ Alb(X) =
G/GT the projection onto the Albanese. Let Z be an irreducible closed complex sub-
space of X . If^(Z) = ̂ (X), then Z = X .

This is used to show that for certain nilmanifolds every irreducible closed complex
subspace must be an orbit. On the other there do exist nilmanifolds X = G/F with
a closed analytic subspace Z C X of general type such that Z is not contained in any
orbit of any proper connected Lie subgroup H <^ G. We do not know whether this
phenomen occurs for quotients of non-nilpotent Lie groups as well. In particular the
following question is still open:

Does there exists a semisimple complex Lie group S with a discrete cocompact
subgroup T and a compact subspace of general type Z C G/F such that Z is not
contained in a torus T with Z C T C G/F ?

A special case of this question is the following: Does there exists a compact
Riemann surface C of genus g > 2 and a discrete cocompact subgroup F of SL^ (C)
such that C can be embedded into SL^(C)/T ?

In §4.11 we study the Barlet cycle space, which is the complex-analytic analogue
for the Chow scheme in algebraic geometry. It turns out that for G not nilpotent
the cycle space has always non-compact irreducible components. (In contrast, for a
compact Kahler manifold the cycle space has only compact irreducible components.)

Every compact complex parallelizable manifold contains a compact complex subto-
rus. On the other hand, it is a rather special property for a compact complex torus
to be embeddable into a quotient of a complex semisimple Lie group: Only countably
many compact complex tori admit such an embedding.

In §4.14 we show that the natural version of the Bloch conjecture is true in this
setting: Let f : C —> X be a holomorphic map. Then the complex-analytic Zariski
closure Z = /(C) is the orbit of a subgroup H of G. In the case of tori, this is a
basic result of Green and Griffiths ([GG]) which we in fact use. We also provide
a hyperbolicity criterion: A closed complex subspace Z in a complex parallelizable
manifold X is hyperbolic (in the sense of Kobayashi [75]^) if and only if Z contains
no compact complex tori.

We demonstrate that all parallizable manifolds are "abelian connected" regardless
of their fundamental group; this is in strong contrast to the Kahler situation (see
§4.15).
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4.2. Non-compact parallelizable manifolds

Our investigations focus mainly on compact complex parallelizable manifolds. How-
ever, it turns out that some results on compact complex subspaces Z of compact com-
plex parallelizable manifolds X actually use only the compactness of Z and not the
compactness of X. Therefore we include a short discussion of non-compact complex
parallelizable manifolds.

Let X be a complex parallelizable manifold, i.e., a (not necessarily compact) com-
plex manifold whose tangent bundle is holomorphically trivial. If X admits only
constant holomorphic functions this implies that the Lie algebra of holomorphic vec-
tor fields on X is finite-dimensional, in fact of the same dimension as X. We will
see that in order to discuss compact complex subspaces of parallelizable manifolds it
is enough to consider parallelizable manifolds X with 0(X) = C. This is joint work
with K. Oeljeklaus ([113]).

PROPOSITION 4.2.1. — Let X be a complex manifold, Z a submanifold with 0(Z) =
C. Assume that X is locally homogeneous, i.e., the tangent bundle of X is spanned
by global sections. Then X has a locally homogeneous complex submanifold Y with
Z C Y and 0(Y) = C.

COROLLARY 4.2.2. — Let X be a complex parallelizable manifold, Z a compact
complex subspace. Then X contains a complex parallelizable submanifold X\ such
that O(JCi) = C and Z C X i .

Proof. — By the theorem there is a locally homogeneous submanifold X\ with Z C
X\ and 0{X\) = C. Now locally homogeneous means that TX\ is spanned by global
sections. On the other hand the dual r*Xi is likewise spanned, because X\ is a
submanifold of a manifold X with trivial cotangent bundle T*X. With O(X^) = C
it follows that TX\ is trivial, i.e., X\ is parallelizable. D

Proof of the proposition. — Let XQ = X and define recursively Xk-\-i as the con-
nected component of

X'^ := {x 6 Xk : f(x) = f\z V/ G O(Xfc)}.

which contains Z. Then this sequence will terminate, and we set Y = Xk for k » 0.
Clearly 0(Y) == C. We have to show that Y is locally homogeneous. Assume that Xk
is locally homogeneous. The Zariski tangent sheaf of Xk-\-i is defined by df = 0 for all
/ G 0(Xk). Let X be a holomorphic vector field on Xk which is tangent to Xk+i at
some point p E X^i. It follows that d/(X)(p) = 0 and hence df(X)\Xk+i = 0 ̂  all
/ G 0{Xk)- This implies that X is tangential to Xk-\-i everywhere, i.e., X restricts
to a holomorphic vector field on X^+i. Thus for every point p G Xk-\-i and every
tangent vector v e TpXk+i there exists a holomorphic vector field X on Xk+i such
that Xp = v. It follows that Xk-\-i is locally homogeneous, too. Hence by induction
on k it follows that Y is locally homogeneous. D
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It should be emphasized that in fact the tangent bundle of Y is spanned by the
restrictions of global vector fields on X. In particular, if X is homogeneous, then so
isV.

4.3. Closed orbits as subvarieties

Often submanifolds of a compact complex parallelizable manifold X ^ G/F arise
as closed orbits of Lie subgroups. As we have already seen in the preceding chapter,
many canonically denned subgroups have closed orbits. In particular the radical, the
nilradical, the center and all the groups of the ascending central series have closed
orbits. In most cases the orbits of the commutator group are closed as well. Besides
characteristic subgroups, there is also a way to construct non-normal Lie subgroups
with closed orbits using centralizers.

We will now deduce some existence results on closed submanifolds in general and
embedded compact complex tori in particular.

PROPOSITION 4.3.1. — Let G be a. connected complex Lie group and F a lattice.
Then the quotient manifold G/T contains a compact complex torus.

Proof. — This follows from lemma 3.2.3 in combination with thm. 3.9.1. D

For G = SL^^C) the condition of F having finite covolume can be weakened.

PROPOSITION 4.3.2. — Let r be a Zariski dense discrete subgroup of SL^(C}.
Then the quotient manifold SL^(C)/T contains a compact Riemann surface of

genus one, i.e., a one-dimensional compact complex torus.

Proof. — Thanks to prop. 1.7.2 and lemma 1.7.12 we may assume that F is torsion-
free. Since F is Zariski dense, it contains a semisimple element 7. Let C = C{^)
denote the centralizer of 7 in 51/2 (C). Then C ^ C* and {7^ : k C Z} ^ Z, because
7 is a semisimple element of infinite order. It follows that C f(C Fl F) is a compact
torus. D

PROPOSITION 4.3.3. — Let X be a complex group-theoretically parallelizable mani-
fold, i.e., a quotient of a connected complex Lie group G by a discrete subgroup F.

Then the following conditions are equivalent.

1. X has no non-trivial connected closed analytic subspaces.
2. X is a simple compact complex torus without non-constant meromorphic func-

tions.

Proof

1. Due to lemma 3.2.3 the manifold X contains a non-trivial closed analytic sub-
space if G is non-commutative. Thus we may assume G ^ (C^, +). If X = G/T
is non-compact, then either there exists an element a G G with (a^r^r)^ == {0}
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or there exists an element a G F such that (a)^n(r)^ is real one-dimensional. In
both cases (a)^ F/F defines a non-trivial closed analytic subspace of X. Finally,
if X is a compact complex torus the absence of non-trivial analytic subspaces
immediately implies that there are neither subtori nor hypersurfaces. Thus X
must be a simple torus without non-constant meromorphic functions.

2. This direction is well-known, but for the sake of completeness we indicate how
this can be deduced from results obtained in this book. One may use thm. 4.8.2
in order to deduce that a non-trivial closed analytic subspace Z of a simple torus
X is necessarily of general type and therefore Moishezon. Then one considers
the map

Ak : Z x - • x Z —> X, ( z - t , . . . , Z k ) ̂  zz + • • • + Zk.
k times

Let Zk denote the image of Z^ under Ak. Then {Zk)k is an increasing se-
quence connected compact analytic subspaces of X. Thus there is a number N
such that ZN = Zk for all A- > TV. Now Z^N = ZN implies that ZN is a subtorus,
thus ZN = X by simplicity of the torus X. But now Z being Moishezon and
AN : ZN —> X being surjective imply that X must be Moishezon. Therefore a
simple torus of algebraic dimension zero can not contain a non-trivial connected
closed analytic subset.

D

4.4. On closed orbits in the reductive case

A complex linear algebraic group is reductive if and only if it is the complexification
of a maximal compact subgroup. If G is reductive and F is a cocompact discrete
subgroup, then every element of F is semi-simple [123]). This allows a more precise
description of closed orbits in the case where F is cocompact and not merely of finite
covolume.

LEMMA 4.4.1. — Let G be a reductive complex Lie group and Y a cocompact discrete
subgroup. Let H be a connected subgroup with a closed orbit in X = G/F. Then the
algebraic Zariski closure of H is reductive.

Proof. — Let R denote the radical of H and R algebraic Zariski closure of R in G.
It suffices to show that R is reductive. Recall that the JP-orbits are compact (see
thm. 3.5.3). Note that R is unipotent. Since F contains only semisimple elements, it
follows that the intersection of R H F with R is trivial. Hence R D F is abelian. This
implies that R is abelian (see cor. 3.4.16). Thus R is abelian and therefore a product
A x U with A ^ (C*)^ and U x (C)1. Now R D F C A. Using the compactness of
R/R H r this implies R C A. Hence ~R C A, i.e., ~R = A. Thus R is reductive and
hence H is likewise reductive. D

SOCIETE MATHEMATIQUE DE FRANCE 1998



62 CHAPTER 4. SUBVARIETIES

Note that the group H is perhaps not reductive.

EXAMPLE 4.4.2. — Let G = (C*)2 and lit be a closed connected subgroup of G
which is isomorphic to C, e.g. the image of the map z i->- (e^, e^). Let F be a discrete
subgroup of H which is isomorphic to Z x Z. Then F is cocompact in H and in G.

The following result is needed for our discussion of the extension of the "pluri-
canonical map" to the ambient homogeneous space.

LEMMA 4.4.3. — Let G be a reductive complex Lie group and H a connected Lie
subgroup whose algebraic Zariski closure is reductive. Then the normalizer group
Nc(H) is reductive.

Proof. — Let H denote the Zariski closure of H and let Z be the center of H. Observe
that H = Z • S with S semisimple and H = ZQ ' S for some Zariski dense subgroup
ZQ of Z. Let N = NG^H) denote the normalizer. The reductivity of H implies that
N° = H • Cc(H), where Co{H) denotes the centralizer. It follows that the center Z
of H is contained in the center of N°. This implies that H is normal in N°. On the
other hand No(H) C N , because H is Zariski dense in ~H. Thus N° C No(H) C N .
Therefore the reductivity of N implies that NG(H) is reductive. D

4.5. Subvarieties Z with K{Z) = 0

Let Z be an n-dimensional connected complex manifold, K = Kz its canonical
bundle, i.e., Kz = A^T^, and Rz = Q)(^Q^(Z,Kk) its pluricanonical ring. Unless
RZ = C, in which case ^ { Z , K k ) = {0} for all k > 0, the Kodaira- dimension ^(Z)
is defined to be the transcendence degree over C of the quotient field of Rz. If
Rz = C, then K(Z) := -oo. It follows that K,{Z) < dimZ. If ^(Z) = dimZ, then
Z is said to be of general type. The Kodaira-dimension is a bimeromorphic invariant
([146]). Therefore it can be defined for an irreducible compact complex space Z by
^(Z) := K(Z) where Z —> Z denotes any desingularization. For the existence of a
desingularization, see [13, 55, 56].

Using the pluricanonical ring, one constructs a pluri-canonical map (also called
litaka-reduction). Its properties are summarized as follows (see [146] for details).

THEOREM 4.5.1 (Ueno). — Let Z be an irreducible reduced compact complex space
with K{Z) > 0. Then there exists a surjective meromorphic map ^ : Z -^ V onto a
compact complex manifold and a subset V of Z such that

1. U is the complement of at most countably many nowhere dense analytic subsets
of Z.

2. For all u G U the fiber Fu = {'0-l(^{^})} is irreducible and smooth. Further-
more K(Fu) = 0 and dim Fu = dim Z — dim V.

3. dimV=i^(Z).
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In general V need not be of general type/^ Furthermore, often U 7^ Z. It is
an unsolved problem whether or not U is open in Z. As we will see for compact
subspaces of (not necessarily compact) parallelizable manifolds the situation is much
better. For instance, U = Z in this case.

Recall that, given a compact complex subspace Z in a parallelizable manifold X,
there exists a parallelizable submanifold X\ with Z C X^ C X such that O(X-i) = C
(see §2). Hence wlog 0(X) = C. Then g = F{X,TX) is a finite-dimensional Lie
algebra and there is a canonical trivialization TX ̂  X x g. Using this trivialization
for each z G Z the Zariski tangent space T^Z may be regarded as a subvectorspace
of g. This yields a meromorphic (holomorphic, if Z is smooth) map 7 from Z to the
Grassmannian manifold G?(A*,g), where k = dimc(Z), which we call the Gauss map
for Z.

LEMMA 4.5.2. — The Gauss map 7 defined as above is a meromorphic map.

Proof. — The graph A of the Gauss map may be defined as follows: ( z , p ) G A C
Z x G(k, g) iff X/^ = 0 for all / G Tz,z and X G Vp, where Tz is the ideal sheaf of Z
and Vp the ^-dimensional subvectorspace of T^X ^ g corresponding to p G G{k,g).
Thus it is clear that the graph is an analytic subset of Z x G(k^ g). D

The following observation is trivial but useful.

LEMMA 4.5.3. — Let V, W be two different k-dimensional sub vector spaces of a
vector space g. Then there exists an alternating k-form uj such that LJ\V == 0 but

UJ\W 7^ 0-

As a first step we give a description of a "generic pluricanonical fibre" in Z .

THEOREM 4.5.4. — Let X be a parallelizable complex manifold and Z an irreducible
compact complex subspace. Then ^(Z) > 0 and K(Z) = 0 iff Z is a parallelizable
submanifold.

Proof. — Let Z be a desingularization of the n-dimensional space Z. Pull-back of re-
forms along Z -> Z -^ X yields a map r : A^* -^ r(Z, K). Therefore r(Z, K) / {0},
hence ^(Z) > 0.

We may assume 0(X) = C. If there are points p,q G Zreg with TpZ -=fc- TqZ
(regarded as subvectorspaces of g) then there are n-forms uj,[i induced from A^^g*
with uj(p) = 0 ^ u(q) and and p.(p) ^ 0 = /^). Hence, ^(Z) = 0 implies that
TpZ = TqZ for all p,q G Zreg- Since Zreg is a not necessarily closed submanifold of
X, it is clear that we obtain an integrability condition, i.e., h = TpZ for p G Zreg is
a Lie subalgebra of g. Locally the vector fields of this Lie subalgebra are integrable
and stabilize Zreg, hence Z. Moreover these local orbits are open. This implies
that Z is locally homogeneous, therefore Z = Zreg- Hence ^(Z) = 0 implies that

(^Examples with V ^ Pi(C) are provided by certain elliptic surfaces.
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Z is a parallelizable submanifold. Conversely parallelizability of Z obviously implies
K(Z) =0. D

If X is a quotient of a complex Lie group by a discrete subgroup F, then every
parallelizable submanifold is an orbit of a Lie subgroup. Thus in this case Z C X is
an orbit of a Lie subgroup H C G if and only K(Z) =0. As a consequence, we deduce
that the analytic Zariski closure of an orbit is an orbit.

COROLLARY 4.5.5. — Let X be a group-theoretically parallelizable complex manifold,
i.e., X = G/T for a simply connected complex Lie group G with discrete subgroup F,
and H a subgroup of G. Let Z denote the analytic Zariski closure of an orbit H(x)
of H in X , i.e., Z is the smallest complex subspace of X containing H(x). Suppose
that Z is compact. Then Z is the orbit of a complex Lie subgroup I of G.

Proof. — Define I == StabG'(Z). We have to show that I acts transitively on Z. Note
that H acts transitively on the set of irreducible components of Z and that H C I .
Thus we may replace Z by an irreducible component and H by the subgroup of H
which stabilizes this component, i.e., we may assume that Z is irreducible. For every
n G N the sections in K^ induce a meromorphic map i^n '- Z -^ P^v. Since these mapsz
are canonically defined, they are equi variant for all automorphisms of Z. Thus ^n is
H-eqm variant. Note that for n ^> 0 the image is a variety of general type ([146]).
Varieties of general type have finite automorphism groups. Thus the H -orbits in the
image must be finite. But there is a Zariski dense H -orbit in Z, hence a Zariski dense
H -orbit in the image. It follows that the image must be a point. Therefore z^n must
be constant, i.e., i^(Z) < 0 which implies that Z is an orbit. D

If Z is a subspace of Kodaira-dimension zero (i.e., an orbit), then every compact
subspace close to Z is likewise an orbit.

PROPOSITION 4.5.6. — Let X = G/T be a group-theoretically parallelizable complex
manifold and Z C X a compact orbit of a complex Lie subgroup H C G.

Then there exists an open neighbourhood U of Z in X and an open neighbourhood
W of e in G such that for every compact complex subspace Y C U there exists an
element g e W with Y C g Z .

Proof. — We start with proving the following assertion.

CLAIM 4.5.7. — There exists a open neighbourhood W of e in G such that for every
g C W either gZ H Z = 0 or g C H.
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Since Z is compact, there is a compact "fundamental domain" F, i.e., a compact
subset F CH with FF = OT. Now let W = {g : g(F) cG\ (HF \H)}. Then

gz n z ̂  0 <^=> ^pr n OT / 0
<^ g F n H F ^ 0
^=^ g F n H ^ 0 (forge W)
^==> g e H

Next let W\ be an open neighbourhood of e in G such that v • w e W for all
v^w e W\. Then W\ • Z is a disjoint union of translates of Z. A suitably choosen
"slice" T C W\ yields a biholomorphic map T x Z -4- V to some open neighbourhood
of Z in X. Hence Z admits an open neighbourhood which is biholomorphically
equivalent to a direct product Z x T with T holomorphically separable. It follows
that every compact complex subspace in U = T • Z is contained in a translate of
Z. D

4.6. Embeddability of tori

Recall that for a complex Lie group G and a discrete subgroup F there exist
only countably many connected complex Lie subgroups H with H / ( H H F) compact
(prop. 3.12.2). This may be reformulated in the following way.

COROLLARY 4.6.1. — Let X be a group-theoretically parallelizable complex manifold.
Then up to translation by holomorphic automorphisms (/) C Auto(X) there exist

only countably many compact complex parallelizable submanifolds.

In the semisimple case we can say more.

COROLLARY 4.6.2. — Up to isomorphism there exist only countably many tori which
admit an embedding into a compact quotient S/F of a semisimple complex Lie group
by a discrete cocompact subgroup.

Proof. — This is a consequence of the proposition, because there exist only count-
ably many non-equivalent quotients of complex semisimple Lie groups by discrete
cocompact subgroups (prop. 3.13.2). D

Thus it is a rather special property for a torus to be embeddable into a parallelizable
manifold with semisimple automorphism group.

PROPOSITION 4.6.3. — Let T = C9 /A be a torus, which is embedded (as sub-
manifold) in a compact quotient of a semisimple complex Lie group S by a discrete
subgroup F.

Then there exists a number A; C N and a complex Lie group homomorphism (/) :

C9 -^ (C*)^ with discrete kernel such that 0(A) C fo*) .
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Proof. — Any such torus is an orbit of a Lie subgroup A C 5" which is commutative
and whose Zariski closure in S is reductive (lemma 4.4.1). Therefore A is a Lie
subgroup of a Cartan subgroup H c± (0*)^. Now we have an embedding (j) : A —^
(C*) . Moreover due to root theory for a given a C A all the (j)k{o) are algebraic
numbers as soon as all the eigenvalues of Ad (a) are algebraic numbers. Here Ad
denotes the adjoint representation. Now every semisimple complex Lie group may be
defined over Q. Furthermore, there exists a g G G such that gFg~1 C 5(Q) ([123],
Th. 7.67). Hence for all 7 C F all the eigenvalues of Ad(7) are algebraic. This
completes the proof. D

COROLLARY 4.6.4. — Let T = C/ (I,T) be an elliptic curve which may be embedded
in a compact quotient X = S/F of a semisimple complex Lie group by a discrete
subgroup.

Then r is not an algebraic number.

Proof. — By the above result there exists a C C* such that both e" and e^ are
algebraic. On the other hand a and ar are clearly linearly independent over Q.
Bakers theorem now implies that a and ar are linearly independent over Q. Thus
r^Q. D

More generally the proposition has the following consequence.

COROLLARY 4.6.5. — LetT = C9 / K be a torus, which is embedded (as submanifold)
in a compact quotient of a semisimple complex Lie group S by a discrete subgroup F.

Then T does not admit complex multiplication (as defined in def. 9.5.2).

Proof. — This follows from proposition 4.6.3 in combination with proposition 9.13.3.
D

4.7. Moishezon subspaces, Kahler subspaces and subspaces of general type

Subspaces which are "at the opposite extreme" to K,(Z) = 0 are those of general
type, i.e., subspaces with K,(Z) = dimZ. Of course such spaces are Moishezon, i.e.,
trdeg^ A4(Z) = dimZ. Now Moishezon spaces are in Fujiki's class C. This is
by definition the class of compact complex spaces which are holomorphic images
of Kahler manifolds. Equivalently, a compact complex space is in class C if it is
bimeromorphically equivalent to a Kahler manifold ([147]). Sometimes manifolds in
class C are called weakly Kahler.

If Z is in class C, then it is possible to prove strong statements regarding its
Albanese mapping. Of course Z may be singular, so the Albanese a : Z -^ Alb(Z)
is defined by the Albanese of a desingularization Z. Recall that a meromorphic
mapping of a complex manifold into a space with a Stein universal cover, e.g. C^, is
holomorphic. Thus the Albanese is defined independent of the desingularization.
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PROPOSITION 4.7.1. — Let Z be a compact subspace of a complex parallelizable
manifold X. Let ̂  : Z —> Alb(Z) be the Albanese. If Z is in class C, then rank(d'0) ==
dimZ at all nonsingular points of Z, and in particular ip : Z —^ ^(Z) is an unramified
covering if Z is smooth.

Proof. — Let Z be a desingularization. Since Z is in class C, it follows that every
holomorphic 1-form on Z is closed and a pull-back from the Albanese torus. Therefore
Ker(d^) is the space of those tangent vectors which are annihilated by all holomorphic
1-forms on Z. Thus the first assertion is proven by considering holomorphic one-forms
on X restricted to Z and lifted to Z. For the second assertion note that any proper
locally biholomorphic map is an unramified covering. D

COROLLARY 4.7.2. — Let Z be a compact subspace of a parallelizable complex
manifold X. Assume that Z is in class C. Then dimAlb(Z) > dimZ. Equality holds
if and only if Z is a torus. In particular, if Z is of general type, then dimAlb(Z) >
dimZ.

Proof. — If Z is of general type, then it is of course in class C - it is bimeromorphic to
a projective algebraic manifold - and therefore, by the above, dimAlb(Z) > dimZ.
If dimAlb(Z) = dimZ, then dimF(Z,^1) = dimZ. Hence ^(Z) = 0. Now the-
orem 4.5.4 implies that Z is smooth. Thus proposition 4.7.1 implies that Z is an
unramified cover of the torus Alb(Z) and therefore itself a torus. D

For smooth subspaces we have the following refinement of the above result.

PROPOSITION 4.7.3. — Let Z be a compact submanifold of a complex parallelizable
manifold X. Then the following statements are equivalent:

1. Every holomorphic 1-form on Z is closed;
2. Z is in class C;
3. Z is a K abler manifold;
4. The Albanese ̂  : Z —>• '0(Z) is an unramified covering.

Proof. — (4) => (3) is proved by pulling back a Kahler form from Alb(Z). (3) =^ (2)
follows immediately from the definitions, and (3) => (1) is well-known. (2) =^ (4) is
contained in prop. 4.7.1 above.

Finally, to prove (1) => (3), let c^i,. . . ,^ be holomorphic 1-forms on X which
form a basis of the space of sections of its cotangent bundle. Since their restrictions
are closed, uj := Y^c^i A ̂  defines a Kahler form on Z. D

The statement that the 1-forms are closed can be translated into a rather strong
statement on the tangent space TpZ, p G Zreg. For a complex parallelizable manifold
X with 0(X) = C, there is a unique trivialization of the tangent bundle TX ^
X x F(X, TX). In this way TpZ may be regarded as subvectorspace of the Lie algebra
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of holomorphic vector fields T(X^TX). We will now demonstrate that TpZ forms an
abelian subalgebra of r(X,TX) for compact subspaces Z of class C.

PROPOSITION 4.7.4. — Let Z he a compact subspace of class C ofX, where X is a
complex parallelizable manifold with 0(X) = C. Then, for all p G ^reg? the tangent
space TpZ corresponds to an abelian subalgebra of the Lie algebra of holomorphic
vector fields F(X,TX).

Proof. — Let v,w € TpZ and let ^T] G r(X,TX) be the corresponding vector fields
(i.e., $o = v and r]p = w). Let z : Z —^ X be the natural injection. If uj is a
holomorphic 1-form on X, then

0=d%*(^)p(^w) =d^p^(v),z^{w)) =d(^{^r]) =^(rj) - ̂ (Q - ̂ ([^rj]).

Note that cc;(^) and uj{xz) are global holomorphic functions on X, hence constant.
Thus the above equations yield ^{[^,rj\) = 0. Since uj was choosen arbitrarily and
T*X is trivial (hence spanned by global sections), it follows that [^rj\ =0. D

4.8. The pluricanonical map

In this section we prove a structure theorem for the pluricanonical map of compact
subvarieties of parallelizable manifolds.

THEOREM 4.8.1. — Let Z he an irreducible compact complex subvariety of X = G/T,
where G is a simply connected complex Lie group and F a discrete (not necessarily
cocompact) subgroup. Then there exists a subgroup Fo C F and a complex Lie subgroup
Fo C H C G such that:

1. The embedding i : Z ̂  X can be lifted to an embedding io : Z ̂  G/FQ;
2. The projection TT : G/FQ —> G/H restricted to io(Z) yields a pluricanonical map

ip : Z —^ Y. All fibers of '0 are of Kodaira-dimension zero and moreover are
isomorphic to H/Fo.

3. With r ̂  7Ti(X) the subgroup Fo C F is the image of the group homomorphism
7Ti(Z) —> 7Ti(X) induced by the embedding map.

In particular all fibers of the pluricanonical map have Kodaira-dimension zero.

Proof. — We may assume eF C Z. Consider the canonical projection TT : G —^ X and
let ZQ be the connected component of 7^~1(Z) which contains the identity e. Regard
G to be acting on itself on the right. Let Fo := Stabr(^o)- Then Fo C F ^ TT^(X)
is simply the image of the group homomorphism 7i-i(Z) —)• 7Ti(X) induced by the
embedding i : Z ^ X. Thus the embedding i : Z ^ X = G/T can be lifted to an
embedding IQ : Z ̂  G/FQ. In this way we may regard Z as a subvariety of G/Fo.

Let '0 : Z —L V be a pluricanonical map and U C Z the set of "generic" fibers as
discussed in thm. 4.5.1. Let 71-0 : G —>• G/TQ be the natural map and, for g G ZQ,
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let F^Q(g\ be the ^-fiber through 7To(^) whenever it is denned. For g G Tro"1^) it
follows that /^(F^(^)) = 0 and thus g~^F^^ is an orbit of a connected Lie subgroup
I ( g ) (theorem 4.5.4). Recall that there exists only countably many compact orbits
of complex connected Lie subgroups through eFo (proposition 3.12.2). Recall further
that U is the complement in Z of a countable union of nowhere dense analytic subsets
and that ^^{U) is dense in the connected analytic subset ZQ C G. Together these
facts imply that there exists a connected complex Lie subgroup I C. G such that gIT^o
is contained in a ^-fiber for all g C ^^(Z) = ZQ. This implies in particular that
gITo = TTo for g G Fo, i.e., Fo normalizes I . Moreover it follows that the pluricanon-
ical map (up to some bimeromorphic modification of the base space) coincides with
the fibration of G/FQ -> G / I T o restricted to Z. D

For subvarieties of certain parallelizable manifolds we can say more.

THEOREM 4.8.2. — Assume in addition to the assumptions of the above theorem
that either G is solvable or that G is reductive and X is compact.

Then

1. The base space Y can be embedded into a (not necessarily compact) complex
parallelizable manifold;

2. The base space Y is of general type, i.e., K(Y) = dim(y);
3. H° is isomorphic to a covering group of Autc)(Z)° and ̂  realizes the geometric

quotient for the Auto(Z)°- action on Z, i.e., the fibers ofip are exactly the orbits
o/Auto(Z)°;

4. For every non-singular point p G Z\Sing{Z) the tangent space TpZ corresponds
to a Lie subalgebra ofF(X,TX).

Proof. — We preserve the notation introduced with the preceding theorem. Then the
pluricanonical map ^ : Z —> Y can be realized as restriction of a fibration G/FQ —^
G / H . Let N denote the normalizer of H° in G. Then Fo C N , hence we obtain
a map Z —>• G / N . We claim that this map is constant. Since N is the normalizer
of a connected Lie subgroup, it follows that G/N can be embedded equivariantly in
some Grassmann manifold. If G is solvable, this implies that G/N is holomorphically
separable (see e.g. [59]). Now let us consider the second case, i.e., G is reductive and
X is compact. Then it follows that N is reductive (lemma 4.4.3). This implies that
G/N is Stein [95]. Thus in both cases G/N does not contain any positive-dimensional
compact complex subvarieties, i.e., the map Z —^ G/N must be constant. We may
therefore replace G by N and hence assume that H° is normal in G.

Under this assumption G / H is a quotient manifold of G/H° by its discrete sub-
group H / H ° . In other words: G / H is parallelizable.

Now assume that Y C G / H is not of general type. Then we obtain a non-trivial
pluricanonical map ^ : Y —>• W which is the restriction of some fibration G / H —>•
G / I . This yields a surjective holomorphic map f : Z —^ W where all fibers are
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isomorphic to J/Fo. In particular, the fibers have Kodaira-dimension zero. However,
for every connected holomorphic map / : Z —>• W of compact complex spaces the
inequality ^(Z) < ^(F) + dim(W) holds for a generic fiber F (see [146], Th.6.12).
Thus dim(V) = i^(Z) < dim(W). Hence Y must be of general type.

Since H° is normal in G, it follows that hgFo G gH for all gFo G Z. Since gH
is the fiber of the pluricanonical map through gFo G Z, this implies that the (left)
lif-action on G/TQ stabilizes Z. Hence H° ̂  Auto(Z)° and furthermore it follows
that the fibers of the pluricanonical map are just the orbits of H°.

We have to show that Auto(Z)° is not larger than H°. Recall that a proper
connected holomorphic map is equivariant for any action of a connected complex Lie
group ([126], see also thm. 5.2.1). Moreover there exists a group homomorphism
p : Autc)(Z)° —> G such that every automorphism (j) G Autc)(Z)° is given by left
multiplication with ?((/)) (see proposition B.I). Therefore H° -^- Auto(Z)° implies
that there exists a positive-dimensional connected complex Lie group acting non-
trivially on Y. This is impossible, because Y is of general type [146], Cor.14.3.

Finally we prove statement (4). Observe that jCie(H) C TpZ C Cie(G). Now
Tp{Z) I jCie(H) corresponds to the tangent TqY for q = ̂ (p). Since Y is of general
type, it follows from proposition 4.7.4 that TqY is an (abelian) Lie subalgebra of
Cie(G)l Cie(H). This implies that Tp(Z) is a Lie subalgebra of £ie(G). D

4.9. Dimension bounds for subvarieties

Here we restrict to the case where X = G/T is compact, F is discrete and G is
semi-simple.

Our goal here is to prove that the subvarieties of X have a high codimension, i.e.,
there are no subvarieties of low codimension. This generalizes results of [58] on the
non-existence of hypersurfaces. In order to handle the case of orbits, we begin with
the following elementary rough estimate.

LEMMA 4.9.1. — Let G be a simple linear algebraic group and H a proper connected
Lie subgroup which is not parabolic. Then there exists a proper parabolic Lie subgroup
P of G with dimH < dim? and codimoH > \/dimG.

Proof. — For any connected Lie subgroup H the commutator group H ' is algebraic
and equals the commutator group H ' of the Zariski closure H [20]. Since G = G ' , it
follows that a proper connected Lie subgroup H can not be Zariski dense in G. Thus
we may replace H by its Zariski closure and thereby assume that H is algebraic.
Furthermore we may assume that H is maximal in the sense that it is not contained
in any higher-dimensional non-parabolic subgroup of G except G itself.

Since H is algebraic, there exists a equivariant embedding of G / H into some pro-
jective space P^v. Hence it is clear that there exists a number n G N and an equivariant
morphism ( / ) : G / H —>• Pyi with finite fibers such that for every k < n every equivariant
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morphism from G I H to Pfc has positive-dimensional fibers. We fix such a (f). Since
H is not parabolic, G/I? is not compact. Hence there exists a closed G-orbit G/Q
in the boundary of 0(G/^). If G ^ Q, the proof is complete. Assume G = Q, i.e.,
G has a fixed point p in P^. Complete reducibility of representations of G implies
that there is a complementary stable hyperplane H ^ Pn-i in Pn and an equivariant
projection P^ \ {p} —^ Pn-i' The minimality of G / H —^ Pn implies that the induced
morphism G / H —>• Pn-i has one-dimensional fibers. Thus we obtain a fibration
G/H -> G / I with H C I C G and dim! = dim H + 1. Now H being non-parabolic
implies dimH < dimG — 2, hence I -^ G. Thus by our maximality assumption I is
parabolic. The estimate codimaH > V^dimG now follows from a case by case check
of the dimensions of the maximal parabolic subgroups (use e.g. [144]). D

REMARK 4.9.2. — Maximal connected Lie subgroups of reductive subgroups have
been classified by Dynkin [38], [39]. Using this classification one could deduce sharp
bounds on the dimension of Lie subgroups for every given semisimple Lie group.
However, for our purposes here, this would not yield a result of qualitative difference.

Combining the above lemma with statement (4) of theorem 4.8.2 yields the follow-
ing result.

THEOREM 4.9.3. — Let G be a simple complex Lie group, F a discrete cocompact
subgroup, and Z a proper complex subspace of X = G/F. Then codim(Z) > \/dimG.

If Z is in class C, then for every p e Zreg the tangent space TpZ is an abelian
subalgebra of g. As a consequence dim Z is bounded from above by the maximum
dimension of an abelian subgroup.

THEOREM 4.9.4. — Let G be a semi-simple complex Lie group, F a discrete sub-
group, X := G/T, and Z a compact subvariety of X which is in class C. Then
dimZ < dimX/3.

Proof. — The upper bound for the dimension of abelian Lie subgroups of type An
(57^+i(G)) is a classical result of Schur [132]. Malcev [88] obtained similar results
for all semi-simple Lie groups. They are summarized in the table below, where a(G)
denotes the maximal possible dimension for an abelian Lie subgroup.

Here [n] denotes the greatest integer smaller or equal to n.
From this it follows that a(G) < (dimG+rank(G))/4 and a(G) < dimG/3 for any

complex semi-simple Lie group G. D

4.10. Transversal Submanifolds in Nilmanifolds

We will demonstrate that for nilmanifolds there are no submanifolds transversal to
the Albanese fibration. This may be regarded as a geometric analog for the following
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Group
dimG
a{G)

An

(n + I)2 - 1
[(n+1)2/4]

B3

21
5

54

36
7

^n (n > 4)

2n 2 +n
l+n (n - l ) / 2

C?n

2^+71

n(n+l) /2

£»4

28
6

Group
dimG
a(G)

Dn {n > 4)
2n2 -n

n(n- 1)/2

^6

78
16

E7

133
27

Es
248
36

-F4

52
9

C?2

14
3

well-known fact in group theory: Let G be a nilpotent group, H a subgroup such that
H ' G ' = G . ThenH=G.

THEOREM 4.10.1. — Let X = G/F a compact nilmanifold, i.e., a quotient of a
connected complex nilpotent Lie group G by a discrete cocompact subgroup F. Let
Y = X/G' = G IG'T = Alb(X) and TT : X —> Y the natural projection. Assume that
Z is a complex subspace of X with TI"(Z) == Y.

ThenZ=X.

We start with some preparation for the proof.

DEFINITION 4.10.2. — Let E —^ B be a torus principal bundle with structure group
T. Then E is called almost trivial if there exists a finite subgroup A of the torus T
such that E / A —> B is trivial.

LEMMA 4.10.3. — Let B be a complex manifold, E —^ B a torus principal bundle
and Z C E an irreducible complex subspace with dim(Z) = dim (B) such that the
projection of Z to B is surjective.

Then E is almost trivial.

Proof. — Generically TT : Z —>• B must be locally inject! ve. Let S denote the union of
all positive-dimensional components of the fibers of the projection TT : Z —^ B. Then
S is a nowhere dense analytic subset and M = 7r(S) is of codimension at least two
in B. We claim: If E \ Tr'^M) —>• B \ M is almost trivial, then E —^ B is almost
trivial, too. This holds, because triviality of E / A —> B is equivalent to the existence
of a section. For small enough U C B the restriction of E to U is trivial, hence a
section is simply a map a :U —> T. However the universal covering of T is C^. Hence
any holomorphic map a-o : U \ M -> T extends through M. Thus we may neglect M
and assume that all fibers of E —^ B are finite. Let N denote the number of points
in a generic fiber. Let A be the (finite) subgroup of T containing all elements g with

Ng = 0. Now for any TV-tuple a i , . . . , On in T the mean value — ^^ dz is well-defined
up to translation with elements in A. Note that taking the mean value is an operation
invariant under an affine change of coordinates. Hence the mean value of all points
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in a given fiber of Z —)- B is a well-defined point in E / A . Thus we obtain a section in
the bundle E / A —> B^ i.e., E is almost trivial. D

In the following h^(W) always denotes dimQ(I:fi(W,Q)).

LEMMA 4.10.4. — Let E —^ B be an almost trivial torus principal bundle. Then
h,(E)>h,{B).

Proof. — The covering E —> E / A induces a short exact sequence

1 ——> TTi (£;) ——> 7Ti(£7A) ——> A ——> 1.

Since A is finite, it follows h^{E) > h ^ ( E / A ' ) . Furthermore /ii(£J/A) = h^(T/A) +
hi{B) with /ii(T/A) = /ii(r) > 0. D

Now we are in a position the prove the theorem.

Proof of the theorem. — It is well-known ([89], see also cor. 2.2.3) that all the groups
G^ of the (descending) central series have closed orbits. Hence we obtain a tower of
torus principal bundles

X = X o — ^ ' - — ^ X ^ = G/G'Y

given by Xk = G|GrtJrl~k, where n is the smallest number for which G^1 = {e}.
We may refine this tower such that all the tori occuring as fibers are simple, i.e.,
admit no subtori. Now (rnG^/r' is finite, hence h\{X) = h-^(Xn)- Observe that for
every surjective proper holomorphic map between complex manifolds f : V —^ W the
quotient ^(W)/f^(V)) is finite. Therefore /n(Xfc+i) < M^) ̂  a11 k ' Since
h^(Xo) = /ii(Xyi), it follows that all the numbers h-\_{Xk) coincide. By the above
lemma this implies in particular that none of the torus principal bundles Xk —>• Xk-^-i
can be almost trivial.

We will inductively show that Z is mapped surjectively on the Xi. By assumption
it is mapped surjectively on Xn. Now let E —>• B be a torus-principal bundle (not
almost trivial) with a simple torus as fiber and Z C E with 7r(Z) = B. We want
to show that Z = E. By lemma 4.10.3 we know already that the fibers can not be
finite. Now assume that the fibers of Z —^ B are generically d-dimensional. For
x C Z let Z^ denote the fiber of Z —>• B through x. Thanks to the principal action of
the torus we may regard Tx(Zx) as a subvectorspace of the Lie algebra of the torus.
Thus we obtain a meromorphic Gauss map form Z to some Grassmann manifold.
Assume that generically Zx is neither finite nor the whole torus T. Since T admits
no subtori, this implies that the Gauss map is not constant along the fiber Zy. Using
the pull-back of a meromorphic function on the Grassmann manifold, it follows that
Z admits a meromorphic function which generically is not constant on the fibers of
Z —^ B. But this implies that any level set Z1 of this function is mapped surjectively
on B. Inductively it follows that there exists a Zk such that Zk —^- B is surjective
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and generically finite. However this contradicts E not being almost trivial. Hence
Z =E. D

For some nilmanifolds every subspace is an orbit.

PROPOSITION 4.10.5. — Let G be a simply connected complex nilpotent Lie group,
r a discrete cocompact subgroup, X = G/F, A == A\b(X) = G /G'Y.

Assume that there exists a sequence of subtori

{0} = AQ C Ai C • • • C An = A

such that Ak-[-i/Ak is a simple torus of algebraic dimension zero for all k. Then every
closed irreducible complex subspace Z C X is a parallelizable submanifold, i.e., an
orbit.

Proof. — Let Z be a closed irreducible complex subspace of X. Let Y C X be
a minimal connected nilmanifold containing Z. The results of Chapter 9 imply that
Alb(V) likewise fulfills the condition stated above for Alb(X). This implies that every
closed irreducible complex subspace of Alb(V) is a subtorus. Now minimality of Y
implies that TT : Z —> Alb(V) is surjective. Theorem 4.10.1 now yields Z = Y ^ i.e.^ Z
is parallelizable. D

4.11. The Cycle Space

For a complex space X the cycle space C in the sense of Barlet [9] parametrizes all
pure-dimensional compact analytic cycles, %.e., formal linear combinations ^^n^
with HI C N and each Zi being a compact irreducible reduced complex subspace of
the same dimension in X. It corresponds to the Chow scheme in algebraic geometry.
We will now study cycle spaces for parallelizable manifolds.

PROPOSITION 4 .11 .1 . — Let X = G/F be a group-theoretically parallelizable mani-
fold. Let Z be a compact parallelizable submanifold and [Z] the corresponding point in
the cycle space. Let S be the irreducible component of the cycle space Cx containing
[Z}. Then G acts transitively on S, i.e., [C] G S if and only if C = gZ for some
g e G .

Proof. — Recall that Z = H / ( H D F) for some connected Lie subgroup H. Propo-
sition 4.5.6 implies immediately that [Z] has an open neighbourhood 5* in S which
contains only translates of Z. Now let V C X x S be the associated universal cycle.
On a Zariski -open subset U of V we may define a Gauss map in the following way:
To (x^ [C]) associate the tangent space Ty^C regarded as a subvectorspace of the Lie
algebra g. U may be choosen in such a way that it intersects all fibers of V —> S.
We obtain a holomorphic map from U to a Grassmann manifold which depends only
on [C] but not on x provided [C] £ S * . From the identity principle it follows that
7 never depends on x. It follows that any cycle in S has the form ^^riiZi with Zi
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parallelizable and of the same dimension as Z. Now observe that the G-orbit through
[Z] in S is open and has dimension codim(Z). The C?-orbit through a cycle ̂  riiZz
has dimension greater or equal to the codimension of the Z{ in X. Since an irreducible
space S can admit at most one open orbit of a complex Lie group G, it follows that
the irreducible component 5" equals the (7-orbit through [Z]. Moreover it follows that
S is actually a connected component of the cycle space, because for every irreducible
component S ' of Cx the intersection S D S" must be G-stable. D

We will now start to investigate compactness properties of the cycle space.

PROPOSITION 4.11.2. — With the above notation we obtain S = G/I with I =
H • (r H Nc{H)). Furthermore S is compact iff the following two conditions are
fulfilled: H is normal in G and G/T is compact.

Proof. — Since H / ( H r \ r ) is compact, it follows that S is compact iff G/(TnNG{H))
is compact. Thus S is compact iff To = F D Nc(H) is of finite index in F and G/F
compact. It remains to show that TQ being of finite index in F already implies that
H is normal in G. Recall that NG(H) may be realized as the kernel of a linear
representation p of (7. Now p(T) is Zariski -dense in p{G) (thm. 3.4.1). This completes
the proof. D

Thus we obtain many new examples of compact complex manifolds for which the
cycle space has non-compact irreducible components.

In contrast, for large classes of compact complex manifolds it is known that all the
irreducible components of the cycle space are compact, e.g. this is true for surfaces,
Kahler manifolds and more generally all manifolds in class C.

There are also other examples of compact complex manifolds whose cycle space has
non-compact irreducible components. See [26] for examples based on twistor spaces.

COROLLARY 4.11.3. — Lei G be a simply connected complex Lie group, F a discrete
cocompact subgroup. Assume that G is not nilpotent.

Then the cycle space Cx of X = G/T has a non-compact irreducible component.

Proof. — There is a Lie subgroup H with closed orbit Z = H / ( H D F) such that
Cie(H) is a Cartan subalgebra of £ie(G) (prop. 3.3.2). By definition of a Cartan
subalgebra Cie(H) is never an ideal in Cie(G) unless Cie(G) is nilpotent. D

For tori every irreducible component of the cycle space is compact, because tori are
Kahler. For some nilmanifolds X there are non-compact irreducible components of
Cx, e.g. this is true for the standard Iwasawa manifold.
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4.12. Fundamental groups of subspaces

A complex group-theoretically parallelizable manifold has a universal covering
which is biholomorphic to a simply connected complex Lie group and thereby bi-
holomorphic to a Stein manifold. It follows that a complex group-theoretically par-
allelizable manifold can not contain simply connected compact complex subspaces.
Moreover it follows that for any compact complex subspace the embedding map is
topologically non-trivial.

LEMMA 4.12.1. — Let X be a complex group-theoretically parallelizable manifold
and Z a compact complex subspace. Then the embedding map i : Z —> X induces a
group homomorphism i^ : 7Ti(Z) -> 7Ti(X) with infinite image.

Proof. — Write X = G/F with G simply connected. Then F ^ 71-1 (X). By standard
covering theory the embedding i : Z —> X can be lifted to an embedding j : Z —^
G/(^7Ti(Z)). This yields the assertion, because G/A is Stein for every finite subgroup
A. D

If z>i«7Ti(Z) is commutative, then Z is contained in a torus.

PROPOSITION 4.12.2. — LetG be a simply connected complex linear algebraic group,
r a discrete cocompact subgroup, Z C X = G /F a compact complex subspace.

Assume that z+7i-i(Z) is a commutative subgroup of Tr-i(X) ^ I\ where i : Z —^ X
denotes the embedding.

Then there exists a submanifold T which is biholomorphic to a compact complex
torus such that Z CT C X .

Proof. — We may assume eT E Z. Let C denote the centralizer of z^TTi(Z) in G and
A the center of C. Clearly ^71-1 (Z) C A. Since the orbit of C through eT is closed,
it follows that the A-orbit through eF is closed as well. Now i : Z -> X = G/T
can be lifted to an embedding j '. Z —> G/(^7Ti(Z)) which yields a holomorphic map
Z -^ G/A. A result of Rosenlicht ([128], Th.3) states that the quotient of a linear
algebraic group by a nilpotent algebraic group is always quasi-affine. Hence G / A is
quasi-affine and therefore every holomorphic map from the compact complex space
Z to G / A is constant. Thus Z is contained in the A-orbit A/A D F C X. But A is
abelian, hence A/A D F is a compact complex torus. D

For G = 5L2(C) this can be improved.

COROLLARY 4.12.3. — Let G = SL^(C), F a discrete cocompact subgroup and
Z C X = G/T a compact complex subspace.

Then either ^7Ti(Z) is Zariski dense in G or Z is a one-dimensional compact
complex torus.
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Proof. — We may assume that the Zariski closure H of z*7i-i(Z) is not all of G. It is
easy to check that a Borel subgroup in SL^(C) does not contain any discrete Zariski
dense subgroup. Hence H is one-dimensional and therefore contains a commutative
subgroup of finite index. Similar arguments to those above show that Z is contained
in an JY-orbit. Hence it coincides with a connected component of an H-orbit. D

4.13. More on subspaces of general type

The easiest way to construct subspaces of general type in a compact complex
parallelizable manifolds is to take an orbit which is a compact complex torus and
look for non-trivial subspaces of this torus. Under an (admittedly rather strong)
additional topological assumption we have shown in the preceding section that this
is the only way to construct subspaces of general type. Thus one might pose the
question:

Does there exists a compact complex-parallelizable manifold X with a closed
complex subspace of general type Z such that Z is not contained in any
torus T C X ?

Campana and Flenner were the first to suggest constructing a counterexample
using curves in nilmanifolds; their argumentation is based on the theory of Parshin
([119]) of generalized Jacobians.

Here we will use a different method to show that there are counterexamples.

PROPOSITION 4.13.1. — There exists a complex nilmanifold X (i.e., a compact
quotient of a simply connected complex nilpotent Lie group G and a discrete subgroup
F) and a Riemann surface C C X of genus g > 2 such that C is not contained in any
proper parallalizable complex submanifold of X .

Proof. — We start with the Iwasawa manifold XQ = U(C)/UC^ © z'Z) where

r / i ^ \
U{A)= \\ 1 V \ - - x , y , z e A

[\ 1 )
for A = C, Z C zZ. There is a fibration TT : XQ —^ Y given by

U(C)IUCL e zz) —> U(C)/[U(G), u(c)]u(^ e zz).
This fibration realizes XQ as a holomorphic E-principal bundle over the abelian surface
Y = E x E where E = C/(Z 0 %Z). Let C C Y be a curve of genus g > 2 and let A
denote the Jacobian of C. Then there exists a surjection r : A —^ Y and we define Xi
as the total space of the pulled-back E-principal bundle TT, i.e., X^ = A XyXo 7^1^*7^

A. The ^-principal bundle TT : XQ —^ Y admits a holomorphic connection (see §6.3).
Hence TT : X^ —>• A admits a holomorphic connection, too. For dimension reasons this
connection induces a flat connection on the restricted bundle T T ' : ̂ (C) —^ C C A.
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Thus 7T7 is given by a representation of the fundamental group p : 7Ti((7) —^ E. Now
Ti-i (C7) is torsion-free for a Riemann surface C. It follows that TT' is a topologically
trivial E-prmcipal bundle over C. Next let us consider the exact sequence of complex
Lie groups

0 —)- Z © %Z -)- C —> E —> 0.

For any complex space C, this yields an exact sequence of the corresponding sheaves
of functions with values in the respective Lie

o —)- z e zz -)- o —> £ —>o.
The long exact cohomology sequences contains the following part:

... -^ H1 (C, 0) ̂  H1 (C, £) -^ H2 {C, Z C zZ) -^ ' ' •

The cohomology group H1^^) parametrizes ^-principal bundles over C. Thus TT',
being topologically trivial, must be induced by a{(/)) for some element (j) G H1^, 0).
Recall that H1 ((7,0) ^ ^(A.O), since A is the Jacobian of C. Thus (f) can be
regarded as an element in ^(A.O). Using the group structure of E there is a
structure of an abelian group on the cohomology group H1 (A, <?) parametrizing the E-
principal bundles over A. Let ^ G ^(A,^) denote the element defining ̂  : X^ -^ A
and for t G [0,1] consider the ^-principal bundle pt : Zf —^ A denned by ^ - t(f) G
^(A,^). Recall that the obstruction to the existence of a holomorphic connection
is given by an element in ^(A,^) (see §6.3), that the bundle corresponding to $
admits a holomorphic connection and that the natural map Jf^A.O) -^ ^(A,^)
vanishes, because A is a complex torus and therefore Kahler. It follows that all the
^-principal bundles pt admit holomorphic connections. This implies that the total
spaces Zt are again nilmanifolds. In particular the total space Zi is a nilmanifold
realized as a ^-principal bundle pi : Zi -^ A. Now C C A and by construction
(pi) \c is holomorphically trivial. Thus the embedding C ̂  A can be lifted to an
embedding j : C ̂  Z\.

Finally, we claim that j(C) is not contained in any proper parallelizable complex
submanifold W of Zi. Indeed, since A is the Jacobian of (7, it is clear that pi (W) = A
for every parallelizable complex submanifold W C Z\ with j(C) C W. By thm. 4.10.1
this implies W = Zi. D

REMARK 4.13.2. — In general, the above construction yields curves in nilmanifolds
G/F where G is "degenerate" in the sense that G is a direct product with an abelian
group. To avoid this, the construction has to be modified in such a way that one starts
with a curve C whose Jacobian is isogeneous to G/GT for some nilmanifold G/GT
where the center ZG is contained in the commutator group G ' . This is possible. For
instance, the Jacobian of the Fermat curve

C = {[x : y : z] G P2(C) : x6 + y6 + z6}
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is isogeneous to E10 with E = C/(Z © rZ) with T = V^z - 1/2 (see [76] for this
and other results on the Jacobian of Fermat curves). Now Z (D rZ is the ring of
algebraic integers of the cyclotomic field K = Q[r]. Therefore E10 ^ G / G ' V , if C? is
the 11-dimensional Heisenberg group and F = C?(Z 0 rZ). It follows that C can be
embedded into a deformation X of X\ = G/T in such a way that X is a complex
nilmanifold and C is not contained in any proper parallelizable submanifold of X.

However, for G = 51/2 (C) the question is still open. If there exists a discrete
cocompact subgroup F such that X = SL^((C)/T contains an irreducible compact
complex subspace which is not a torus, then this subspace would of course be a
(possibly singular) compact Riemann surface of genus g > 2. We have already seen
that the embedding of a compact Riemann surface C with g(C) > 2 (if it exists)
must be non-trivial on the homotopy level. This is not a useful obstruction, because
there are many group homomorphisms from 7Ti((7) to r. (7Ti((7) is almost free; to be
more precise: it is generated by 2g generators a i , . . . , Og, & i , . . . , bg subject only to the
relation [ai, &i][a2, ^2] • • • [o^g-, bg] = e.) Furthermore every group homomorphism from
7Ti((7) to r is induced by a continuous mapping.

PROPOSITION 4.13.3. — Let C be a compact Riemann surface of genus g(C) > 1, T
a torsion-free discrete subgroup of SL^(C). Then the set of homotopy classes of con-
tinuous maps from C to 5Z/2(C)/F is in one-to-one correspondence to Hom(7ri((7),F).

For this we need two auxiliary results on Riemann surfaces.

LEMMA 4.13.4. — Let C be a Riemann surface, K a connected, simply connected
real Lie group. Then every K-principal bundle over C is (topologically) trivial.

Proof. — Let E -^ C be a JC-principal bundle. Assume C ^ Pi(C). Let TT : C -^ C
denote the universal covering. Then C is contractible, hence TT^E is trivial. Thus
TT*E is given by a factor of automorphy a : F x C —>• G. This is a map a fulfilling

0(77,3;) = a(^^x)a{^,x).

The associated J^-principal bundle over C is defined by C x K/ ^ with (x,k) ~
(7.r,a(7,.r)A:) for all x G (7, 7 G F, k G K. This bundle is trivial if and only if there
exists a map (f): C —^ K such that

(*) (f>(x) = ̂ x) = 0(7, x)

for all x G C, 7 G F. (The trivialization is induced by (x,k) i-> (Tx, ̂ (a*)"1^).)
Thus we have to construct such a map 0. Recall that C may be equipped with the
structure of a real two-dimensional CW-complex. This is a disjoint decomposition
of C into cells fulfilling certain additional properties, cf. e.g. [85]. Since cells are
simply connected, for each cell a C C the pre-image Tr"1^) C C is a disjoint union
of cells which are freely permuted by the F-action. Thus we have a natural induced
structure of a CW-complex on C such that for each cell a belonging to this structure
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and every 7 G F\ {e} the transform 7(0-) is again a cell belonging to this CW-complex
structure. Moreover a ("17(0) = 0. Let Ck denote the ^--skeleton, i.e., the union of all
cells of dimension < k. The above considerations imply that Ck contains a closed CW-
subcomplex C^ with Ck-i C C^ such that for each A--cell a- there exists a unique 7 G F
for which 7(0) C C^. In other words: The natural map F x (C^ \ Ck-i) —^ Ck \ Ck-i
is bijective. Now we claim that we can construct the desired map (f) : C —> K by
starting with an arbitrary map from C^ —>• K and then extending this map along the
inclusions

Co* c Co c (?i* c Ci c C^ cC2=C.

To extend from C^ to Ck we simply use the desired relation (*). For the inclusion
Ck-i C C^ it suffices to take any continuous extension. However, we have to show that
there exists such a continuous extension. Recall that K is required to be connected
and simply connected. This implies that for any relative CW-complex (X, A) with
dim^(X) < 2 any continuous map / : A —> K extends to a continuous map / : X —>
K.

The proof for the case C ^ Pi (C) follows easily from the fact that Pi (C) is obtained
from 5'1 by the suspension functor. We omit the details, since we do not need this case
anyway. (Since Pi(C) is simply connected, it is clearly impossible to embed Pi(C)
into a quotient of a complex Lie group by a discrete subgroup.) D

LEMMA 4.13.5. — Let C be a Riemann surface. Then every continuous map from
C to 5'C/2(C) is homotopic to a constant map.

Proof. — Every continuous map between differentiable manifolds is homotopic to a
differentiable map. Hence every continuous map from C to SU^(C) is homotopic to a
non-surjective map. Now SU'2{C) is homeomorphic to 53, hence every non-surjective
map is homotopic to a constant map. D

Proof of the proposition. — Let K ^ SU^ (C) denote a maximal compact subgroup
of SL^ (C). Since F is torsion-free and discrete, F D K = {e}. Thus we have a
^-principal bundle TT : X = SL^ (C)/T 4 M = K\SL^(C)/r and M is an Eilenberg-
MacLane space K(r,l). Hence [C',M] = Hom(7i-i((7),r). Now for every continuous
map / : C —^ M we have the pull-backed J^-principal bundle over C which is trivial.
Therefore / lifts to a map from C to M. Finally we have to show that two maps
/, g : C —^ X are homotopic if and only if Trof and -n-og are homotopic. By homotopy
lilting, TT o / ~ TT o g implies f ̂  h for some map h : C —> X with TT o h == TT o g . Thus
h{x) = Rp^x) (gW) (x G C) for some map p : C —> K^ where R denotes the principal
K-right action on X. Now p is homotopic to a constant map. Hence / ~ h ~ g . D
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4.14. Holomorphic maps / : C —>• X

The following result ("Bloch's Conjecture") was proved by Green and Griffiths
[47]: Let f : C —^ X be a holomorphic map of the complex numbers into a compact
complex torus. Then the complex-analytic Zariski closure W = /(C) is a subtorus.
(The complex-analytic Zariski closure of a subset S in a complex space X is the
smallest closed complex-analytic subset of X containing S.) We will generalize this
to holomorphic mappings from C to a compact parallelizable manifold.

THEOREM 4.14.1. — Let X be a compact parallelizable complex manifold and
f : C -> X a holomorphic map. Then the complex-analytic Zariski closure W = /(C)
is an orbit of a complex Lie subgroup of G := A\ito{X)°.

Proof. — By the theorem of Green and Griffiths a : W —> Alb(TV) is surjective.
Hence it suffices to prove the following statement:

Let X = G/F be a compact complex parallelizable manifold, Z an ir-
reducible compact complex subspace. Then either Z is parallelizable or
Z —^ Alb(Z) is not surjective.

Thus we will now assume that Z is a compact complex subspace of X = G/F with
Z —^ Alb(Z) surjective and deduce that this implies parallelizability of Z. First we
note that cor. 4.7.2 implies that Z is not of general type, i.e., n{Z) < dim Z. Consider
the map ^ : Z —> Y as given in theorem 4.8.1. Then the image o f f = / ^ p o f : C — > - Y
is dense in Y with respect to the analytic Zariski topology. If we are in a position
to apply theorem 4.8.2, then it follows that Y is of general type and Y —^ Alb(V) is
surjective. Hence Y is a point, i.e., Z is parallelizable. This completes the proof for
the case where G is reductive or solvable.

It remains to handle the case where G is neither solvable nor reductive. Here we
assume that G is minimal in the following sense: If G is a complex Lie subgroup of G
with Z contained in a closed G-orbit, then G = G.

We begin by considering the radical fibration T : G/F —^ G/RT = 5/A, where R is
the radical and S a maximal connected semi-simple Lie subgroup. Since S is reductive
it follows that the image of Z under r is an orbit. By minimality of G it follows that
Z is mapped surjectively on 5/A. Going back to the proof of theorem 4.8.2 we note
that in order to deduce the statements of theorem 4.8.2 it is enough to show that G I N
is holomorphically separable (with N = NG(H°) defined as in theorem 1.10.1). Now,
the manifold G/N is naturally embedded in a Graftmann manifold. Let G denote the
algebraic Zariski closure of G in the automorphism group of this Gra^mann manifold
and N the isotropy group of G at the neutral point eN. Furthermore let R denote the
radical of G. Then the J?-orbits in G / N are closed and R N / R is a closed algebraic
subgroup of G / R = S. Recall that Z may be embedded in G/Fo with Fo C N. It
follows that Ao = RTo/R is a discrete cocompact subgroup of S with Ao C RN/R. By
thm. 3.4.1 this implies that Ao is Zariski dense. Hence R N / R is also Zariski dense in
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5. Thus ~R~NI~R = 5, i.e., G = 'R'N. Therefore ~R acts transitively on G/^V. It follows
that G/N is a subset of an orbit of a solvable group in a GraKmann manifold. Since
such orbits are holomorphically separable, it follows that G/N is holomorphically
separable. This completes the proof. D

The theorem can be generalized to deal with holomorphic maps from arbitrary
complex Lie groups instead of C.

PROPOSITION 4.14.2. — Let X be a compact parallelizable complex manifold, H a
connected complex Lie group and f : H —> X a holomorphic map. Then the complex-
analytic Zariski closure W = f(H) is an orbit of a complex Lie subgroup of G :=
Auto(X)°.

Proof
For every element v in the Lie algebra Cie(H) let Sy denote the set {/(exp(z^)) :

t € C}. By the theorem the complex-analytic Zariski closures Sv are orbits of complex
Lie subgroups of G containing f(e). Recall that there exist only countably many con-
nected Lie subgroups of G with compact orbits through a given point (prop. 3.12.2).
Therefore there exists an element VQ G Cie(H) and a subset f^ C jCie{H) such that
f^ is dense in the analytic Zariski topology and Svo = Sv for all v G H. Density of
^ implies that Sv C Z for all v € Cie(H), hence density of exp(Cie H) in H implies
that f(H) C Svo. Hence f(H) = Svo and the proof is complete. D

As a consequence of the theorem we obtain a characterization of hyperbolic sub-
manifolds.

COROLLARY 4.14.3. — Let X = G/T be a compact complex parallelizable manifold
and Z a complex subspace. Then Z is hyperbolic in the sense of Kobayashi if and only
if it contains no compact complex torus.

Proof. — By a result ofBrody ([25]), Z is hyperbolic if and only if every holomorphic
map from C to Z is constant. Hence Z is hyperbolic if and only if it contains no paral-
lelizable complex submanifold. Finally recall that every compact complex paralleliz-
able manifold contains a compact complex torus (follows from theorem 3.10.1). D

For submanifolds of parallelizable manifolds we thus obtain an affirmative answer
to the following general question.

QUESTION 4.14.4. — Given a compact complex manifold Z, are the following
conditions equivalent?

1. Z is hyperbolic in the sense of Kobayashi;
2. There is no non-constant holomorphic map from compact complex torus to Z.

Serge Lang [80] conjectured that the answer is positive is true at least for projective
manifolds. In general it is obvious that (1) implies (2). Furthermore (2) implies that
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every curve C C Z is of genus > 2 and therefore hyperbolic (note that condition (2)
excludes rational curves, because there is a surjective map from a torus to Pi(C)).

We would like to remark that this characterization of hyperbolic submanifolds can
be proved in a more elementary way, in particular without using the result of Green
and Griffiths.

By the reparametrization results of Brody [25] it suffices to prove the following:

Let h be a hermitian metric on Z and f : C —>• Z be a non-constant
holomorphic map with bounded derivative (with respect to h). Then Z
contains a parallelizable submanifold.

But this is an immediate consequence of the lemma below, because the complex-
analytic Zariski -closure of an orbit is parallelizable provided it is compact (cor. 4.5.5).

LEMMA 4.14.5. — Let G, H be complex Lie groups, f : G —^ H be a holomorphic
map with f(eo) = en- Assume that the derivative Tf is bounded with respect to some
G- resp. H-invariant hermitian metrics on G and H.

Then f is already a Lie group homomorphism.

Proof. — Consider Tf : TG -^ TH. It induces a map F : G x g -> h which is
linear in the second variable and such that F(-, v) : G —^ h is bounded. By Liouville's
theorem F(-,v) is constant for all v. Thus we obtain a linear map ( / ) : g —>• h and a
dual map <^* : h* —^ g*. The latter is induced by pulling back holomorphic 1-forms.
Hence

a([(/)X,^r]) = da((/)X,(f)Y) = ̂ da(X,Y)

= d^a(X^Y) = <^*([X,y]) - a(^[X,y])

for all a G h*. Thus [(f)X, (/)Y] = (f)[X, V], i.e., (f) is a Lie algebra homomorphism. D

4.15. Abelian connectedness

Let S be a class of groups, e.g. the class of all abelian groups. Then one can pose
the following question:

Let X be a compact complex manifold and assume that for every pair of
points a*, y G X there exists a finite family of compact complex spaces Zi
with 71-1(2^) C S and holomorphic maps fi: Zi —^ X such that Uifi(Zi) is
connected and contains x and y.

Does this imply 71-1 (X) G S ?

For Kahler manifolds there are some positive results. In particular the answer is
positive for the class of finite groups as well as for the class of almost abelian groups,
see [27, 28].
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For parallelizable manifolds the situation is quite different: Given a quotient of a
complex Lie group G by a lattice F it is always posssible to connnect two points in
G/T by a chain of tori, regardless whether 71-1 (G/F) is abelian or not.

PROPOSITION 4.15.1. — Let G be a complex Lie group, T a lattice, and x^y 6 X =
G/T.

Then there exists a finite family of compact complex tori Zi embedded in X such
that the union Z = UZi is connected and contains both x and y .

Proof. — There is a natural equivalence relation on X given as follows: x ~ y iff x
and y can be connected by a chain of compact complex tori embedded in X. Clearly

(*) (x ~ y) <^ {(f){x) - (t)(y))

for all x,y C X, (j) e Auto(X). Let I = {g G G : gV - eF}. Due to (*) the
assumption g^ h € I implies

eF - gY = geT ~ ghY

and

cF = g^gT - g^eT.

Thus g,h G I implies g ^ ^ g h G I , i.e., I is a subgroup. Now the statement follows
from thm. 3.10.1. D
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CHAPTER 5

HOLOMORPHIC MAPPINGS

5.1. Survey

In this chapter we study holomorphic mappings from and to parallelizable mani-
folds. Special emphasis is given to holomorphic self-maps.

In certain contexts holomorphic mappings are automatically equivariant. In partic-
ular, if X = G/F is a compact complex parallelizable manifold, Y a normal complex
space and / : X —>• Y is a surjective connected holomorphic map, then Y is also
parallelizable. In fact Y ^ G / H F for some normal connected complex Lie subgroup
H C G such that F : G/F —> G / H F is simply the natural projection.

Furthermore we prove that for a lattice F in a semisimple complex Lie group G
every surjective holomorphic self-map / of the complex manifold X = G/F with
f(eF) == eF is already an automorphism and of the form

/: gp ̂  <^)r,

where (/) denotes an automorphism of G (as complex Lie group) with (f)(F) = F. As
a consequence we obtain that for semisimple G the automorphism group of such a
complex manifold G/F has only finitely many connected components and its connected
component is isomorphic to G / ( Z D F) where Z denotes the (finite) center of G.

If G is not semisimple, there may exist surjective holomorphic self-maps of G/F
which are not bijective. However, they can be non-bijective only in the direction of
the nilradical. To give a precise statement, let us assume that G is a simply connected
complex Lie group, N its nilradical, r a lattice in C7, and / : G/F —>• G/F a surjective
holomorphic map with f{eF) = eF.

Then there exists an automorphism 0 of G with 0(F) C F such that f(gF) = (/)(g)F
and a commutative diagram of holomorphic mappings

G/F —/—> G/F

7T 7T
-4^ .̂

G/NF ———^ G/NF
F

with F(gNF) = (f>(g)NF and 7r(gF) = gNF such that F is biholomorphic.
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Finally, we show that meromorphic maps to complex parallelizable manifolds are
automatically holomorphic.

Most of the results contained in this chapter have been published in [158].

5.2. Maps to parallelizable manifolds are equivariant

We have already seen (lemma 3.4.3) that a compact complex parallelizable manifold
X = G/F never admits a non-constant G-equivariant map to a projective space Pn(C).
This is particularly useful in studying holomorphic maps, because proper connected
surjective holomorphic maps are automatically equivariant. This is a result which
basically goes back to Blanchard [14]. In the formulation cited below it is due to
Remmert and van de Ven [126].

THEOREM 5.2.1. — Let f : X —>• Y be a surjective proper holomorphic map
with connected fibers between normal complex spaces. Assume that there exists a
holomorphic action of a connected complex Lie group G on X.

Then there exists a holomorphic G-action on Y for which f is equivariant.

COROLLARY 5.2.2. — Let G by a connected complex Lie group, F C G a lattice,
Y a normal complex space and f : X = G/F -> Y a surjective connected proper
holomorphic map.

Then there exists a connected normal complex Lie subgroup H C G such that
HF is closed in G and there is a biholomorphic map G / H F ^ Y such that f is
simply the canonical projection map from G/F to G / H F . Furthermore G / H F =
{ G / H ) / ( F / ( H n F)) is parallelizable and F / ( H H F) is a lattice in G / H .

Proof. — By the theorem above the G-action on X induces a G-action on Y. This
action is transitive, since G acts transitively on X and / : X -^ Y is surjective. Thus
Y ^ G / I for a closed complex Lie subgroup I C G with F C I . The connected
component H = 1° of I is normalized by I , hence by F. Thus H must be normal in
G (cor. 3.4.7). Therefore G / H is a complex Lie group and Y ^ G / I is isomorphic
to the quotient of this complex Lie group G / H by its discrete subgroup F / ( H H F).
Finally F / { H n F) is a lattice in G/H by lemma 1.5.2. D

CONJECTURE 5.2.3. — In the formulation of the above corollary the condition of f
being proper is not necessary.

(If G/F is compact, then / is automatically proper. Hence this conjecture concerns
only quotients by non-cocompact lattices.)

Next we present a basic lemma on holomorphic mappings between parallelizable
manifolds.
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LEMMA 5.2.4. — Let X be a complex manifold on which a simply connected complex
Lie group G acts. Let Y = H/A be a group-theoretically parallelizable complex mani-
fold, f : X —)• V a holomorphic map and assume that every holomorphic function on
X is constant.

Then f is equivariant with respect to a homomorphism of complex Lie groups (/) :
G->H.

Proof. — We have to show that the G-fundamental vector fields on X can be pushed
forward to H -fundamental vector fields on Y. There are ^-fundamental vector fields
^ i , . . . ,Vn on Y (with n = dimc(Y)) which give a global trivialization of TY. Now
let w be a fundamental G-vector field on X. Using the trivialization of TY we obtain
holomorphic functions ^ on X such that /*(wa.) = ^i9i(x)vi for every x C X.
Since every holomorphic function on X is constant, it follows that the pushed-forward
tangent vectors f^(wx) constitute a vector field ̂  giVi with Qi G C. Thus we obtain a
homomorphism of Lie algebras /„ : Cie G —^ Cie H. Since G was assumed to be simply
connected, there exists an associated homomorphism of Lie groups ( f ) : G —>• H. D

We are now able to deduce a structure theorem for holomorphic mappings between
complex parallelizable manifolds.

THEOREM 5.2.5. — Let f : X —>• Y be a holomorphic map between group-
theoretically parallelizable complex manifolds X ^ G/F, Y ^ H/A. Assume that
every holomorphic function on X is constant.

Then there exists a homomorphism of complex Lie groups F : G —^ H with F(T) C
A and an element x G H such that f(gF) = x - F(g)A.

Two such pairs (F, x), (F',x') correspond to the same map if and only if there
exists an element A G A such that x' = x\ and F'{g) = \~lF(g)\.

Proof. — Choose x C H such that /(eF) == xK. By the above lemma there exists a
homomorphism of complex Lie groups ( j ) : G —^ H such that

fW = f(9 • eF) = ̂ {g) . xA.

Let F be defined by F{g) = x^^^x. For 7 C F we obtain

xK = /(eF) = fW = xF^)K.

Hence F(F) C A. Finally consider two maps /, // given by f(gF) = xF(g)A
(resp. f(gr) = x ' F ' ( g ) K ) . If / = f\ then /(eF) = /'(eF) implies x ' = x\ for
some A G A. Now

^.g^F^x-^x'F1^)

is a continuous map defined on the connected group G. The equality / = /' implies
that C(^) C A for all g C G. Hence < is constant. Since C(e) = A, it follows that
F ' = A-^A. D
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COROLLARY 5.2.6. — Let G be a simply connected complex Lie group, F a discrete
subgroup such that X = G/T has no non-constant holomorphic functions. Let f :
X —)• X be a holomorphic self-map such that D(f) has maximal rank at one point.

Then f is surjective, D(f) has maximal rank everywhere and there exists an au-
tomorphism (f) G Aut(G) with (/)(T) C F and an element x C G such that f(gF) =
x(f)(g)Y.

Proof. — Due to the theorem / is equi variant. This implies that / is surjective and
D(f) has maximal rank everywhere as soon as D(f) has maximal rank in one point.
The theorem furthermore implies that we can find a homomorphism of complex Lie
groups ( f ) : G —)• G with discrete kernel which has the desired properties. However, for
a simply connected Lie group such a ( / ) is necessarily an automorphism. This follows
from the usual correspondence between simply connected Lie groups and Lie algebras
because such a ( / ) evidently induces an automorphism of the Lie algebra of G. D

DEFINITION 5.2.7. — Given a complex Lie group G and a discrete subgroup F, the
set of all holomorphic Lie group automorphisms ( / ) of G with (/)(T) = F is denoted by
Aut(G,r).

Note that Aut(G,r) embedds naturally into Aut(G) which in turn can be embbeded
into GL(Cie G). In this way Aut(C?, F) carries a natural structure of a Lie group. The
connected component Aut((7, F)0 consists of all 0 G Aut((7) with <^|r = idr. If F is a
lattice in a linear complex Lie group G, then c/)\r == id |r implies (j) = idc (prop. 3.7.5).
Thus Aut(G,r) is a countable discrete group for a lattice F in a linear complex Lie
group G.

COROLLARY 5.2.8. — Let G be a simply connected complex Lie group and T a
discrete subgroup such that G/F has no non-constant holomorphic functions. Let
AQ == Aut(G,r) [K G be the natural semidirect product given by the natural action of
Aut(G,r) onG.

Then Aut(G/r) = Ao/F where F is embedded in AQ by

7^ (int^,7)

(with int̂  denoting conjugation by ^).

COROLLARY 5.2.9. — Let G be a connected complex Lie group and Y a discrete sub-
group such that G IT has no non-constant holomorphic functions. Denote the center
ofG by ZG.

Then A\ito(X)° = G/(ZG^), where Auto(^0° denotes the connected component
of the group of holomorphic automorphisms of the complex manifold X = G/F.
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5.3. The group of connected components of Ant ( X )

We will now study the quotient group Aut(X)/Aut(Z)°, where Aut(JQ° denotes
the connected component of e (with respect to the compact-open topology). We will
describe this quotient group and show that it is always countable and that, if G is
semisimple, it is finite/1) Our previous results imply that Aut(X)/Aut(JQ° is in fact
isomorphic to Aut(G, F)/ Int(r). Hence we have to consider the size of Aut(G, F).

LEMMA 5.3.1. — Let G be a simply connected complex Lie group and F a discrete
subgroup. Assume that every holomorphic function on G/F is constant.

Then Aut(G,r) naturally embeds into Aut(T) and is countable.

Proof. — Let (/) C Aut(G,r) and assume that 0 acts trivially on F. Then

W)=^Qr1)
defines a holomorphic map from G/T to G with C(er) == e. But G (being a simply
connected complex Lie group) is holomorphically separable (cor. 1.11.3). It follows
that C = e which implies (/) = id. Hence Aut(G, F) embeds into Aut(r). On the other
hand Aut(G,r) is a closed subgroup of the Lie group Aut(G). These facts together
imply that Aut(G,F) is countable. D

COROLLARY 5.3.2. — Let G be a simply connected complex Lie group, Y a discrete
subgroup. Assume that every holomorphic function on X = G/T is constant.

Then Aut(X)/Aut(X)° is countable.

We will now restrict to the case where G is semisimple and prove that in this case
Aut(X)/Aut(X)° is even finite. Here it is crucial that almost all automorphisms of
semisimple Lie groups are inner. In fact we prove finiteness of Aut(X)/Aut(X)° for
all Lie groups G with Out(G) = Aut(G)/ Int(G) finite. But first let us make a general
remark and then proceed to an example.

The remark is the following. For a simply connected Lie group G the automor-
phism group Aut(G) is isomorphic to the automorphism group of its Lie algebra and
thereby easily seen to be linear algebraic. In particular, Aut(G) has only finitely many
connected components. Thus in order to check the finiteness of Out(G) it suffices to
check that Aut(G) and Int(G) = G / Z have the same dimension.

Now let us produce an example of a non-semisimple Lie group for which Out(G)
is finite and which does admit a lattice.

EXAMPLE 5.3.3. — Let A G 5L(2,Z) with \trace(A)\ ^ 2. Then A generates an
infinite cyclic discrete subgroup A in 5L(2,C). Let T denote the Zariski closure of
A in 5L(2,C). Now T is a maximal torus of SL(2,C) and the semidirect product

(^There are complex manifolds X for which Aut(X)/Aut(X)° is not countable. For example,
let S = {0} x Z C C2. Then Aut(X)/Aut(X)° is uncountable for X = C2 \ S, because the whole
permutation group of S embeds into Aut(X)/Aut(X)° ([127], Prop.3.1).
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Go = T K (C2, +) induced by the natural action of SL(2, C) on C2 admits a lattice,
viz. A x (Z2^). One can easily check that Out(G) ^ Z/2Z, where G denotes the
universal covering of Go.

LEMMA 5.3.4. — Let G be a complex Lie group, F a lattice and assume that
Out(G) =Aut(G)/Int(G) is finite.

Then Aut(G, F)/ Int(r) is finite.

Proof. — Let H denote the subgroup of all (f) G Aut(G,r) which are given by inner
automorphisms of G. Then Aut(G, F ) / H C Out(G) and H ^ N / Z , where Z denotes
the center of G and N the normalizer of F C G. Observe that N° centralizes F.
Since Ad(F) is Zariski dense in Ad(G) (thm. 3.4.1), it follows that N° = Z°. Thus
N / Z ° is a discrete subgroup in G / Z ° . Therefore Z°r/Z° is also discrete in G / Z ° .
Since the covolume of Z°r/Z° in G/Z° is obviously finite, Z°r/Z° has finite index
in N / Z ° . Consequently N / T Z ° is finite. This completes the proof of the finiteness of
Aut(G,r)/Int(r). D

Using the isomorphism Aut(X)/Aut(X)° ^ Aut(G,T)/Int(T) for lattices in simply
connected complex Lie groups this lemma implies the following result.

THEOREM 5.3.5. — Let G be a simply connected complex Lie group for which
Out(G) is finite (e.g. G semisimple), F a lattice and X = G/T.

Then Aut(X) / A\it(X)° is finite.

5.4. Self-maps

Here we will demonstrate that except in the directions of the nilradical, a surjective
self-map of a parallelizable manifold is necessarily biholomorphic.

We start with the following observation.

LEMMA 5.4.1. — Let G be a real Lie group, F a lattice and (/) an automorphism of
G with ^(r) c r.

Then •^T/(J)(T) = |detAd(^>)| where Ad(<^) denotes the associated automorphism
of the Lie algebra Cie(G).

Proof. — The Haar measure on G can be realized by integration over a G-invariant
volume form uj which can be considered as an element in A^ Cie(G)* (with d = dim G).
Thus

^ u = (f^uj
JG/(f){Y) JG/T

and uj = | det(Ad(^))|<^. D
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COROLLARY 5.4.2. — Let G be a semisimple Lie group, F a lattice and (/) an
automorphism of G with 0(T) C F.

Then (J){Y) = F.

COROLLARY 5.4.3. — Let S be a semisimple complex Lie group, F a lattice and f
a surjective holomorphic self-map of the complex manifold G/F.

Then f is bijective, i.e., an automorphism.

However, for non-semisimple Lie groups it is possible that 0(F) ^ F.

EXAMPLE 5.4.4. — For a commutative ring A define

f A . A 1
GA = < 1 y \ ' - x , y , z G A > ,

l\ V J
Then T = Gz+^z is a lattice in the complex Lie group G = Gc and

(1 x z^ f 1 nx n2z^

<^>'- 1 y ^ 1 ny
1) \ 1 )

is an automorphism of G with (/)(T) <^ F, if n G N with n > 2.

More generally, we have the following construction.

LEMMA 5.4.5. — Let g be a nilpotent Lie algebra, defined over Q. Assume that g
is graded, i.e., there are vector subspaces g^ of g (with k G N )̂ 5?/c^ ^a/; g == ^^ g^
as a vector space and [gm^gn] C gm+n /or a// 771, n (again everything being defined
over Q).

Then the simply connected nilpotent complex Lie group G corresponding to g 0Q C
admits a lattice F and an automorphism (f) such that <^(T) <^ r (provided go S g/

Proof. — For any positive natural number N we can define an automorphism <I>TV of g
if we set <I>7v(v) = Nkv for v G g^. and extend linearly to the whole of g. The grading
being defined over Q allows us to find a Z-module A inside g such that A 0 z Q ̂  g
and A = ©^(gfc H A). Thus ^(A) C A. By a result of Malcev (see thm. 2.2.1)
exp(A + iA) generates a lattice F in G. Evidently 0(F) C F if 0 is an automorphism
of G corresponding to ^N for some N. On the other hand |det<I>7v| > 1 whenever
N > 1 and g / go. Therefore 0(r) ^ F. D

REMARK 5.4.6. — There are nilpotent Q-Lie algebras which do not admit any
non-trivial grading [36].
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We prove that for arbitrary (not necessarily nilpotent) complex Lie groups the
inclusion (f)(F) C T can be non-bijective only in the directions of the nilradical.

We begin with a lemma on lattice-preserving automorphisms of nilpotent Lie
groups.

LEMMA 5.4.7. — Let N be a simply connected real nilpotent Lie group, F a lattice,
and (j) an automorphism of N with (f)(T) C r. Let \^(t} denote the characteristic
polynomial of the induced automorphism of Cie(N).

Then^4> G Z[^].

Proof. — First let us consider the case where N is abelian. In this case N c^W and
r ^ Z71 in suitable coordinates. Hence (j) e M(n,Z) and evidently ̂  G l\t\.

Now the general proof can be deduced by induction. Induction is justified by
Malcev's result (see cor. 2.2.3) that for every lattice Y in N and every term TV^ of the
central series the intersection TV^ D F is a lattice in TV^. D

PROPOSITION 5.4.8. — Let G be a simply connected solvable real Lie group, and
(Tk)ke^ a sequence of lattices in G.

Let 1° denote the connected component of the closure of the union U^k- Then 1°
is contained in the nilradical N of G.

Proof. — For g G G let Ad(^) denote the adjoint automorphism of £ie{G) and denote
the characteristic polynomial of Ad{g)\aeN by \g. Now N H FA, is a lattice in N
(thm. 3.5.3). Thus for every k and every 7 C r\ the characteristic polynomial \^
of Ad(j)\aeN is contained in Z[x}. By continuity this implies that for every g G 1°
the characteristic polynomial of Ad(g)\cieN is the same as for the identity map, i.e.,
Ad(g)\aeN is unipotent. Since N contains the commutator group of G, Ad{g)\^zeN
is unipotent if and only if g C N . It follows that J° is contained in the nilradical. D

LEMMA 5.4.9. — Let G denote a Lie group, F a lattice, (f) an automorphism of G
with (f)(T) C r.

Then either (^(F) = F or F = Uk>o(|)~k(^) is a non-discrete subgroup of G.

Proof. — First note that Ufc^ - fc(^) is a subgroup of G, because it is the union of
an ascending sequence of subgroups. Let I denote the closure of Uk(/)~k(^) in G and
denote its connected component by 1°. Evidently 1° is normalized by F. Now Ad(G)
and Ad(F) have the same Zariski closure in A\it(CieG). Thus Ad(G) must stabilize
jCie I and consequently J° is a normal Lie subgroup of G. We will now consider the
quotient Lie group G / I ° . Since F C I , the quotient G / I admits an invariant finite
measure (see lemma 1.5.2). Hence 1/1° is a lattice in G / I ° . On the other hand
J°r also is of finite covolume and therefore Fo = r/(F H 7°) is likewise a lattice. It
follows that Fo is a lattice in G / I ° with U^o^^o) being discrete (where (/)Q is the
automorphism of G / I ° induced by (/>). Thanks to the preceding lemma we may now
conclude ^(Fo) = Fo, i.e., (f)(r)I° = F I 0 . This completes the proof since 1° C N . D
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We are now in a position to prove the following theorem.

THEOREM 5.4.10. — Let X = G/T be a complex-parallelizable manifold with finite
volume. Let f be a surjective holomorphic self-map. Let N denote the nilradical of
G.

Then there is a commutative diagram

G/r ^ > G/ri" i"4. 4,

G/NF ———, G/NT
F

where F is an automorphism of the complex manifold G /NT.

Proof. — There is an automorphism (f> of the complex Lie group G with (/)(T) C F
and an element a G G such that / is given by

f :gT^ a^(g)T.

We have to show that 0(AT) = NT. Recall that by Mostow's result (thm. 3.5.3) both
the radical R and the nilradical N of G have compact orbits in G/T. Thus RT/R is
a lattice in the semisimple group G/R, implying 4>(RT) = RT. On the other hand
R H r is a lattice in R. Hence (J)((R H F)AQ = (R H Y)N. Together these facts yield
(j)(Nr) = NT as desired. D

5.5. Meromorphic maps

The results obtained so far on holomorphic maps to parallelizable manifolds are
likewise valid for meromorphic maps for the simple reason that every meromorphic
map to a complex parallelizable manifold is already holomorphic.

PROPOSITION 5.5.1. — Let X be a complex manifold, G a complex Lie group, F C G
a discrete subgroup and f : X —^ Y = G/F a meromorphic map. Then f : X —>• Y is
already holomorphic.

Proof. — Indeed, / is holomorphic outside an analytic set E C X of codimension two.
Now, for any simply connected open subset U C X, U \ E is still simply connected.
It follows that f\u\E ^ts to a holomorphic map to the universal covering G of Y.
Since G is Stein (cor. 1.11.3), this lift can be realized by holomorphic functions. By
Hartog's theorem it then follows that / was holomorphic on U in the first place. D
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CHAPTER 6

VECTOR BUNDLES

6.1. Survey

First we collect some basic properties of connections and homogeneous bundles. A
bundle E over a G-space X is called homogeneous if the action of G on X can be lifted
to an action of an extension of G on E. In order to determine whether a homogeneous
vector bundle admits a flat connection we need to control this extension. Therefore
we study non-trivial extensions of complex Lie groups, introducing the notion of a
"essential extension". These considerations allow us to prove that certain homogeneous
vector bundles are automatically flat.

In particular we prove the following:

THEOREM 6.1.1. — Let G be a connected complex Lie group, —Y C G a lattice,
X = G IT the quotient manifold and E be a homogeneous holomorphic vector bundle
over X

Then E admits a flat holomorphic connection if one of the following conditions is
fulfilled:

1. G is semisimple;
2. E is a vector bundle of rank two and the radical RG of G is nilpotent;
3. E is a line bundle.

For the case where G/F is compact this result is contained in [153].

6.2. Sections of Homogeneous Vector Bundles

Here we discuss section in homogeneous vector bundles. We start by recalling the
definition of a homogeneous vector bundle.

DEFINITION 6.2.1. — Let E —^ X be a vector bundle, G a group acting on X.
The bundle E is called homogeneous with respect to the G-action, if for every g E G



96 CHAPTER 6. VECTOR BUNDLES

the induced automorphism Xg : X -^ X can be lifted to a bundle automorphism
g : E -> E.

We do not require any uniqueness of g and in fact the lack thereof may imply that
the G-action can not be lifted to E.

We will prove that a homogeneous vector bundle over a quotient X = G/F of a
connected complex Lie group G by a lattice F admits global sections only inasmuch
as it is trivial.

Since we do not want to assume G/F to be compact, we first have to show that
the space of sections is finite-dimensional.

PROPOSITION 6.2.2. — Let G be a connected complex Lie group, F a lattice and
E —^ X = G/r a homogeneous vector bundle.

Then T(X^E) is finite-dimensional.

Proof. — We first need a result on the structure of G/T.

CLAIM 6.2.3. — Let G be a connected complex Lie group and F a lattice. Then
there exists a G-equivariant holomorphic surjective map TT from X onto a compact
complex parallelizable manifold Y such that the algebraic dimension of the fibers
equals zero.

Proof. — The algebraic reduction of X maps X onto a compact complex torus T. If
the fibers have algebraic dimension larger than zero, we continue by considering the
algebraic reduction of the fiber. This yields us a holomorphic surjection of X onto a
compact complex parallelizable manifold (which is a torus bundle over a torus). We
may continue in this way and for dimension reasons we will arrive at a holomorphic
surjective map from X onto a compact complex parallelizable manifold for which the
fibers have algebraic dimension zero. D

We will now discuss E restricted to a fiber of TT.

CLAIM 6.2.4. — Let F be a complex manifold of algebraic dimension zero {i.e.,
every meromorphic function on F is constant) and E —^ F a vector bundle of rank r.
Then dimr(F,E) < r.

Proof. — Assume the contrary. Then there exists a number d with 1 <, d < r and
sections OQ , . . . , ad such that

1. The sections (o-z)o<i<d are linearly independent as elements in F(F,E).
2. There exists a point x G F such that the vector subspace of Ey, spanned by

(^(^))i<i<d has dimension d.
3. For every point x G F the vector subspace of E^ spanned by (cr,(.r))o<i<rf has

dimension at most d.
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But in this case one of the meromorphic functions

fi = (crQ A o-i A • • • A ai A • • • A ad)/{(Ti A • • • A ad)

must be non-constant, contradicting the assumption of F having algebraic dimension
zero. Q

Now let X = G/r, E -> X and TT : X -> Y as above. Since dim(F, E) < rank(E)
for every fiber F of TT, we may conclude that the direct image sheaf TT^E is finitely
generated as a Oy-module sheaf. For homogeneity reasons it is locally free and
therefore coherent. Since Y is compact, it follows that r(Y,7r^E) ̂  T{X,E) is finite-
dimensional. Q

Now we are in a position to prove the following structure theorem on sections of
homogeneous vector bundles.

PROPOSITION 6.2.5. — Let G be a connected complex Lie group, F a lattice and
E —> X = G IT a homogeneous vector bundle.

Then E contains a G-invariant vector subbundle EQ which is trivial as a holomor-
phic vector bundle such that T(X,E) = r(X,Eo).

Proof. — The sections of E generate a coherent subsheaf EQ of E. By homogeneity
this subsheaf is locally free. Evidently it is invariant under the G-action. Thus we ob-
tain a G-equivariant map from X to the projective space P(T{X, £;o)*) (which is finite-
dimensional due to the preceding proposition). This map is constant (lemma 3.4.3)
and hence EQ is trivial as a holomorphic vector bundle. D

6.3. Generalities on connections and homogeneous vector bundles

Here we collect some well-known basic facts on connections.
A connection D on a vector bundle is a rule for differentiating sections. A precise

definition may be given in the following way:

DEFINITION 6.3.1. — Let E be a holomorphic vector bundle, £ the sheaf of holo-
morphic sections in E and n1 the sheaf of holomorphic one-forms. A holomorphic
connection D on a holomorphic vector bundle E —> X is a morphism of sheaves
D : £ -> n1 0 £ such that D(fa) = {df) (g) a + f(Da) for every open subset U and
/ <E 0(U}, a e £(U).

For every holomorphic connection D on the trivial bundle there exists a r x r-matrix
of one-forms A,j such that for a section s = ( ^ i , . . . , S r ) , D(s) = ds + A(s) (with
^(5) = (Sj ̂ ij ̂  s j ^ • • ' ^ j Arj ^ Sj j ) . Given a holomorphic vector bundle with
local trivialization on an open covering Ui this implies that there is a correspondence
between holomorphic connections and a collection of r x r-matrices of one-forms A^

on Ui fulfilling certain transition relations. This yields that there is an obstruction
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to the existence of a holomorphic connection given by an element in the cohomology
group H1^, n1 0 Rom{E, E)). For a line bundle L given by a cocycle 0^ € 0*(^)
this obstruction is given by the element in H1^, f^ 0Hom(L, L)) ^ ̂ (X, f^1) given
^ (1/^jWzj = d\0g(/)ij.

6.3.1. Connections and Group Actions. — A connection D on a vector bundle
E over a manifold X induces a direct sum decomposition of the tangent bundle
TE = VE © HE, where VE consists of the vertical tangent vectors (those tangent
to the fibers of E -> X) and HE consists of the horizontal tangent vectors. Here a
tangent vector v G TpE is called horizontal if there exists an open neighbourhood U
of x = 7r(p) in X and a section a G £{U) such that D^^yO- = (D(7)(7r^v) = 0 and v is
tangent to {o'(x) : x C U}.

This decomposition yields a natural way of lifting vector fields from the base man-
ifold X to horizontal vector fields on E. Moreover the construction implies that hori-
zontal vector fields induce local 1-parameter groups of vector bundle automorphisms
ofE.

Next we note

LEMMA 6.3.2. — Let M, N he manifolds, X, Y vector fields on M resp. N. Let f
be a function on M. Assume that X and Y are globally integrable.

Then the vector field X + /Y on M x N is globally integrable.

(For notational simplicity the function / and the vector fields X and Y are iden-
tified with there respective lifts to M x N.)

Proof. — Let p. : I x M -^ M,v : I x N -^ N (with I = R or I = C) be the induced
one-parameter groups, i.e., /^— = X and ^*|̂  = Y. Then r j ' . I x M x N — ^ - M x N
defined by 77 = {/^(t,m), v(f(n)t,n)} yields the desired one-parameter group. D

Now consider a vector field X lifted to a horizontal vector field X on a vector bundle
E with respect to a connection. Locally the vector bundle is trivial and with respect
to any trivialization X = X + /Y where / is a function on the base manifold and
Y a fundamental vector field for the action of GL^(C) on the fiber C^ of the vector
bundle. Thus using the preceding lemma one can deduce the following assertion.

PROPOSITION 6.3.3. — Let M be a manifold, E -^ M a vector bundle, D a
connection and X the lift of a vector field X on M with respect to D.

Then X is globally integrable on E if and only if X is globally integrable on M.
Furthermore if X is globally integrable, then the induced one-parameter subgroup acts
on E by vector bundle automorphisms.

We will frequently need the fact that, for principal bundles over certain complex
manifolds, the group of bundle automorphisms is a Lie group. For compact base
manifolds there is the following result of Morimoto.
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PROPOSITION 6.3.4 (Morimoto, [101]). — Let X be a compact complex manifold,
H a complex Lie group, E —> X a (holomorphic) H-principal bundle. Let G denote
the group of bundle automorphism, i.e., the group of all biholomorphic self-maps of
E which commute with the H-principal right action.

Then G is a complex Lie group with respect to compact-open topology.

However, we are also interested in the case where the base manifold is just a
quotient of a complex Lie group by a (not necessarily cocompact) lattice.

PROPOSITION 6.3.5. — Let G be a connected complex Lie group, T a lattice, H
a complex Lie group, E —> X = G/T a G-homogeneous H-principal bundle and let
Aut(£')* denote the subgroup of Ant (E) generated by 1 -parameter groups of principal
bundle automorphisms of E.

Then Aut(J57)* is a complex Lie group.

Proof. — We claim that Aut(£7)* is associated to a finite-dimensional Lie algebra.
Indeed, Aut(X) is finite-dimensional, since Aut(X)° ^ G/(ZG D F) (cor. 5.2.9), thus
it suffices to consider only those automorphisms which induce the identity on the
base manifold. 1-parameter groups of such automorphisms correspond to sections in
Ad(E) where Ad{E) denotes the vector bundle over X associated to the H-principal
bundle E via the group homomorphism Ad : H —> GL(Cie H). This is evidently a ho-
mogeneous vector bundle. Therefore the space of global sections is finite-dimensional
by prop. 6.2.2. D

There are several properties being equivalent to "homogeneous55 for vector bundles.

LEMMA 6.3.6. — Let X be a complex manifold, E —> X a holomorphic vector bundle
andG C Auto(X).

Then the following conditions are equivalent

1. E is homogeneous (with respect to the G-action);
2. For every g 6 G the bundle L*gE —> M obtained by pull-back via the translation

Lg : X —)• X is isomorphic to E;
3. Let G denote the group of all vector bundle automorphisms of E which induce

on X an automorphism contained in G. Then G —> G is surjective.

Let L denote the group of all vector bundle automorphisms inducing the identity
map on X. Then condition 3 states that we have a short exact sequence of groups

1 —> L —> G -°4 G —^ 1

Note that G can be choosen as a finite-dimensional Lie group, if X is biholomorphic
to a quotient G/F of a connected complex Lie group G by a lattice F (thanks to
prop. 6.3.5). In order to lift the G-action on X to an action on E we need a splitting
of this sequence. In general this sequence need not be split. For instance, let E = 0(1)
be the ample generator of the Picard group on Pi. With G = Auto (Pi) == PSL^(C)
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we obtain L ̂  ̂  ix C2 and G ̂  SL^(C) K C2 and the sequence 1 - > L - > G - > G - > 1
is not split.

The following two propositions are well-known. Nevertheless we sketch the proofs
for completeness.

PROPOSITION 6.3.7. — Let X be a complex manifold on which a connected complex
Lie group G acts holomorphically. Let E be a holomorphic vector bundle which admits
a holomorphic connection.

Then E is homogeneous.

Proof. — Using the connection one can lift vector fields and thereby one-parameter
groups of automorphisms. Since G is connected, it is generated by its one-parameter
subgroups. D

PROPOSITION 6.3.8. — Let G be a connected complex Lie group, F a lattice
X = G/F, G = Autc)(X)° and E a homogeneous vector bundle. Then E admits
a holomorphic connection.

Proof. — Let F denote the connected component of the automorphism group of E.
By definition of homogeneity the natural group homomorphism F —> G is surjective.
Let H C Cie(F) denote a vector subspace of Cie(F) such that the induced projection
map H —)• Cie(G) is a vector space isomorphism. Then the fundamental vector fields
on E associated to elements X G H yield a horizontal distribution HE C TE which
determines a connection. D

6.4. Factors of automorphy

Factors of automorphy are used to study fiber bundles E —> X which become
trivial after pulling back to the universal covering. For our purposes this theory is
particularly useful, because many holomorphic bundles over complex parallelizable
manifolds become trivial after pulling back to the universal covering.

PROPOSITION 6.4.1. — Let G be a simply connected complex Lie group. Let E
be a holomorphic vector bundle over G. Assume that at least one of the following
conditions is fulfilled.

1. E is topologically trivial;
2. G is solvable;
3. G/R ̂  SL^(C), where R denotes the radical of G;
4. E is a line bundle.
5. E admits a holomorphic connection;
6. E is homogeneous.

Then E is holomorphically trivial.
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Proof. — Every simply connected complex Lie group is a Stein manifold (cor 1113)
Hence Grauert's Oka-principle ([44]) implies that every topologically trivial vector
bundle is already holomorphically trivial.

The topologically classification of vector bundles is given by homotopy classes of
continuous mappings to classifying spaces. Since every simply connected solvable Lie
group is contractible as a topological space, this implies (2).

In case (3), G is homotopy-equivalent to the 3-sphere S3 on which every vector
bundle is topologically trivial (see §7.13).

A topological classification of complex line bundles over a manifold X is given by
H (X,Z,). Now for a simply connected Lie group G we have 7n(C?) = TT^G) = ie}
[30]. Thus ffi(G'.Z) = {0} = ff2(C?,Z) by the Hurewicz isomorphism In partic-
ular Ext(ffi(G,Z),Z) = {0} = Hom(ff2(C?,Z),Z). Therefore ff^G.Z) = {0} by a
universal coefficient theorem (see e.g. [139]).

Finally for the case (5) ^ (6) note that in this case the G-action on G may
be lifted to an action of an extension Lie group of G on E. Let S be a maximal
connected semisimple Lie subgroup of G. Simply-connectedness of G forces S to be
simply connected. It follows that every Lie group extension of S is split. Therefore the
5-action on G' lifts to an action of S on E and similarily to an action on the associated
G'£,.(C)-principal bundle P. Now the 5'-orbits in P yield sections in P\S(»). Hence for
x e G the restricted principal bundle P\S(^) is trivial. Since S is a deformation-retract
of G, this implies that P (hence E) is topologically and therefore holomorphically
trivial. _,

We now summarize basic facts on factors of automorphy. This theory is valid both
in the differentiable and the holomorphic category.

Let X be a (differentiable or complex) manifold, TT : X -^ X the universal covering
and F = TTi(X), acting on X from the right on X by deck transformations. Further-
more let H be a Lie group, acting from the left on a manifold F. Let E ->. X denote
a fiber bundle with F as fiber and H as structure group. Assume that TT*E -> X is
trivial.

Then there exists a map / : F x X -^ G, called factor of automorphy such that
E ^ (X x F)/ ~ with (x,z) ~ (x',z') if and only if (x',z1) = (x-r-l,f^,x)^) for
some 7 € r. Conversely, given an arbitrary map / : F x X -> G one can define a
bundle in this way, provided ~ is a equivalence relation. This is equivalent to the
condition

(z) f(^,x)=f^,x-f-l).f^,x)
for all 7,7 e F, x € X .
Two factors o^ automorphy /. /' define isomorphic bundles if and only if there

exists a map g : X ->• G such that

W 9(^-l).f'^,x)=f^,x)•g(x)
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for all x C X, 7 G F.
Thus the set of all bundles with fiber F and structure group G over X becoming

trivial after pulling back to the universal covering may be identified with equivalence
classes of maps / : F x X —>• G fulfilling (Z) with / ~ // if and only if there exists a
map g : X —> G such that (B) is fulfilled.

Using group cohomology this may be reformulated as follows: There is a one-
to-one correspondence of bundles over X becoming trivial after pulling back to the
universal covering and the Galois cohomology set ^(T.M) where M denotes the F-
module of mappings from X —> G with the T-action induced by the usual action by
deck transformations on X .

6.4.1. Flat bundles. — The simplest case of factors ofautomorphy / : F x X —^ G
are those which are constant in the second variable, i.e., f(^,x) = /o(7)- In this case
condition (Z) reduces to /o(77) = /o(7) • /o(7)-

Thus these special factors of automorphy simply correspond to group homomor-
phisms /o ^ Hom(7Ti(X),G). Bundles arising in this way are called bundles given by
a representation of the fundamental group or flat bundles.

A vector bundle is given by a representation of the fundamental group if and only
if it admits a flat connection, i.e., a connection with vanishing curvature ([6]).

It is a natural idea to construct non-trivial bundles via representations of the
fundamental group. In this case the equivalence for factors of automorphy (B) takes
a special form.

LEMMA 6.4.2. — Let p,p : 7Ti(X) —)• G be a group homomorphisms. Then the
induced bundles E, E are equivalent if and only if there exists a mapping g : X —^ G
with

g(x^~1) = p{^~1) • g(x) ' ^(7)

for all 7 G 7Ti(X), x C X .

In other words: Two G-principal bundles defined by group homomorphisms p, p :
7Ti(X) —>• G are equivalent as G-principal bundles if and only if there exists an TT^(X)-
equivariant map from the universal covering to G where the 7Ti(X) -action on G is
given by

7 :^^p(7 - l ) •^ •p (7 ) .

WARNING 6.4.3. — Every G-principal bundle defined by a group homomorphism
p : 7Ti(X) —> G admits a flat connection in a canonically way. Here we discussed
only equivalence as G-principal bundles. Instead, one can discuss equivalence as flat
G-principal bundles, i.e., ask for bundle isomorphisms which are compatible with
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the flat connection. It turns out that two G-principal bundles defined by group
homomorphisms p , p are isomorphic as flat G-principal bundles if and only if p = p.

6.5. Group extensions

We have already emphasized that, given a homogeneous bundle E over a homoge-
neous manifold X = G / H , one can in general not lift the G-action. Instead of lifting
the action of G one has to pass to an extension group G. Naturally one would like
to keep this extension as small as possible. In particular if G contains a subgroup
such that the natural projection to G is still surjective, G should be replaced be this
subgroup. We now formalize this.

DEFINITION 6.5.1. — Let

1 —> L—>G —>G —>1

be a short exact sequence of connected Lie groups.
Such an extension is called essential if for every Lie subgroup H C G either H = G

or H • L ̂  G.

This implies some restriction on L.

LEMMA 6.5.2. — Let

1 —> L-^G—>G —>1

be an essential extension of connected Lie groups.
If G is semisimple, then L = {e}.

Proof. — This is a consequence of Levi-Malcev-decomposition applied to G. D

PROPOSITION 6.5.3. — Let

1—^L—^G—^G—> 1

be an essential extension of connected Lie groups.
Then L C R' where R' denotes the commutator group of the radical R of G.
In particular L is nilpotent.

Proof. — Let S • R be a Levi-Malcev-decomposition for G, i.e., S is a maximal con-
nected semisimple Lie subgroup and R the radical. Let SL denote a maximal con-
nected semisimple Lie subgroup of L. Using conjugation we may assume that SL C S.
Now SL is a normal Lie subgroup of the semisimple Lie group S. Due to semisim-
plicity there exists a normal Lie subgroup So C S such that So • SL = S and 5o H SL
is discrete. Now Go = So • R constitutes a Lie subgroup of G with Go • L = G. Hence
Go = G by the assumption of essentiality. Therefore SL = {e}, i.e., L is solvable.

We consider the adjoint action on Cie{G). As a linear representation of a semisim-
ple group Ad(-S) is completely reducible. Clearly /^'e(L), Cie(R) and Cie{R') are all
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stable under Ad(5). It follows that there is a direct sum decomposition as a vector
space Cie(R) = V C W, where V and W are Ad(Sr)-stable vectorspaces such that
Cie(L) = V © Cie(R' n L) and Cie{R) C W. Now Cie{R) C W implies that W is
actually a Lie subalgebra. Since it is Ad(5f)-stable, it follows that Cie(S) Q)W is a Lie
subalgebra of Cie(G). Now the assumption of (*) being an essential extension implies
that Cie(S) C W = Cie(G). It follows that V = {0}, hence Cie(L) C Cie(R1). D

PROPOSITION 6.5.4. — Let

1 —> L—>G —>G—>1

be an essential extension of connected Lie groups.
Assume that the radical R(G) of G is nilpotent. Then the radical R = R(G) of G

is also nilpotent.

Proof. — By arguments similar to those in the preceding proof, there is a direct
sum decomposition jCie(R) = Cie(R D G') (B V of Ad(5f)-stable vectorspaces, where
S is a maximal connected semisimple Lie subgroup of G. In order to show that R
is nilpotent, it suffices to prove that 9id(v)\jCieR is nilpotent for every v C Cie{R)
(Engel's theorem). Clearly 8id(v)\cieR is a nilpotent for every v C Cie(G' HR). Thus
it suffices to prove that ad(v) is nilpotent for v C V. For a given v 6 V set

^ = {w C £ie(G) : 3n : adiv)^) = 0}

Thus <I>y is the largest vector subspace of Cie(G) on which ad(^) is nilpotent. We
claim that <I>v is a Lie subalgebra. Indeed, if ad^)^^) = 0 and ad^)^?/) = 0
for some n,m € N, x ^ y G /^(C?), repeated application of the Leibnitz rule yields
ad^+^-i^] = 0. Recall that V is Ad(5)-stable and VH Cie(G') = {0}. Hence
[v,s] = 0 for s G Cie(S). It follows that £ie{S) C ^v. Furthermore nilpotency of
R / L implies that Cie(R) C Cie(L) + $^. Therefore <^ + Cie(L) = Cie(G). Since
the extension was assumed to be essential, it follows that ^v = Cie(G), %".e., ad(v) is
nilpotent. D

These two propositions imply that a number of properties of Lie groups are preserved
under essential extensions.

COROLLARY 6.5.5. — The following properties of a connected Lie group are pre-
served by essential extensions:

1. G is solvable resp. nilpotent;
2. G is perfect, i.e., G == G';
3. G/R contains no simple factor isomorphic to SL^ (C) or PSL^{C), where R

denotes the radical.
4. The radical of G is nilpotent.
5. G is semisimple.
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So far we deduced some general results on essential extension of connected Lie
groups. We will now provide a more specialized result needed later in order to prove
that every homogeneous line bundle is flat.

PROPOSITION 6.5.6. — Let

(*) 1 —> L —>G —>G —>1
be an extension of connected complex Lie groups.

Assume that L is a non-compact central Lie subgroup of G and that G admits a
discrete subgroup A with L D A = {e} finite, L ' A closed and that G/LA admits a
G-left invariant probability measure.

ThenR'HL is discrete, where R denotes the radical ofG. In particular, (*) is not
essential.

Proof. — Observe that RA is closed in G, because RA/L is closed in G / L ^ G by
the theorem of Mostow (see thm. 3.5.3).

Hence without losing generality we may assume that G is solvable. Then G / L A is
compact (cor. 3.6.3). Now L is a connected commutative Lie group. Hence there exists
a discrete subgroup H C L with L/II compact. Let F = H-A. This is a group, because
H is central. It is easily verified that F is discrete and G/F compact. Solvability of G
implies that G' DF is a subgroup of finite index in F ' (prop. 3.11.2). But T1 = A' due
to centrality of II. Hence ̂ f^}L= {e} implying finiteness of (G'nrnL). Observe that
the G^-orbits in G/F are closed and that L/(T D L) is compact. Therefore it follows
that G' D L is discrete. Using prop. 6.5.3 it follows that (*) is not essential. D

6.6. Flatness theorems

We will now translate the results on essential Lie group extensions to theorems
stating that certain homogeneous bundles are automatically flat. First we develop
some auxiliary results which establish the relationship between essential Lie group
extensions and non-flatness of homogeneous bundles.

LEMMA 6.6.1. — Let G be a connected complex Lie group, F a discrete subgroup,
X = G IT, S a complex Lie group and E —> X a homogeneous S-principal bundle.

Assume that the G-action on X can be lifted to a G-action on E. Then E —> X
admits a flat holomorphic connection.

Proof. — A connection on a principal bundle can be described in terms of a subbundle
H C TE of "horizontal" vector fields. This subbundle has to satisfy the following
conditions:

1. TE = H(BV where V denotes the subbundle of vertical tangent vectors, i.e., the
subbundle of all tangent vectors which are tangent to the fibers of the projection
E-> X.
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2. H roust be invariant under the ^-principal right action on E.
If the (7-action on X lifts to a (7-action on E, then such a subbundle H is given
by Hsc = Ty,{G • x). Furthermore in this case H is clearly involutive, because it is
the tangent bundle of a foliation. This implies that the curvature of the associated
connection is zero. D

COROLLARY 6.6.2. — Let G be a connected complex Lie group, T C G a lattice, S
a complex Lie group and E —> X = G/T a homogeneous S-principal bundle.

Then either E admits a flat holomorphic connection or there exists an essential
extension of connected Lie groups

1 —> L—>G -^G —>1

such that dimc(^) > 0 and the G-action on X induced by r lifts to an action on E.

Proof. — Note that by prop. 6.3.5 there exists a (finite-dimensional) Lie group G
acting on E in such a way that for every single element g G G there is a lift ^ G G
acting compatibly. Hence the assertion is a consequence of the lemma. D

COROLLARY 6.6.3. — Let G be a simply connected semisimple complex Lie group,
r a lattice and E —> X = G/T a homogeneous S-principal bundle

Then E admits a flat connection and consequently is given by a representation of
the fundamental group p : 7Ti(X) —>• S.

This follows, because a semisimple Lie group does not admit any essential exten-
sion.

For a homogeneous bundle E without flat connection we can say more about the
action of the extension group G on E.

LEMMA 6.6.4. — Let G be a connected complex Lie group, T a lattice, H a complex
Lie group and E —^ X = G/T a homogeneous H-principal bundle.

Let 1 — ^ L — ^ G — ^ G — ^ l be an extension of connected Lie groups such that the
G-action on X lifts to E. Assume that G acts almost effectively on E.

Then L acts almost freely on E, i.e., all the isotropy groups are discrete.

Proof. — For every x G X let Vx denote the set of all g G L which act trivially on
the fiber E^. Then Vx is a complex Lie subgroup of L and we obtain a holomorphic
map x ̂  jCie(Vx) which is a G-equivariant holomorphic map from X to a Grassmann
manifold, hence constant. Thus V^ = V^ for all x,y G X. Since G acts almost
effectively on E, it follows that V^ = 1, i.e., L acts almost effectively on every fiber.

Now observe that L consists of bundle automorphisms, i.e., commutes with the
principal H -right action on E. For any group H the only self-maps f : H —^ H
commuting with all right translations are the left translations. Hence for every fiber
Ex there is a group homomorphism p : L —>• H and an isomorphism E^ ^ H such

MEMOIRES DE LA SMF 72/73



6.7. HOMOGENEOUS VECTOR BUNDLES OF RANK TWO 107

that L acts by left translations via p. Since L acts almost effectively on every fiber,
it follows that L acts almost freely on every fiber. D

COROLLARY 6.6.5. — Under the assumptions of the lemma it is true that dimc(G) <
dimc(G) + dimc(H) = dimc(E).

THEOREM 6.6.6. — Let H = C* or H = C, G a connected complex Lie group, F a
lattice and X = G / T .

Then every homogeneous H-principal bundle over X is flat.

Proof. — Let E be a homogeneous ^-principal bundle. Due to the homogeneity of
E there is an extension of connected complex Lie groups

1 —> L—>G —>G —>1

such that the G-action on X lifts to an action on E (use prop. 6.3.5). We may
require that G acts effectively on E.^ Now corollary 6.6.5 implies that dimc(G) <
dimc(G) + 1. If dimc(G) = dimc(G), the bundle is flat. Hence we may assume that
dimc(G) = dimc(G) + 1. Due to lemma 6.6.4 this implies that G acts transitively
on E. We have to study the Jif-action in detail. Since H is commutative, right and
left translation on H coincide. Therefore every element g G L determines a map
(f)g : X —^ H such that g is acting on the fiber Ey, as right translation by (f)g(x). Now
H C C, hence (j)g is given by a holomorphic function. But X = G/T does not admit
any non-constant holomorphic function (thm. 3.7.1). This implies in particular that L
acts freely on every fiber. Thus we are now able to invoke prop. 6.5.6 with an isotropy
group of the G-action on E as A. It follows that the extension 1 — ^ L — ^ G — ^ G — ^ l
can not be essential. Hence E is flat. D

COROLLARY 6.6.7. — Let G be a connected complex Lie group, F a lattice, X == G/F
and L a homogeneous line bundle.

Then L is flat, i.e., admits a flat holomorphic connection.

6.7. Homogeneous vector bundles of rank two

In many cases a homogeneous vector bundle of rank two is automatically flat. The
key reason for this is that GL^(C) contains no interesting nilpotent subgroup and
essential extensions always involve nilpotent groups.

THEOREM 6.7.1. — Let G be a connected complex Lie group, F a lattice, and E a
homogeneous vector bundle of rank two over X = G/F. Assume that the radical of G
is nilpotent.

Then E is flat.

^To obtain an effective action of G we have to drop our usual assumption that G is simply
inected.connected
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As preparation for the proof we present several technical results on Lie groups.

LEMMA 6.7.2. — Let N be a nilpotent connected Lie group, H a closed subgroup
with N/H compact.

Then N' /H' is compact, too.

Proof. — There is no loss in generality, if we replace TV by the universal covering N
and H by its pre-image under the projection TT : N —>• N.

By a criterion of Malcev, compactness of N / H is equivalent to the existence of a
continuous faithful unipotent representation p \ N —> GLn(K) such that p{N) and
p(H) have the same Zariski closure in GLn(C) ([89], [123]). Let I denote this Zariski
closure. Then both p ( N ) ' and p(H)1 are Zariski dense in I ' (use lemma 1.9.3). Thus
p ( N ' ) and p ( H ' ) have the same Zariski closure, and Malcev's criterion implies that
N ' / H ' is compact. D

PROPOSITION 6.7.3. — Let N be a connected nilpotent Lie group and H a closed
Lie subgroup such that N/H is compact and H° C N 1 .

Then H°/(H° H H') is compact, too.

Proof. — By the preceding lemma, compactness of N / H implies that N ' / H 1 is com-
pact. Now H / H ° is discrete, hence H° C H ' H Q C H implies that H ' H ° is closed.
Thus H ' H ° / H ' is a closed subset of N ' / H ' and therefore compact. Finally note that
H I H Q | H I ^ H ° / ( H ° H H ' ) . D

COROLLARY 6.7.4. — Let N be a connected nilpotent complex Lie group and H a
closed complex Lie subgroup with N/H compact and H° C N'. Let p : H —^ GL^(C)
be a holomorphic group homomorphism.

Then H° Ckerp.

Proof. — Let I denote the Zariski closure of p{H) in GL'z(C). Then I is a nilpo-
tent algebraic subgroup of GL^(C). For any such I the connected component 1°
is commutative. Hence H admits a subgroup H^ of finite index such that p(H-i) is
commutative. It follows that H[ C ker/?. Now H[ is of finite index in H'\ hence
H ° / ( H ° H H[) is compact. Thus p(H°) is compact.

Since p was assumed to be holomorphic, p(H°) must be a complex Lie subgroup
of GL^(C). Therefore compactness of p{H°) implies H° C ker p. D

Proof of the theorem. — For any such vector bundle E there exists an extension of
connected Lie groups

1 —> L —> G -^ G —^ 1

and a holomorphic group homomorphism p : H = T^^) —>• GL^(C} such that E
arises as a fibered product G x H C2. Furthermore we may assume that L C R where
R denotes the radical of G. Moreover R is nilpotent due to prop. 6.5.4. Recall that
the J?-orbits on G/F are closed (thm. 3.5.3). Hence R/(R D H) is compact and we
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may apply the preceding lemma to R H H C R and conclude that H° = L C kerp.
This implies that E is given by a representation of the fundamental group

7ri(G/r) = TT^G/H) -^ H / H ° A GL^C)

D
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CHAPTER 7

FLAT BUNDLES

7.1. Survey

Our goal here is to classify flat vector bundles or more generally flat principal
bundles. As we previously pointed out, every flat bundle is induced by a representation
of the fundamental group p : TTi(^C) —>- GLn(C) (resp. p : TT-^(X) —> G for flat G-
principal bundles). Two representations pi : 7Ti(X) —> G yield the same holomorphic
G-principal bundle if and only if there exists a holomorphic map / from the universal
covering X to the structure group G which is TTI (X)-equi variant in the following sense:

f(x^=p^-l)•f(x)•p^.

Naturally one desires to obtain a more accessible criterion. One easily shows that a
representation p : F —> H induces a trivial holomorphic H -principal bundle on G/F
if and only if p can be extended to a holomorphic group homomorphism p : G —>• H.
It is another matter to obtain a criterion which determines whether or not two given
non-trivial flat bundles are isomorphic.

For three special cases we are able to provide such a criterion.
First, a special result covers commutative structure groups. In particular we prove

the following: Let X = G/T, assume G/R contains no SL^ (C) -factor. Let H be
a commutative complex Lie group and H]^ a real form which contains the maximal
compact subgroup of H. Then there is a one-to-one correspondence between flat H-
principal bundles over X and Hom(r,^fiR). In particular this implies that homoge-
neous line bundles are parametrized by Hom(T,5'1).

Second, we consider representations with bounded images. If the images pi(/K\(X))
are both relatively compact in G, then the induced holomorphic principal bundles are
equivalent if and only if p\ and p^ are conjugate by an element in G. (This is true
for every compact complex manifold X , parallelizable or not.)

Thirdly, we deduce the main result of this section which gives a complete classifi-
cation of homogeneous principal bundles over X = S / F with S semisimple without
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^(Q-factors. Super-rigidity applies here. Hence for every complex linear algebraic
group H and every group homomorphism p : F -> H there exists a unique continuous
group homomorphism p : S -> H such that p\r and p coincide on a subgroup of finite
index. We call p essentially antiholomorphic if p is antiholomorphic. We prove that
there is a one-to-one correspondence between homogeneous ^-principal bundles and
conjugacy classes of essentially antiholomorphic representations of F —^ H.

Subsequently we use these results in order to prove the following statement: Every
positive-dimensional compact complex manifold admits a non-trivial holomorphic vec-
tor bundle. This answers a question of Banica.

We study in substantial detail the question how many representations with finite
image exist and obtain two results in different directions: First, for every compact
complex parallelizable manifold X = G/T and every element 7 G F ^ TT^(X) there
exists a number n C N and a group homomorphism p : F -^ GLn(C) with finite
image such that p(^) ^ I . Second, for G semisimple without 57.2 (C) -factors there
is a result in the converse direction: For fixed X = G/T and a fixed connected Lie
group H there exist only finitely many group homomorphisms from 71-1 (X) to H with
finite image (up to conjugacy).

Finally we study the topological nature of flat bundles. In a certain sense flat
bundles are automatically almost topologically trivial. For instance, it is easy to see
that for flat vector bundles all the Chern classes must vanish. We prove the following
statement: Let X = G/F and assume that G / R has no SL^ (C) -factors. Then for
every homogeneous H-principal bundle E over X there exists a finite covering r :
Xi -^ X such that r^E -> Xi is topologically trivial. (This is stronger than the
statement on Chern classes, because r* : ^•(X,C) ->• ir(X^C) is injective for
every finite covering r : X^ —> X.)

Most of the results of this chapter are contained in [159], for the special case
where G/F is compact in [153]. The existence result for non-trivial holomorphic
vector bundles over arbitrary compact complex manifolds is published in [152].

7.2. A triviality criterion

PROPOSITION 7.2.1. — Let G be a connected complex Lie group, H a complex Lie
group and F C G a discrete subgroup. Let p : F -> H be a group homomorphism.
Assume that every holomorphic function on G/T is constant.

Then the H-principal bundle E -^ G/F induced by p is holomorphically trivial if
and only ifp extends to a holomorphic group homomorphism p : G —^ H.

Proof. — Assume that there is a trivializing map (f) : G -^ H, i.e., a holomorphic
map (f)j.G -> H such that (^7) = (f)(g)p^) for all g e G and 7 G F. Upon replacing
^ by 4>(g) ^ ^(e)"1^), we may assume that (f){e) = e. Define a : G x G -^ H by

^9i.92) = (/>(9i)(/>(92)(/>(9i92)~1.
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Then a(^i,e) = a(e,g^) = e and 0(^1,^27) = o^i^) for all 91,92 ^ G and 7 G G.
We consider now the induced maps o^ : G/T -> U given by a? : xF \-^ a(g, x). Since
Oie = e, it is clear that all the maps Og are homotopic to a constant map. Hence these
maps may be lifted to the universal covering H of H , i.e., there exist holomorphic
maps cig : G/T —^ H such that Og = TroSg where TT : H —^ H is the universal covering
map. But H is a simply connected complex Lie group and therefore Stein. Hence
the maps dg are constant. It follows that the maps Og are likewise constant. Thus
a(g, x) = a{g, e) = e for all g , x G G. D

7.3. Abelian representations of the fundamental group

In this section, we investigate flat principal bundles with commutative structure
group over parallelizable manifolds. The key advantage in this case is that for a
commutative group H (and any group G) the set of group homomorphisms Hom(G, H)
is again a (commutative) group in a natural way, viz. by (pi • p ' z ) { g ) = pi (g) -p^ (g). Let
X be a complex manifold, H a commutative complex Lie group and pi : 7^i(X) —^ H
(z = 1,2) group homomorphisms defining JJ-principal bundles Ei —^ X. Then Ei ^
E^ if and only if the AT-principal bundle defined by pi • p^1 is trivial. Therefore the
above triviality criterion yields the following classification of flat ^-principal bundles
for commutative structure group H.

PROPOSITION 7.3.1. — Let G be a simply connected complex Lie group and T a dis-
crete subgroup such that every holomorphic function on G/T is constant. Furthermore
let H a connected commutative complex Lie group, Hom((7, H) (resp. Hom(F, H)) the
group of all homomorphisms of complex Lie groups. Let r : Hom(G, H) —^ Hom(r, H)
denote the natural restriction homomorphism.

Then there is a one-to-one correspondence between flat H-principal bundles over
X = G/F and the quotient group Hom(r, H)/rRom(G,H).

(Murakami [109] proved this for the case where G/F is a torus.)
If H has a real form which contains its maximal compact subgroup and ^Z^C)-

factors are not present, we may improve this result.

PROPOSITION 7.3.2. — Let G be a simply connected complex Lie group, F a lattice
and H a connected commutative complex Lie group. Assume that H]^ is a real form of
H such that H]^ contains the maximal compact subgroup K of H. Assume moreover
that no factor ofG/RG is isomorphic to SL^(C), where RG denotes the radical of G.

Then there is a one-to-one correspondence between H-principal bundles on X =
G/F admitting a flat connection and Rom^T^H^).

Proof. — The assumptions imply in particular that r/(G' D F) is discrete in G / G '
and that (F H G')/r' is finite (cor. 3.11.5).
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Note that r/T' ^ -Hi(^, Z) is a finitely generated abelian group, hence isomorphic
to A x Z271 for some finite abelian group A. Now

Hom(T, H) = Hom(A, H) 0 Hon^Z271, H).

Note that Hom(A,.H') == Hon^A,^), because JZ"]R is required to contain the maxi-
mal compact subgroup of H. Moreover there is a one-to-one correspondence between
Hon^Z271,^) and Rom^G/G'.H). Now Rom^G/G^H) nRom^G/G'.H^) = {0},
because a holomorphic mapping with totally real image is constant. Using this, di-
mension reasons imply

HomM(G/G', H) = Hom^G/G', H) © Hom^G/G7, H^).

It follows that Hom(r/r') ^ Hon^F/F', H^) C Hom^G/G', H). D

COROLLARY 7.3.3. — Let G be a simply connected complex Lie group and F a
lattice. Assume that no factor of G/RG is isomorphic to SL^(C), where RG denotes
the radical of G.

Then there is a one-to-one correspondence between homogeneous complex line bun-
dles over G IT and Hom(F,S'1).

Proof. — Every homogeneous line bundle over G/F is flat and for H = C* the sub-
group S1 = {z C C* : |^| = 1} is evidently a real form Jfp containing the maximal
compact subgroup. D

For G ^ SL^(C) it is possible that rank^F/F') > 0 for a discrete cocompact subgroup
r. In this case Hom(r,51) ^ Hom(r,C*). Since evidently Hom(5'Z/2(C),C*) = 1,
proposition 7.3.1 now implies that in this case there exists flat line bundles on X =
SL^(C)/Y which can not be defined by a unitary representation p : F —^ S1.

7.4. Bounded representations

Here we study bounded representations, i.e., representations with relatively com-
pact image. First we want to mention some ways in which bounded representations
arise.

1. If F is a lattice in a simply connected complex Lie group G, then F is finitely
generated and G is linear. In this case a theorem of Malcev (prop. 1.7.5) implies
that r is residually finite , i.e., for every element 7 € F there exists a finite
group F and a group homomorphism p : F —> F such that ^(7) 7^ e. Since every
finite group embeds in some linear group, this yields many representations of F
with finite image.

2. If H-i(G/r) ^ r/F' is non-trivial, F admits many group homomorphisms to
S1 = {z e C*: \z\ = l}.
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3. Let K be a number field, OK its ring of algebraic integers, S a semisimple
K-group and S resp. T the set of all archimedean valuations v such that G is
Ky-isotropic resp. J^-anisotropic. Assume that Ky ^ C for all v C S and that
T is not empty. Then G = Tlv^sS(Kv) is a complex Lie group, U = Hv^rS(Kv)
is a compact real Lie group and F == S{OK) is a lattice in G which admits an
inject! ve group homomorphism to U. Now every representation of U induces a
representation of F with relatively-compact image.

THEOREM 7.4.1. — Let G be a connected complex Lie group, R its radical, T a
discrete subgroup of G, H a Stem Lie group and pz '.T —> H group homomorphisms
with relatively compact image.

Assume that Ad(T) and Ad(G) have the same Zariski closure in GL(£ie G) and
that r D R is cocompact in R.

Let E\ and, E^ denote the H-principal bundles over G/Y induced by p\ resp. p^.
Then E\ ~ E^ if and only if pi and p^ are conjugate by an element h G H.

Proof. — Recall that E\ ~ E^ holds iff there exists a holomorphic map (j) : G —> H
such that

(1) ^7) = PI^^WP^W

for all g C G, 7 C F.
Let Ki denote the closure of /^(T) in H. The sets Ki are compact subgroups.

Since H is Stein, it admits a strictly plurisubharmonic exhaustion function r. We
may assume that T is invariant under the K\ x ^-action on H given by (A;!,^) :
h >->• k'^~lhk'2 (because we can replace r by the function obtained by averaging r
over the Xi x J^-orbits). Then (1) implies r((f){g^)) = r{(f){g)). Thus we obtain a
plurisubharmonic function on G / F . However, under the assumptions of the theorem
every plurisubharmonic function on G/F is constant (This follows from thm. 3.7.1
and prop. 3.7.2). Thus g i-> r((f)(g)) is constant. Since r is strictly plurisubharmonic,
this implies that (f> is constant. D

COROLLARY 7.4.2. — Let G, Y and H be as in the above theorem and let p :T —> H
be a group homomorphism with relatively compact image.

Then the induced H-principal over G/T is holomorphically trivial if and only if
p=.e.

For compact complex manifolds we do not really need the parallelizability assump-
tion at this point.

THEOREM 7.4.3. — Let X be a compact complex manifold. Let H be a Stein
complex Lie group. Let p\, p^ : F = TTI (X) —> H be group homomorphisms such that
the images pi(T) are relatively compact in H.
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Then the induced bundles E^, E^ are holomorphically equivalent if and only if there
exists an element g G H such that

Pi (7) = 9' ^2(7) -9~1

for all 7 G r, i.e., if and only if pi and p^ are conjugate.

Recall that every complex Lie subgroup of GLn(C) is Stein ([96]).

Proof. — Assume that the bundles E^ and E^ defined by pi are holomorphically
equivalent. Then there exists a holomorphic map / : X —^ H such that

(*) /^7)=Pl(7- l)•/(^•^(7).

The images pi(T) are subgroups of H which constitute relatively-compact subsets.
Recall that for every subgroup in a topological group the closure is again a subgroup.
Hence the closures of the p,(T) form compact subgroups Ki of H. Now K = K^ x K^
is a compact group with an action on the Stein manifold H defined by

/^(A-i,^) '• g ̂  k^ 1 • g ' A;2

In this form (*) reads as

/(^7)=/^(7))(/^))

with p = (pi,p2). Thanks to the proposition of the preceding section it follows that
such a map / must be constant. If / is constant with value g G H, then (*) translates
to

Pi (7) = 9 - ^2(7) ' 9

D

For the special case H = C* the theorem implies the well-known fact that two
line bundles on a compact complex manifold X given by unitary representations
p , p ' : Ti-i (X) -> S1 = {z G C* : \z =1} are holomorphically equivalent if and only if
p = p ' .

7.5. Antiholomorphic maps and actions of unipotent groups

The purpose of this section is to collect several auxiliary results on algebraic group
actions. These results will be needed in the subsequent section on essentially anti-
holomorphic representations.

PROPOSITION 7.5.1. — Let Z be a quasi-affine variety, H a connected commutative
linear-algebraic group (both defined over C) and H a connected Zariski dense complex
Lie subgroup of H. Assume that there is a regular action ^ : H x Z —^ Z, a map
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a : H —^ Z with relatively compact image and an antiholomorphic map
such that

(2) a(h)=^h)Wh))

: H -> Z

for all h G H. Let U denote the unipotent radical of H.
Then both a(H) and (f)(H) are contained in a single ^{H)-orbit W, U acts trivially

on this orbit and the maps a, (f) are homomorphisms of real Lie groups from H to W
with respect to the natural group structure on W with 0(e) as neutral element.

Proof. — We start with a discussion of semi-invariant functions on Z .

DEFINITION 7.5.2. — Let Z be a variety, G an algebraic group acting on Z. A
regular function / on Z is called semi-invariant if there exists a character \ of G
such that f(gz) = \{g)f(z) for all z G Z and g G G.

Now let / be a semi-invariant for the ^-action on Z. Then

W f(a{h)) = xWf(W)

for a character \ of H and all h G H. This implies

\f(a(h))\2 = \xWfWh))\2 = \xWJWh))\2

The left side is bounded while the right side is the absolute value of a holomorphic
function. Hence there is a constant c such that |/ o a ^ c and \ • f o (f) = c. It follows
that f o a and f o (f) vanish either everywhere or nowhere.

LEMMA 7.5.3. — Let W be a quasi-affine algebraic variety and G a connected
solvable linear algebraic group acting regularly on W. Assume that for every semi-
invariant f the zero-set V{f) is either empty or the whole ofW.

Then G acts transitively on W.

Proof. — Assume the contrary. Then W must contain a proper invariant algebraic
subvariety Y. Now the ideal 7y is a non-trivial invariant subvectorspace of the space
of regular functions C[TV]. Recall that every / G C[W] is contained in a finite-
dimensional subvectorspace. Using this fact the theorem of Lie implies that ly con-
tains a one-dimensional invariant subvectorspace S. Now any / G S \ {0} is a semi-
invariant on W vanishing on Y but not vanishing everywhere. Contradiction! D

Applying this lemma to our situation we may conclude that both a(H) and (f){H) are
contained in a single Jf-orbit W.

Since H is commutative, the homogeneous Jf-space W has a canonical structure
as a commutative group which is unique up to the choice of the neutral element.

CLAIM 7.5.4. — The [/-action on W is trivial.
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Proof. — If not, there is a non-trivial regular U-eqm variant map r : W —^ C. Using
the assumption that H is Zariski dense in H, we may find a one-parameter subgroup
7(f) in H such that r(^(t))(x)) = t + r(x) for a; G FT. But then t ̂  r{a(^{t))) is
a bounded function on C which may be represented as

(3) r(a(7(^))) = r(/^))(<^))) = t + r(<^))).
antiholo.

This is a contradiction, because the left side is bounded while the right side is a
non-constant harmonic function on C. Thus the ?7-action must have been trivial. D

Now W is a homogeneous space of the reductive commutative group H fU. By choos-
ing a point in W as neutral element, W inherits a structure as reductive commutative
algebraic group. Let us choose (j){e) = a(e) as neutral element. Then every character
of W is an semi-invariant for the ^-action and consequently our previous consider-
ations imply that ^ o <p is a real Lie group homomorphism from H to C* for every
character \ of W. It follows that (j) (and hence also a) are real Lie group homomor-
phisms. D

7.6. Essentially antiholomorphic representations

We continue our preparations for the desired classification theorem of flat vector
bundles over X = G/T with G semisimple without 5'L2(C)-factors. We need some
basic information on essentially antiholomorphic representations.

DEFINITION 7.6.1. — Let G and H be complex Lie groups, and F C G a discrete
subgroup. A group homomorphism p : F —)• H is called essentially antiholomorphic
if there exists an antiholomorphic Lie group homomorphism ^ : G —>• H and a map
^ : r —> H with relatively compact image ^(T) C H such that

(**) ^(7) = C(7) • ^(7)
for all 7 G r.

REMARK 7.6.2. — Let G, F, H as above, Fo C F a subgroup of finite index,
p : r —^ H a group homomorphism. Assume that there exists an antiholomorphic
Lie group homomorphism po : G —^ H such that p\ro = po\ro- Then p is essentially
antiholomorphic (see lemma 3.19.1).

PROPOSITION 7.6.3. — Let G be a connected complex Lie group, F a lattice, H a
Stein Lie group and p : F —> H an essentially antiholomorphic representation with
maps <^ <^ given as above.

Then
1. ^ : r —> H is a group homomorphism.
2. Both ^ and ( are uniquely determined by p.
3. ^(7) and C,(g) commute for all g G G, 7 € F.
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Proof. — The equation (**) combined with p(^6) = p(/J)p(8) implies

(A) ^6)-l^)a6)=aM{S)-l

for all 7, 8 G F.
Let A be a connected complex Lie subgroup of G for which there exists a compact

set F C G such that A C FT. For 7 G F we define an antiholomorphic map ̂  : A —^
Hby

^(a)=C(^(7)C(^)-1.

If ^(F) = J<T, then ^(A) C ((F) . X « K~1 • C(F). Since the latter set is compact,
it follows that ^ is constant. This implies that ((A) commutes with ^(F). Since
G is generated as a group by such subgroups A (thm. 3.10.1), this yields the third
assertion. The first assertion is an immediate corollary. To check unicity, let ^ C be
antiholomorphic representations and ^, ^ be bounded maps such that ^ = <^. This
implies C^C = ^-1- This is now a bounded antiholomorphic map, hence constant,
and in fact constant with value e. Therefore C = C ^d ^ = ^- D

COROLLARY 7.6.4. — Let G be a complex Lie group, Y a lattice and p : F —^ GL(V)
an irreducible representation which is essentially antiholomorphic.

Then there exist vector spaces Vi (i == I? 2^, an antiholomorphic representation
po : G —> GL(V]_) and a relatively compact representation C : F -> GL(V^) such that
P = Po\r ^C-

Thus for a given essentially antiholomorphic representation p we have a unique an-
tiholomorphic representation po of G and a unique relatively compact representation
^ of r. These are called the associated antiholomorphic resp. bounded representations
of p.

THEOREM 7.6.5. — Let G be a connected complex Lie group, H a linear complex
Lie group, F a lattice and p y p ' . F — ^ H essentially antiholomorphic representations.
Then the induced flat bundles are isomorphic as holomorphic H-bundles if and only
if there exists a constant c € H such that p\rnG' = cp\rnG'c~1.

Proof. — There is no loss in generality in assuming that G is simply-connected. The
assumption of the induced flat bundles being holomorphically equivalent is equivalent
to the statement that there exists a holomorphic map (f): G —> H such that

(4) ^Qn) = ̂ r^W^gKW^)
for all g C G and 7 G F where /? = C*^ resp. p = C ' ^ are the respective decompositions
as products of an antiholomorphic and a bounded factor. We define a map a : G —^ H
by
(5) a(g) = CW(^)C(<7)-1

SOClfiTE MATHEMATIQUE DE FRANCE 1998



120 CHAPTER 7. FLAT BUNDLES

Then

^7) = C(^)C(7)^(7)-1C(7)-1^(^C(7)?(7)C(7)-1C(^-1

(o) ^ ^ ^
= ̂ r'CQ^K^r1^) = ̂ r^)^)

(Recall that C(GQ and ^(F) commute).

CLAIM 7.6.6. — Let A be a connected commutative complex Lie subgroup of G
such that there exists a compact subset FA C G such that A C FA^' Let c == <^(e) ==
a{e) G ̂  and TV = fJi{G){c) where IJL is the action given by

(7) /^) : x ̂  C(^)-1^)

Let T] denote the F-action on H given by

(8) 7^(7) : x ̂  ̂ r1^)

Then a(A) C W', (f)(A) C W and 7;(AnF) stabilizes W'. If in addition A is contained
in G7, then /^(A) acts trivially on W.

Proof. — Since 7? is assumed to be linear, we may embedd it into some GL(n^C).
Then an application of prop. 7.5.1 (with Z = GL(n, C), H = A and the Zariski closure
of/^fQ in Aut(GL(n,C)) as H) yields a(A) C W and 0(A) C W.

By definition of a the inclusion (AnF) C W implies that 7^(7) (c) G TV for 7 G AnF.
Since 7/(r) commutes with ^((7), it follows that 77 (A D F) stabilizes W. Finally, since
G was assumed to be simply connected, this implies that G' is unipotent. Hence the
last assertion also follows from prop. 7.5.1. D

CLAIM 7.6.7. — The group /^(G7) acts trivially on W and in particular stabilizes
the point <^(e).

This is immediate, because G' is generated by unipotent subgroups with a bounded
orbit (prop. 3.10.2).

Next we discuss "translates" of 4>. For x G G let (f)x denote the map defined by
(f)y;(g) = (f>(xg). Then (j)x '• G —^ H is a holomorphic map fulfilling (4). Thus we
may apply the above considerations and conclude that ^{G'){(f)x(.e)) = (/>x(e). Since
<^,(e) = (f)(x), it follows that / ^ ( G ' ) stabilizes (f)(G) pointwise. Hence

(9) ^7) = ̂ (7)(^))

for g G G, 7 G G' H F. By assumption ^(F) and ^(F) are contained in compact
subgroups K resp. J^ of H. Since H is Stein, it admits a strictly plurisubharmonic
exhaustion function T. By averaging with respect to Haar measure we may assume
that T is invariant with respect to the K x JC-action on H given by ?. Then we obtain

(10) T(^Qn)) = r^(g))
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for g C G, 7 G G ' H F . Now every plurisubharmonic function on Gf/(Gln^) is constant
(see prop. 3.11.10). Hence (j) is constant along the G'-orbits on G. In particular (/)\G'
is constant and this yields the assertion with c = (f)(e). D

PROPOSITION 7.6.8. — Let G be a complex Lie group, T cG a lattice, H a complex
linear algebraic group and p : G —> H an antiholomorphic Lie group homomorphism.

Then the flat bundle over G/F defined by p\r is trivial if and only if there exists
a number n and. holomorphic Lie group homomorphisms p\ '. G —> (C^ and p^ :
(C*)^ —> H such that p = p2°C°pi where ( denotes complex conjugation on T = (C*)72

and pi (r) C (R*)71.

Proof. — By prop. 7.2.1 triviality of the induced bundle is equivalent to the existence
of a holomorphic Lie group homomorphism (j) : G -> H such that (j)\y = p r. Hence
one direction of the statement is clear: If there is a torus T and holomorphic Lie
group homomorphisms pi and p^ as specified in the proposition, then (f) dlf p^ o p^
has the desired properties.

Let us assume that the bundle is trivial and that ( / ) : G —^ H is the trivializing
holomorphic Lie group homomorphism. Then (J)\G' is constant by the preceding theo-
rem. This implies that p{^) = e for all 7 C G' DF. Hence p(T) is commutative. Let A
denote the Zariski closure of p(T) in H. Then H / A is a quasi-affine variety (because
A is commutative). Thus ( / ) : G -> H induces a holomorphic map from G/T to H / A
which must be constant. We may assume that <^(e) = e. Then (f)(G) C A. Further-
more p{G) C A by the density theorem. Hence we may assume that H = A, i.e., we
may assume that H is a commutative linear algebraic group. Thus H ^ (C)^ x (C*)5

and we may discuss these factors separately.
Let us first discuss the case H = C. Then p - (/) defines a r-invariant harmonic

function on G and hence must be constant, which is impossible unless both p and (/)
are constant.

Now let us discuss the case H = C*. Let C, : H —> H denote complex conjugation.
Then f{gT) = I^^C ° p(9)\2 defines a plurisubharmonic function on G/F which
must be constant. It follows that the holomorphic map F : G —> H given by g 1-4-
^(^O^C ° P(p) is likewise constant. Thus (f) = < o p . Since 0|r = p\r, it follows that
p(r) CR*.

The general case (i.e., H ^ (C)^ x (C*)^) is now an easy consequence. D

7.7. Vector Bundles

To transfer our results on principal bundles to vector bundles, we need the following
generalized Schur lemma.
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LEMMA 7.7.1. — Let F be a group, V a vector space and C,^ : F -)- GL(V) ^ro^p
homomorphisms such that €(7), ^(5) commute for all 7^ € F. A^me ̂  V is an
irreducible T-module for p = ( ' ^.

Then there exists vector spaces V^, V^ and irreducible representations Co : F -^
GL(V^, ̂  : r - GL(V^) such that (V,p) ̂  (V^Co) ^ (V^o).

LEMMA 7.7.2. — Let A c GL(n,C) be a connected commutative complex Lie
subgroup, A C A a lattice, Q a protective manifold with &i(Q) = 0 on which A acts
holomorphically and x C Q. Assume that for every X G A there exists a sequence of
natural numbers nj, such that lining = oo and lin^A^a;)) = x.

Then x is fixed point for the A-action on Q.

Proof. — The assumptions on Q imply that Aut(Q)° is a linear algebraic group. Let
H denote the Zariski closure of A in Aut(Q)0. Assume that x is not a fixed point for
the A-action. The ^-orbit through a* is a locally closed subset of Q and isomorphic
to the quotient H / I where I = {h G h : h(x) = x}. This quotient H / I is again a
linear algebraic group (because H is commutative). It follows that the image of A
in I / H under the natural morphism r : A -^ I / H can not be relatively compact.
Hence there is an element A G A such that the sequence r^) in H / I contains no
convergent subsequence. Since the ^-orbits in Q are locally closed, this implies that
no subsequence of ^(x) can converge to x. This contradicts the assumptions of the
lemma. Hence x must be an A-fixed point. Q

PROPOSITION 7.7.3. — Let G be a connected complex Lie group, F a lattice, V a
complex vector space and p : F -> GL(V) he an essentially antiholomorphic represen-
tation, with antiholomorphic part C and bounded part ^. Assume that V contains a
p(r)-invariant sub vector space W.

Then W is already invariant under ((G) and ^(F).

COROLLARY 7.7.4. — Let G be a connected complex Lie group, F a lattice, V a
complex vector space, p :T -> GL{V) an essentially antiholomorphic representation
and W a p(T)-stable subvectorspace ofV.

Then the restricted representation p ' : F -^ GL(W) is likewise essentially antiholo-
morphic.

Proof. — Let k = dim W. We consider the induced actions on the Grassmann man-
ifold Q of ^-dimensional subvectorspaces of V. For simplicity, they are also denoted
by p , C and ^. Let x = [W] C Q. Since ^(F) is bounded, it is clear that for every
element 7 C F there exists a sequence of natural numbers n^ such that lim nj, = oo
and lim$(7^) = e. Then p = C-^ implies that limC(7-^)(;r) = x. By lemma 7.7.2 it
follows that a; is a fixed point for every connected commutative complex Lie subgroup
Ac G with A/(A n F) compact. By thm. 3.10.1 this implies that a; is a fixed point
for C(G) (and hence for ^(F), too). Q
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LEMMA 7.7.5. — Let T be a group, pi : T —^ GL(Vi) representations on complex
vector spaces for i = 1 ,1 and assume that

1. Both Vi are irreducible F-modules with respect to the representations pi.
2. The Zariski closure H of pi(T) in GL(V]_) is connected.
3. The image p^^) is finite.

Then V\ 0 V^ is an irreducible V-module with respect to p\ 0 p^.

Proof. — Let To = ker p^. Since F/Fo is finite and H is connected, it is clear that
pi(To) is Zariski dense in GL(V]_). Hence V\ is an irreducible Po-module while Fo acts
trivially on V^. It follows that every ro-invariant subvectorspace of Vi 0 V^ has the
form Vi 0 W for some subvectorspace W C V^. Clearly, such a V\ (g) W is F-invariant
only if W = {0} or W = V'z. Thus V\ 0 Vs is an irreducible F-module. D

COROLLARY 7.7.6. — Let G be a connected complex Lie group, F C G a lattice, p\ :
G —)• GL(V\) an antiholomorphic representation, p^ : F —>• GL(V^) a representation
with relatively compact and Zariski connected image and ps : F —> GL(Vs) be a
representation with finite image.

Assume that all the representations pi are irreducible.
Then (pi\r) ̂  Pi ̂  ?3 '- F —>• GL(V\ (g) V^ 0 V^) is likewise irreducible.

7.8. The classification of homogeneous vector bundles

We make use of Margulis5 superrigidity theorem in the following form:

THEOREM 7.8.1. — Let S be a simply connected semisimple complex Lie group and
r C S a lattice. Assume that there does not exist a normal Lie subgroup So C S such
that So ̂  5L(2,C) and So/(So H F) is of finite volume.

Then there exists a compact real semisimple Lie group K and a group homomor-
phism j : r —^ K such that for every complex-algebraic group H and every group
homomorphism a : F —^ H there exist continuous group homomorphisms ^ : S —>• H,
^ : K -^ H and v : F —^ H such that

1. a(7) = C(7) • ̂ 0(7)) • ^(7) for all 7 G F.
2. The image ^(F) is finite.
^- C(5)? S.W ana ^(7) commute for every s G 5, k G K and 7 G F.

Note that for every continuous group homomorphism C, from a complex semisimple
Lie group S to a complex algebraic group H there exists a holomorphic group homo-
morphism C,o and an antiholomorphic group homomorphism d such that C = Co • Ci •

Using Margulis5 theorem and our previous results we obtain the following classifi-
cation.
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THEOREM 7.8.2. — Let S be a simply connected semisimple complex Lie group and
r C S a lattice. Assume that there does not exist a normal Lie subgroup So C S such
that So ̂  SL{2,C) and So/(So H F) is of finite volume.

Then there exists a compact real semisimple Lie group K and a group homomor-
phism j :T —> K such that there is a one-to-one correspondance between irreducible
holomorphic vector bundles on S/F admitting a flat connection and triples {p, ̂  v}
where

1. All p, (^ and v are irreducible representations ofT.
2. p extends to an antiholomorphic representation ofG.
3. ^ fibers through a representation of K.
4. v is a representation with finite image.

7.9. Sections in Vector Bundles given by antiholomorphic representations

Recall that homogeneous vector bundles admit global section only inasmuch as
they are trivial (prop. 6.2.5). Thus the triviality criterion (prop. 7.6.8) enables us
to obtain a complete description of the global sections in a flat bundle given by an
antiholomorphic representation.

PROPOSITION 7.9.1. — Let G be a connected complex Lie group, F a lattice and
p be a holomorphic representation of G on a complex vector space V. Let V\ = V0'
denote the vector subspace of all v C V which are fixed by p{G'). Let S denote the
subset of all v C V\ such that v is an eigenvector with real eigenvalue for every ^(7)
(^ C F) and let Vo denote the subvectorspace ofV spanned by S.

Let E and Eo denote the flat vector bundles on X = G/T which is induced by the
representation p\r on V resp. Vo.

Then Eo is a holomorphically trivial vector bundle and T{X,Eo) = T{X,E).

Proof. — Combine prop. 7.6.8 and prop. 6.2.5. D

For antiholomorphic representations we are now able to give a precise description
of the global sections of the associated vector bundle.

PROPOSITION 7.9.2. — Let G be a connected complex Lie group, F a lattice, V a
complex vector space and p : G —> GL(V) be an antiholomorphic representation. Let
E denote the flat vector bundle over G/F which is induced by p\r.

Let S denote the set of all vectors v G V which are invariant under p(G') and a
p(^)-eigenvector with real eigenvalue for every 7 G F.

Then H°(G/r, E) ̂  (S)^ where (S)^ denotes the complex vector space spanned by
S.

Proof. — By construction (S)^ is the largest p(G) -invariant vector subspace of V
inducing a holomorphically trivial vector subbundle of E. D
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7.10. Subbundles of flat bundles

THEOREM 7.10.1. — Let G be a connected complex Lie group, F a lattice and E —>•
G/T be a flat vector bundle given by an essentially antiholomorphic representation
p:G->GL(n,C).

Assume that every meromorphic function on X = G/F is constant.
Let L C E be a vector subbundle. Then L also admits a flat connection.
If G = G', then L is parallel with respect to the given flat connection on E.

Proof. — Let k = rank(L). By passing to A^L C f^E we may assume that L is a
line bundle. The flat connection on E yields a canonical way to lift the G-action on
X to a G-action on E. The subbundle EQ = ̂ g^o^L is a (3-invariant subbundle
of E and therefore parallel with respect to the flat connection on E. Moreover it is
given by an essentially antiholomorphic representation (see cor. 7.7.4). We may thus
assume EQ = E. Let d = rank(£Jo) ^d choose g Q ^ . . . ^ g d C G such that the line
subbundles Li = g\L are in general position, i.e., such that for every number m with
0 < m < d and every choice of 0 < z'i < • • • < im < d the subsheaf of E spanned by
Li^ + • • • + Li^ has rank 772.

CLAIM 7.10.2. — The line bundles I / o , . . . , Ld are in general position at every point
and therefore yield a trivialization of P(Eo).

Proof. — Let U be an open neighbourhood of a point such that all the Li admit
nowhere vanishing sections ai. For every k C { 0 , . . . , d} we obtain a section ak in A^o
by ak = A^fcC^. Let a = ̂ k^k- Then a is a section in the line bundle (^"^(A^o)
and is vanishing exactly where the Z / o , . . . , Ld fail to be in general position. Thus the
set of all points in X where the Lo , . . . , Ld are not in general position constitute an
analytic hypersurface of X. But the assumptions on X imply that X contains no
hyper surfaces. Hence L o , . . . , Ld are in general position everywhere. D

Thus IP(£'o) is a holomorphically trivial P^-i -bundle. Observe that P{EQ) is defined
by an essentially antiholomorphic group homomorphism p : F —^ PGL{d,C). Using
thm. 7.6.5 it follows that p\G'nr is trivial. Hence p(F) constitutes a commutative
subgroup of PGZ/(d,C). This implies that there is a fixed point for the /7(T)-action
on P(V). Corresponding to this fixed point there exists a sub-line bundle L' C E
which is G-invariant and therefore parallel to the given flat connection on E.

CLAIM 7.10.3. — The line bundles L' and L are isomorphic (as holomorphic line
bundles).

Proof. — Recall that P(£') is holomorphically trivial and that every meromorphic
function on X is constant. It follows that there is a unique trivialization of P(E) and
that every section of P(E) —> X is constant with respect to this trivialization. This
implies that any two line subbundles of E are holomorphically isomorphic. D
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Thus L is isomorphic to a flat line bundle. However, it is parallel with respect to the
given flat connection on E if and only if it is (7-invariant. This in turn is equivalent
to the assertion that L corresponds to a fixed point of the F-action on P(V). This
action is trivial, if G = G ' . D

7.11. Finite representations of the fundamental group

Here we will prove that compact complex parallelizable manifolds have many non-
trivial holomorphic vector bundles which are induced by representations of the fun-
damental group with finite image.

We have seen already that given a connected complex Lie group H and a repre-
sentation of the fundamental group p '. 71-1 (X) —>• H with finite, but non-trivial image
the induced H -principal bundle over X is not holomorphically trivial.

Now we encounter the following question: Given a manifold X which is not simply
connected, does there always exist a non-trivial finite representation of the fundamen-
tal group? This is indeed the case for homogeneous complex manifolds, but not for
arbitrary complex manifolds.

First we would like to recall that for every quotient X = G/F of a connected
complex Lie group G by a lattice F the fundamental group 71-1 (X) is residually finite
(see cor. 1.12.4), i.e., for every element 7 G 71-1 (X) there exists a group homomorphism
p : 7Ti(X) —^ S to a finite group S such that p(^) 7^ es.

In fact there exists a non-trivial finite representation for arbitrary homogeneous
complex manifolds (not necessarily parallelizable).

PROPOSITION 7.11.1. — Let G be a complex Lie group, H a closed complex Lie
subgroup. Assume that X = G/H is not simply connected.

Then there exists a non-trivial group homomorphism from TTI (X) to a finite group.

Proof. — There is no loss in generality in assuming G to be simply connected. Then
7r^{G/H) ^ H / H ° . (As usual H° denotes the connected component of e in H.) Fur-
thermore G may be embedded into a general linear group GLn(C) (see prop. 1.11.1).
Let N denote the normalizer A^^(C) (^°) °f H° m GLn(C). The normalizer of a
connected Lie subgroup of a linear algebraic group may be realized as isotropy group
of a certain action on a Grassmann manifold induced by the adjoint representation.
This implies that the normalizer of a connected Lie subgroup of linear algebraic group
is always a linear algebraic subgroup. Now let H° denote the closure of H° in GLn(C)
with respect to the algebraic Zariski topology. Then N / H ° is a linear algebraic group,
hence admits a faithful linear representation. It follows that either H / H ° admits a
non-trivial finite representation fibering through H/(Hr\B°) or H C H°. But H ° / H °
is commutative. Hence in the second case H / H ° is a finitely generated abelian group.
Every finitely generated abelian group is isomorphic to some direct product Z^ x A
with A finite and therefore clearly admits a non-trivial finite representation. D
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For non-homogeneous manifolds there is no such result.

EXAMPLE 7.11.2. — There exists a three-dimensional compact complex manifold
with infinite fundamental group such that every finite representation of the funda-
mental group is trivial.

Proof. — By a result of Higman [54] there exists a finitely presentable group without
any non-trivial subgroup of finite index. Furthermore there is a recent result of
Taubes [140] (based on twistor space constructions) that for every finitely presentable
group there exists a three-dimensional compact complex manifold with this group as
fundamental group. D

7.12. On the number of finite representations

In the preceding section we proved that for a lattice F in a simply connected
complex Lie group G there always exist some group homomorphisms to finite groups.

For the case where G is semisimple without 5Z/2(C)-factors we will now demon-
strate that there are only finitely many non-equivalent group homomorphisms with
finite image from F to a fixed Lie group. This implies that for a given number r C N
there are only finitely many non-equivalent homogeneous vector bundles of rank r
over X = G / F .

This implies that under some assumptions for each r G N there are only finitely
many non-equivalent flat vector bundles of rank r over a compact parallelizable man-
ifold.

THEOREM 7.12.1. — Let S be a semisimple, simply connected complex Lie group
without SL^(C)-factor and F a lattice.

Then for every Lie group H with finitely many connected components there exists
only finitely many non-conjugate group homomorphisms p : F —>• H. (Two group
homomorphisms p, r are conjugate if there exists an element h G H such that ^(7) ==
hr{^)h~1 for all 7 G T.)

Moreover, for every such H there exists a normal subgroup of finite index TH C F
such that Fn C ker p for every p C Hom(T, H).

COROLLARY 7.12.2. — Let S be a semisimple, simply connected complex Lie group
without SL^(C)-factor and F a lattice. Let H be a complex Lie group with finitely
many connected components.

Then there exists only finitely man non-isomorphic H-principal bundles over S/F
admitting a flat connection.

For the proof of the theorem we need some preparation. First we recall that by
Margulis superrigidity it suffices to consider representations with finite image.
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LEMMA 7.12.3. — Let S be a connected linear Lie group, T a finitely generated
infinite subgroup. Let A^ = f^kerp where p runs over all group homomorphisms
from r to finite groups of order < k.

Then A^ is an infinite normal subgroup ofT.

Proof. — Normality is obvious. By Selberg's theorem (see prop. 1.7.2) we know that
r contains a torsion-free subgroup of finite index. It follows that F contains a subgroup
H ^ (Z, +). Let S denote the set of all elements 7 C F which are A*'-divisible, i.e., for
which there exists an element A C F with A^'^ = 7. With H ^ Z we have A-'Z C Hr\S,
hence S is an infinite set. Now S C A^, hence AA. is infinite. D

Furthermore we need the result that for a given finite group and a given Lie group
with only finitely many connected components there exist only finitely many group
homomorphisms up to conjugacy.

PROPOSITION 7.12.4. — Let G be a finite group, H a (real) Lie group with finitely
many connected components.

Then up to conjugacy there exist only finitely many group homomorphisms from G
to H.

Proof. — Clearly the image of such a group homomorphism / : G —> H is finite,
hence compact. Since all the maximal compact Lie subgroups of H are conjugate,
there is no loss of generality in assuming that H is compact.

Let us assume that there exists an infinite sequence ofpairwise non-conjugate group
homomorphisms fn : G —^ H. Since H is compact, we may choose a subsequence such
that fn(x) converges for every x G G. Evidently the limit map / : G —> H is again
a group homomorphism. Theorem 5.3 of [100] now implies that for all n sufficiently
large the image group fn(G) is conjugate to a subgroup of f(G). This contradicts the
assumption that all the fn are pairwise non-conjugate, because f(G) has only finitely
many subgroups and every such subgroup has only finitely many automorphisms. D

PROPOSITION 7.12.5. — Let S be a simply connected semisimple complex Lie group
without 5L2(C)-factors, F a lattice, H a (real) Lie group with finitely many connected
components.

Then there exists a normal subgroup FH of finite index in T such that FH C ker p
for every group homomorphism p : F —^ H with finite image.

Proof. — Let k = k(H) as in cor. 1.7.9. Then p(Afc) must be abelian for every group
homomorphism p : T —>• H with finite image. By Margulis5 theory every infinite
normal subgroup of F is of finite index. Hence A^ is of finite index in F. Moreover
the commutator group A^. is of finite index in A^, hence of finite index in F. Thus
r^ := A^. has the desired property. D
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Now the proof of the theorem is an immediate consequence of the fact that a finite
group (such as F/Fyi) has only finitely many non-equivalent irreducible representa-
tions.

By use of superrigidity we obtain in particular.

COROLLARY 7.12.6. — Let S be a simply connected semisimple complex Lie group
without 51/2 (C) -factors, T a lattice and H a Lie group with finitely many connected
components.

Then there exist only finitely many non-conjugate group homomorphisms from T
to H.

COROLLARY 7.12.7. — Let S be a simply connected semisimple complex Lie group
without 5Z/2 (C) -factors and T a discrete cocompact subgroup in S.

Then for each r G N there exist only finitely many non-equivalent homogeneous
vector bundles of rank r over X = S/T.

Superrigidity results for lattices r C S are often stated in the form that for cer-
tain groups H every group homomorphism from a lattice to H either has finite (or
relatively compact) image or extends to a group homomorphism from S to H.

Our theorem implies such a result for torsion groups.

COROLLARY 7.12.8. — Let S be a simply connected semisimple complex Lie group,
without SL^(C)-factors, T a lattice, T a n-torsion group for some n G N, i.e., gn = e
for all g CT.

Then for every group homomorphism p : F —> T the image p(T) is finite.

7.13. Existence of vector bundles

Banica posed the question, whether every compact complex manifold admits a non-
trivial holomorphic vector bundle. We are now in a position to give an affirmative
answer.

THEOREM 7.13.1. — Let X be a positive-dimensional compact complex manifold.
Then X admits a non-trivial holomorphic vector bundle E with rank(^) < dimX.

Proof. — If the holomorphic tangent bundle of X is non-trivial, there is nothing to
prove. Thus we may assume that X is a parallelizable, z.e., X c^ G/F where G
is a simply connected complex Lie group and F a discrete cocompact subgroup. If
G 7^ G', then the Albanese torus Alb(X) is non-trivial, and there are non-trivial line
bundles on X obtained by pull-back from Alb(X). Finally, if G = G1r, let p denote
the representation of the fundamental group 71-1 (X) ̂  F which is the restriction of the
complex conjugate of the adjoint representation of G. thm. 7.6.5 implies that in this
case the vector bundle E induced by p is non-trivial. Furthermore, the construction
of p implies rank(^) = dim(X). D
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Given the fact that every compact complex manifold admits a non-trivial holomor-
phic vector bundle, there are two natural questions. First: Is the statement on the
rank optimal? Second: Does similar results hold in other categories?

Concerning the first question we note that already for surfaces it is possible that
a compact complex manifold does not admit any non-trivial line bundle, namely this
happens for K3-surfaces of algebraic dimension zero.

Concerning the second question we remark that clearly every projective manifold
admits a line bundle L with ci(L) 7^ 0.

However, in the differentiably category there is no general existence theorem for
non-trivial vector bundles. In fact, the three-dimensional sphere S3 is an example
for a compact differentiable manifold X such that every principal bundle (with finite-
dimensional structure group) over X is trivial. To see this, note that S3 is the
suspension of S2. This implies that (topologically) ^-principal bundles over 5'3 are
classified by homotopy classes of continuous maps from S2 to H [6]. But TT^(H) = {1}
for every Lie group H ([30]). Thus S3 does not admits any non-trivial vector bundle.

One may also asked whether it is possible to drop or weaken the compactness
assumption. Some assumption is certainly necessary, e.g. on a non-compact Riemann
surface every holomorphic vector bundle is trivial. At least our methods yield that
quotients of complex Lie groups by lattices always admit non-trivial holomorphic
vector bundles, even if the quotient is non-compact.

7.14. Topological structure of flat bundles

Our goal here is to prove that for a compact complex parallelizable manifold every
homogeneous vector bundle is almost topologically trivial. In particular we will see
that for a homogeneous vector bundle over a compact complex parallelizable manifold
all the Chern classes vanish.

This result is specific to parallelizable manifolds, e.g. for homogeneous rational
manifolds like Pn(C) every line bundle is homogeneous. In contrast, for parallelizable
manifolds, homogeneous bundles are close to flat bundles. In fact for many special
cases we proved that a homogeneous bundle is automatically flat.

Flat vector bundles are always close to be topologically trivial. This is true, be-
cause the presence of a flat connection implies that all Chern classes are zero. Now
every (continuous) complex vector bundle of rank k over a compact differentiable
manifold X is obtained as a pull-back of the universal vector bundle over the classi-
fying space BU(k) via a continuous map / : X -4- BU(k). Topological triviality of
the vector bundle is equivalent to the assumption that / is homotopic to a constant
map. Vanishing of all Chern classes is equivalent to the property that the induced
homomorphism of cohomology rings

/* : ir(BU(k),C) —> JT(X,C)
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is trivial. In this sense flat vector bundles are always almost topologically trivial.
First we prove a general statement on flat bundles with solvable structure group

(which is possibly well-known). Namely, if X is a compact differentiable manifold
and E a flat bundle with solvable structure group, then there exists a finite covering
T : X\ —> X such that r*E is topologically trivial.

We then proceed to prove the main theorems of this section. We will prove the
following: Let H be a complex linear Lie group, E a homogeneous H-principal bundle
over a compact complex parallelizable manifold X. Then there exists a finite covering
r : X-L —)• X and a flat H-principal bundle E\ —>• X\ such that there is a topological
isomorphism r^E ^ E\. This implies that for every homogeneous vector bundle over
a compact complex parallelizable manifold the Chern classes vanish.

For compact complex tori every flat vector bundle is topologically trivial. However
already for nilmanifolds it is quite possible that ^(X.Z) contains torsion. In this
case it follows that there exist flat complex line bundles which are not topologically
trivial.

We begin with some considerations about line bundles. As usual let Pic(X) denote
the group of holomorphic line bundles over a complex manifold X.

LEMMA 7.14.1. — Let X he a compact complex manifold, A the torsion part of
^(X.Z) and S : Pic(X) —>• H^^X^'Z) the natural group homomorphism.

Then for every flat line bundle L we have S(L) G A. Conversely for every element
a G A there exists a flat line bundle L over X with 6(L) = a.

There is an isomorphism Ext(.Hi(X,Z),Z) ̂  A and a non-functorial isomorphism
between A and the torsion part of H\{X^) ̂  Tr^X)"6.

Proof. — Since X is compact, the homology groups are finitely generated. It follows
that H\ (X,Z) ^ J7 x T for some finite abelian group T. The short exact sequence
of abelian groups

0 —)- Z —>C —^ C* —>0

yields a long exact Ext-sequence

• • • —— Hom(r, C) —— Hom(T, C*) —— Ext(T, Z) —^ Ext(T, C) —^ • . •

Now Hom(r,C) = 0 and Ext(r.C) = 0, hence there is an isomorphism between
Hom(T,C*) and Ext(T,Z). Furthermore by the universal coefficient theorem for
cohomology

0 —^ Ext(^i(X,Z),Z) —^ H^X.Z) —^ Hom^^Z^Z) —^ 0

The group Rom(H^(X^),'Z) is free. Hence the finite group Ext(I:fi(X,Z),Z) =
Ext(T, Z) ^ Hom(T, C*) is isomorphic to the torsion part of ^(X, Z). D

This lemma implies in particular that every torsion element of H2 {X, Z) is contained
in the image of S : Pic(X) —> ./^(X.Z). It follows that there exists a topologically
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non-trivial flat line bundle as soon as 7Ji(X,Z) contains torsion. This happens al-
ready for nilmanifolds. For instance, there is a three-dimensional nilmanifold X with
Ext^^JQ.Z) ^ Z2 given by X = G/T with

G= : x , y , z G C

and

T-l __ : x,y c z © % z ; ^ e z' - JzZ

PROPOSITION 7.14.2. — Le^ M be a compact differentiable manifold and E —^ M
an H-principal bundle for some connected Lie group H. Assume that E is given by a
representation of the fundamental group p : TTI (M) —>• H and that H is solvable.

Then there exists a finite covering TT : M\ —>• M such that TT*E —>• M is (differen-
tiably) trivial.

If H^ (M, Z) is torsion-free, then E itself is trivial.

Proof. — First we want to remark that a differentiable bundle is differentiably trivial
if and only if it is topologically trivial.

Let K be a maximal compact Lie subgroup of H. Since H is solvable, K is
commutative, hence K ^ (S1)171. Now the structure group of E can be reduced to K ,
hence it suffices to prove the statement for H = K. Considering one factor after the
other, it is enough to deal with the case H c^ S1.

Now we consider the exact sequences of sheaves l — > > Z - - > • ] R — > • 5 f l — ^ l and
\ — > ' L — f £ — > S — ^ l where as usual Z, R and 5'1 denote the sheaves of locally
constant functions with values in that group. We obtain a commutative diagramm of
exact sequences

Z s1

0 —> Z —> £ —> S -

which induce a commutative cohomology diagram

H\M,R) -^ ^(M,^) -^ ^(M.Z)v
H\M,S)0= H^M.S) H2(M^)
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Next recall that ^(M.A) c^ Hom(Ifi(M),A) for A an abelian group (resp. the
sheaf of locally constant functions with values in that group). Thus IJ^M, S1) clas-
sifies homomorphisms p : 71-1 (M) —> S1 (observe that f/i(M) is the abelianization
of 7!-i(M)). On the other hand H^^M.S) classifies the ^-principal bundles. But
now Ext(I:fi(M),Z) = 0 implies that (3 : ^(M.M) -^ ^(M.S1) is surjective, i.e.,
8 : ̂ (M, S1) -^ ^(M, Z) is the zero map. Since ^(M, <?) = 0 for k = 1, 2 implies
H^M.S) ^ ^(M.Z), it follows that the map p : H^M.S1) -^ H^M.S) is the
zero map. Thus any S1 -principal bundle is trivial if it is induced by a representation
of the fundamental group. D

REMARK 7.14.3
1. In the statement of the proposition, the choice of the covering depended on

E. Actually it is possible to choose a finite covering r : Mi —> M such that
r*E is (differentiably) trivial for all flat ^-principal bundles for all connected
solvable Lie groups H. It suffices to choose Mi in the following way: Let
F denote a torsion-free subgroup of finite index in ^(M.Z) (which exists,
because .Hi(M,Z) is finitely generated for M compact). Then let F = ^(F)
with c j ) : 71-1 (M) —>• H\ (M, Z) and let Mi —^ M be the covering corresponding to
rc7r i (M).

2. The assumption of compactness of the manifold M is essential for the statement.
For instance, let F = Q/Z, M a manifold with TTI (M) ^ F and L —^ M the line
bundle defined by the natural embedding of the fundamental group 71-1 (M) ==
Q/Z ^ C/Z ^ C*. Then TT*L is topologically non-trivial for any covering
TT : Mi —> M except the universal covering.

THEOREM 7.14.4. — Let X be a compact complex parallelizable manifold, E —^ X
a homogeneous vector bundle.

Then all the Chern classes Ck{E) vanish.

REMARK 7.14.5
1. For flat vector bundles it is obvious that all the Chern classes do vanish, because

the Chern classes of a vector bundle may be calculated in terms of the curvature
of a connection and by definition a flat vector bundle has a connection with
vanishing curvature.

2. For an arbitrary holomorphic vector bundle E over a compact complex manifold
X, the vanishing of all Chern classes does not imply that there exists a finite
covering r : X\ —> X with r^E -> X\ topologically trivial. For example, there
exists a vector bundle over Pa such that all Chern classes vanish, but the bundle
is not topologically trivial (see [7]).

3. Parallelizability of X implies that homogeneous bundles are closely related to
flat bundles. For arbitrary homogeneous vector bundles over arbitrary compact
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homogeneous manifolds the corresponding assertion is clearly wrong, e.g. every
line bundle over Pyi is homogeneous.

4. It is absolutely essential to require that the structure group is linear. For in-
stance, the Iwasawa-manifold is a torus-principal bundle over a torus. This is
a homogeneous bundle with non-linear structure group, and it is certainly not
topologically isomorphic to a flat bundle.

The proof of the theorem results from the lemmata below.
We recall the standard fact from fiber bundle theory that every principal bundle

with contractible structure group is (topologically) trivial. This can be generalized to
the following statement:

Let G = S K U be a semi-direct product of Lie groups with U contractible.
Let TT : G —>• S ̂  G/U denote the natural projection.

Then every G-principal bundle E is topologically isomorphic to the S-
principal bundle E' associated via TT : G -> S.

This is a particularly useful formulation for our purposes, because if E is homogeneous
with respect to some group action on the base space, then evidently E ' is homogeneous
as well.

LEMMA 7.14.6. — Let X = G/T be a compact complex parallelizable manifold,
H a connected linear complex Lie group and S a maximal connected semisimple Lie
subgroup of H.

Let E —>• X be a homogeneous H-principal bundle. Then there exists a finite
covering r : X\ —^ X and a homogeneous S-principal bundle E' —f X^ such that r*E
and E' are topologically isomorphic (as H-principal bundles).

Proof. — Fix an embedding H c-^ GL^(C) and let H denote the Zariski closure of
H in GL7v(C). The commutator group H ' of H is linear algebraic [20]. Therefore
H I H ' is a commutative linear algebraic group. Since H / H ' C H / H ' , it follows that
H / H ' ^ C^ x (C^ for some k,l G N. Thus the H/H'-prmcip^ bundle over X
associated to E is isomorphic to a direct product of C- and C*-principal bundles.
We have already seen that every homogeneous C*-principal bundle over X is flat
and therefore becomes trivial after passing through a finite covering. Moreover any
C-principal bundle is topologically trivial. Hence there exists a finite covering r :
X^ —>• X such that the structure group of r*E can be reduced to H ' . Using the Levi-
decomposition of H ' and the observation made before the lemma, we may further
reduce the structure group to S. D

We are now in a position to prove that every homogeneous bundle over a parallelizable
manifold is topologically equivalent to a flat one.

PROPOSITION 7.14.7. — LetX = G/F be a compact complex parallelizable manifold
and H a connected linear complex Lie group.
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Let E —^ X be a homogeneous H-principal bundle. Then there exists a finite
covering r : Xi -^ X and a flat H-principal bundle E^ over Xi such that T*E and
E\ are topologically isomorphic.

Proof. — By the above lemma we may assume that H is semisimple and thereby in
particular that H is linear algebraic. Since E is homogeneous, there exists an essential
extension of connected complex Lie groups

1 —^ L —^ G -^ G —^ 1

such that the G-action on X = G/F lifts to a G-action on E. Let I == cr'^r). Then
E is isomorphic to a fiber product E = G x i H — ^ X = G / I given by some group
homomorphism p : I -> H. Now we may replace H by the Zariski closure of p ( I ) in
H. By passing to a finite cover of X we may assume that this is connected. A new
application of the above lemma yields that we may further reduce the structure group
to a maximal connected semisimple Lie subgroup of p { I ) . Iterating this process, it
is clear that we may simultanously assume that H is semisimple and connected and
that p ( I ) is Zariski dense in H.

Let R denote the radical of R. Since p ( I ) is Zariski dense, it is clear that the
Zariski closure of p(I D R) in H is a normal solvable subgroup, hence finite. Once
again replacing X by a finite cover, we may assume that I H R C kerp. But L C R
(because the extension (*) is essential, cf. proposition 5?), hence p : I —> H actually
fibers through F ̂  I / L . Thus we obtain a flat bundle. D

This proposition implies immediately that for a homogeneous vector bundle over a
compact complex parallelizable manifold the Chern classes vanish. (Note that for
a finite covering r : X\ —)• X the induced homomorphism of cohomology rings T* :
ir(X,C) -^ ^•(Xi,C) isinjective (see e.g. [37], Prop. VIII. 10.10). Hence c^E) =
0 implies Ck(E) =0.)
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CHAPTER 8

DEFORMATIONS AND COHOMOLOGY

8.1. Survey

This chapter is concerned with cohomology groups and deformations of complex
parallelizable manifolds. Throughout this chapter the comparison between the paral-
lelizable and the Kahler situation serves as a guiding line.

For a compact Kahler manifold X there exists a compact complex torus Alb(X)
and a holomorphic map TT : X —^ Alb(X) such that

1. For every holomorphic map / from X to a compact complex torus T there exists
an element a G T and a holomorphic Lie group homomorphism F : Alb(X) —)• T
such that f(x) = a ' F o 7r(x) for all x € X.

2. The holomorphic map TT : X -4- Alb(X) induces isomorphisms on the cohomol-
ogy groups H\^K), r(.,d0) and H^'.O).

Here we prove a similar statement for parallelizable manifolds. Although parallelizable
manifolds are never Kahler unless they are tori, it is possible to obtain results similar
to the Kahler case as long as reductive factors of rank 1 are absent. In particular we
prove the following.

THEOREM 8.1.1. — Let G be a connected complex linear algebraic group and F a
lattice. Assume that there exists no surjective algebraic group homomorphism from G
to PSL^C) orC\

Then there exists a compact complex torus A and a surjective holomorphic map
TT : X —> A such that

1. For every connected complex Lie group T and every holomorphic map f : X -> T
there exists an element a (E T and a holomorphic Lie group homomorphism
F : A-^T such that f(x) = a • F(7r(x)) for all x G X .

2. The map TT : X —> A induces isomorphisms on the cohomology groups H1^'^)
andr(',d0).

3. Every meromorphic function on X is a pull-back from A.
4. If X is compact, TT induces an isomorphism of H^^-^O).
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Furthermore, we determine ^(X.O) for cocompact lattices in arbitrary complex
linear algebraic groups.

THEOREM 8.1.2. — Let G be a connected complex linear algebraic group, F C G
a lattice and X = G/F. Let G = S • R be a Levi-Malcev-decomposition, N the
nilradical, and A = [S^R] • N 1 . In addition, let W denote the maximal sub vector space
of Cie^R'A/A) such that Ad(7)|^y is a semisimple linear endomorphism with only
real eigenvalues for every 7 G F.

Then dimfT^G/F, 0) = dim(G/G') 4- h(r/(R H F)) + dim(W).

Using this result we deduce the following vanishing theorem.

THEOREM 8.1.3. — Let G be a connected complex Lie group, F a discrete cocompact
subgroup and X = G/F.

Then H1 {X, 0) = {0} iff &i (X) = 0.

Since ^(X.T) ^ Hl(X,On) for an n-dimensional parallelizable manifold, this
implies that a compact complex parallelizable manifold admits infinitesimal deforma-
tions if and only if b^(X) > 0. In addition, we prove that for &i(X) > 0 there actually
exist small deformations. Thus we obtain the following result which characterizes
rigidity.

THEOREM 8.1.4. — Let G be a connected complex Lie group, F a discrete cocompact
subgroup and X = G/F the complex quotient manifold. Then the following properties
are equivalent.

1. X admits no infinitesimal deformations (i.e., there are no non-trivial families
over SpecC[e]/(e2)/

2. X admits no small deformations (i.e., there are no non-trivial families over the
unit disk).

3. &i(X) =0.
4. H1(X,0)={0}

This characterization of rigidity of parallelizable manifolds generalizes a number of
earlier results. The existence of non-trivial deformations of positive-dimensional tori
is classical. Deformations of solv-manifolds have been studied by Nakamura [110].
Raghunathan proved the rigidity of quotients of G/F for G semisimple without rank
1-factors [122]. Ghys proved the theorem for G = SL^(C) ([42]).

Using the results on ^{X.O), we investigate the Hodge-Frolicher spectral se-
quence and properties of line bundles related to this sequence. Again, we compare the
parallelizable situation with the Kahler setup. Finally we use the Serre-construction
to prove the existence of non-homogeneous vector bundles over SL^(C)/F for discrete
cocompact subgroups F with &i (F) = 0.
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8.2. Basic results on ^(G/F.O)

The following theorem of Akhiezer generalizes earlier results of Raghunathan [122].

THEOREM 8.2.1 (Akhiezer, [3]). — Let G be a reductive complex linear algebraic
Lie group and T a cocompact lattice. Let X = G/F.

Then there are natural isomorphisms of G-modules

H^X^P) = H^(X) ̂  /\{CieG) 0^(r,C)

with G acting on jCie G by the adjoint representation and acting trivially on Hq(Y, C).
In particular ^(X, C) ^ H^X, 0) and the G-action on H1^, 0) is trivial.

COROLLARY 8.2.2. — Let r be a discrete cocompact subgroup of SL^(C). Then
dlmHl(SL^C)/r,0)=rank^(^/rt).

This is also proved independently by Ghys [42].

COROLLARY 8.2.3. — Let T be a discrete cocompact subgroup in SL^(C). Assume
that r/r' is finite.

ThenH^SL^/r.O) =0.

This consequence has also been obtained independently by Rajan [124] and the
author [153].

Ghys deduced the above mentioned result on ^(S'Z^C)/!', 0) in a study on
deformations of the complex structure of such quotients (see §8.3).

We will also employ the follwing result of Kodaira.

THEOREM 8.2.4 (Kodaira, see [110]). — Let G be a simply connected nilpotent com-
plex Lie group and F a lattice.

Then the projection map TT : X = G/T —> G/GT induces an isomorphism of the
cohomology groups TT* : ̂ (Y, 0) -^ H1^, 0).

Kodaira's proof of this fact is based on a study of harmonic forms on nilmanifolds.

8.3. Deformations of 51/2 (C)/F

Deformations of arbitrary quotients of SL^(C) by discrete cocompact subgroups
have been studied in detail by Ghys ([42]).

Fix a discrete cocompact subgroup F C 51/2 (C) and a set of generators a i , . . . , Or
of r. Then the set of all group homomorphisms Horn (F, SL^ (C)) can be identified
with an algebraic subvariety T^r of (SL^(C)Y via the natural map

p^ (p(ai) , . . . , /9(a^)) .

SOCIETE MATHEMATIQUE DE FRANCE 1998



140 CHAPTER 8. DEFORMATIONS AND COHOMOLOGY

Ghys proved that there exists an open neighborhood W of e in T^r such that for every
u G W the r-action on 51/2 (C) given by

7 : x v-f- u(j)~1 • x • 7

is free and properly discontinuously and the respective quotient manifold Xu is dif-
feomorphic to SL^{C). For u,u G W the quotient manifolds Xu and Xu are biholo-
morphic if and only if u = gug~1 for some g G SL^ (C). In particular, JC^ is not
biholomorphic to 51/2 (C) if ^ ^ e. Moreover, ̂  is not parallelizable for u ̂  e.

On the other hand, every sufficiently small deformation of the complex manifold
51/2 (C)/r arises in this way.

If &i(F) > 0, then every open neighbourhood U of e in W contains an element u
such that u(T) is a non-trivial abelian subgroup of SL^ (C).

If &i(r) > 1, then every open neighbourhood U of e in TV contains an element u
such that u(F) is a non-trivial non-abelian subgroup of SL^(C).

On the other hand, if ^i(T) = 0, then e is an isolated point in W by Well rigidity
([150]). If &i(r) = 1, then there is an open neighbourhood V of e in W such that
u(F) is abelian for all u C V.

8.4. Leray spectral sequence

Let / : X —>• Y be a holomorphic map between complex spaces. There is a Leray
spectral sequence for the structure sheaf Ox- The respective lower term sequence
yields the following.

0 -^ H^Y^f^Ox) -^ H\X^Ox) —> H^Y^f^Ox) -^ H\Y^f^Ox)

Assume that / is connected and proper. Then K° f^Ox = Oy. Furthermore, if
dimHk{f~l{p},0) = r for a natural number k and all p G V, then, by Grauert's
theorem, 1^ f^Ox is a locally free coherent sheaf of rank r. This implies in particular
the following observation.

LEMMA 8.4.1. — Let f : X —^ Y be a proper connected holomorphic map and assume
that for every fiber Fp the induced cohomology map z* : H^{X,0} -> H^{Fp,0}
vanishes. Assume furthermore that dimJf^.Fp, 0) does not depend on p C Y.

Then a : ̂ (X.O) — H^^f^O) is the zero map.

8.4.1. Leray spectral sequence for flat bundles

PROPOSITION 8.4.2. — Let TT : E -> X be a holomorphic fiber bundle with typical
fiber F and structure group S. Assume that F is connected and compact, that S acts
on F in such a way that there exists an invariant hermitian metric and that E —^ X
admits a flat holomorphic connection.

Then a : H^E.O) -^ ^(X.TZ^O) is surjective.
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Proof. — Let 77 G ^(X^T^O). Then there exists an open cover U = (Uz)i by
contractible open Stein subsets of X such that 77 is given by ^ G U^TT"^^), 0).
Using the Dolbeault-isomorphism we may choose corresponding 9-closed (0, l)-fbrms
uji on W{ = Tr"1^). Of course these forms uji are not unique. Now, if there is a
canonical way to choose uji, then the forms cc^ coincide on the intersection of the Ui
and yield a globally defined (9-closed (0, l)-form on E, implying that r] is contained
in the image of ^(E, 0).

The assumptions made in the proposition allow us to choose a hermitian metric
on each fiber in such a way that for every contractible Stein open subset U C X we
obtain a trivialization E\jj ^ U x F which is compatible with the flat connection
and such that the choosen hermitian metric on each fiber is just the pull-back of one
fixed ^-invariant hermitian metric on F. Then there is a canonical way to choose the
forms uji. Namely the forms c^ are to be choosen such that they annihilate horizontal
vector fields (with respect to the connection) and are harmonic if restricted to a fiber
Of 7T. D

LEMMA 8.4.3. — Let G be a complex Lie group, F a discrete subgroup and A a
connected commutative normal complex Lie subgroup such that A/(Anr) is compact.
Assume that the short exact sequence of Lie algebras

0 —^ Cie(A) —, £ie(G) —^ Cie(G/A) —> 0

is split.
Then TT : E = G/Y —>• G/AT = B is a torus bundle with flat holomorphic connec-

tion.

Proof. — The flat connection is induced by the splitting of the Lie algebra sequence.
D

COROLLARY 8.4.4. — Under the assumptions of the lemma the induced map

H^E.O) —^H^B.n1^)

is surjective.

We will also need a description of the structure of 7!1 f^O for torus bundles.
Let / : E —>• Y be a locally trivial holomorphic fiber bundle with a compact complex

torus T is typical fiber. Let V = ̂ (T) denote the vector space of holomorphic 1-
forms on T. Then there is a exact sequence

1 —^ Aut°(r) —, Aut(r) -^ GL(V)
=T

Let U = {Ui} be a trivializing open cover of Y such that E is given by transition
functions </)^ : Ui D Uj —> Aut(T).
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CLAIM 8.4.5. — Under the above assumptions Ti1 J^-OE is a locally free coherent
sheaf on Y isomorphic to the sheaf of sections in the flat vector bundle given by the
transition functions z/^j : U{ D Uj —>• GL(V) defined by '0^ == C ° ̂ ij'

Proof. — This is a consequence of the Dolbeault-isomorphism. D

We apply this to parallelizable manifolds.

PROPOSITION 8.4.6. — Let G be a complex Lie group, F a discrete subgroup and A
a normal abelian complex Lie subgroup. Assume that A/(Anr) is compact. Denote
the natural projection map E = G/F —^ G/AT = B by TT.

In this case T^TT^O is a flat vector bundle of rank dim A over B induced by the
representation p : F —^ GL(Cie A*) given by 7 ̂  Ad* (7).

LEMMA 8.4.7. — Let TT : X -> Y be a finite holomorphic covering.
Then TT* : H^Y, 0) -^ H^X, 0) is injective.

Proof. — If uj is a 9-closed (0, l)-form on Y and 9f = 7i-*ci; for a function / on X,
then 9g = uj for g(y) = — ̂ ^^ f(x) (where d denotes the degree of 7r). D

u

8.5. Description of H^^X.O)

THEOREM 8.5.1. — Let G be a connected complex Lie group, F C G a lattice
and X = G IT. Let G = S • R be a Levi-Malcev-decomposition, N the nilradical, and
A = [S, R}-N'. Furthermore let W denote the maximal linear subspace of Cie(R' A/A)
such that Ad(7)|^v is a semisimple linear endomorphism with only real eigenvalues
for every 7 G F.

Then dim H^G/T^O) < din^G/G') + &i(r/(7?nr)) +d[m(W). Equality holds, if
G is linear algebraic.

REMARK 8.5.2. — We do not know any example of a quotient manifold of a
connected complex Lie group by a lattice which is not biholomorphic to a quotient
of a linear algebraic C-group by a lattice.

COROLLARY 8.5.3. — Let G be a simply connected complex Lie group and F C G be
a cocompact lattice. Assume that the radical R is nilpotent and that the semisimple
group G/R contains no factor So such that SQ/^SO^RT) is compact and So ̂  SL^{C).

Then H^G/r.O) ̂  H^G/GT.O).

Proof. — If R is nilpotent, then R = N and therefore A = R A. Since A C H C R'A,
it follows that A = H. Furthermore the assumption on S implies that H1 (G/RT, 0) ==
0. Thus dimff^G/r, 0) = dimG/G'. The assumption on S also implies that GT is
closed in G. Thus H^G/GT, 0) ̂  H^G/r, 0). D

We now prove the theorem.
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Proof. — We study the sequence of fibrations

i —> G/F ^4 G/TVT ̂  G/AF ̂  G/(G' n J?)F ̂  GIRT -^ i
First we must verify the existence of these fibrations, i.e., we have to show that N ' ,
A, G' n R and A all have closed orbits. Results of Mostow (thm. 3.5.3) imply that R
and N have closed orbits. By classical results of Malcev (see [89] or §2.2) this implies
closedness of the A^-orbits. From prop. 3.11.2 we obtain closedness of the G' n R-
orbits. Finally note that A = ( G k r ^ R ) N ' for k sufficiently large. Hence closedness of
A-orbits follows from thm. 3.11.4.

We note that all these projections TT^ are surjective proper holomorphic maps and
for each i we will study the lower term sequence of the Leray spectral sequence for
the sheaf 0.

CLAIM 8.5.4. — The induced map TT^ : ̂ (G/TVT, 0) -^ ^(G/F, 0) is an isomor-
phism.

Proof. — By a theorem of Kodaira (see [110]) there is an isomorphism

H^N/N^N n F), 0) ^ H\N/(N n F), 0).

It follows that the embedding i : N ' / ( N ' H F) ̂  N / ( N H F) induces the zero map
between the respective cohomology groups H1^, 0). Thus the group homomorphism
j" : H\G/r, 0) -> ^ ^ ' / ( N ' n r ) ) induced by the inclusion map j : N f / { N f n r ) -,
G/r must vanish as well. By homogeneity it follows that for every fiber F of p the
induced cohomology map z* : ̂ (G/F, 0) -^ H1^, 0) is zero. Therefore

H\G/r,0) —, ̂ (G/TVT.TZ^O)
vanishes (lemma 8.4.1) and H^G/r, 0) ̂  H^G/NT, 0). D

CLAIM 8.5.5. — The induced map ^ : ^(G/AF, 0) -^ ^(G/TVT, 0) is an
isomorphism.

Proof. — Recall that A is defined as A = [S,R}Nf. Since [S,R] C R H G' C N , it
is clear that A / N 1 is abelian. This implies that for TT : G / N ' T -> G/AF the higher
direct image sheaf IV-TT^O is the coherent sheaf associated to a flat vector bundle
given by a representation p which arises in the following way: p is the restriction of
the complex conjugation of the representation from G on GL(Cie(A/Nt)*) induced
by the coadjoint representation. By construction no linear subspace of jCie(A/N') is
invariant under Ad(5'). It follows that iV-n^O does not admit global sections. Hence
the claim. D

The lower term sequence of the Leray spectral sequence for ^3 yields

^(GAG'n^o) ̂  H\G/Ar^o) ̂  ̂ (GAG'n^r^^O) i w
The isomorphism (f) is a consequence of prop. 7.9.2.

SOCIETE MATHEMATIQUE DE FRANCE 1998



144 CHAPTER 8. DEFORMATIONS AND COHOMOLOGY

CLAIM 8.5.6. — If G is linear algebraic, then a is surjective.

Proof. — Using cor. 8.4.4 it suffices to show that the short exact sequence of complex
Lie groups

(*) 1 -^ {G' H K ) / A —^ G/A -^ G / ( G ' n R) —^ 1

is split. Let V denote the unipotent radical ofG. Then G'nR C V c N . Furthermore
A = [S, R ] N ' implies that V / A is commutative. Let L denote a Levi subgroup of
G, i.e., a maximal connected reductive subgroup of G. Then L is a reductive group,
acting (by conjugation) linearly on the vector group V/A. Hence there is a L-invariant
subvector space W C V such that V = W © (G' H R). Thus G = (L K W) K V and
we obtain a splitting of (*). Q

Finally we have to discuss the lower term sequence for ^4.

l—^Hl(G/R^,0)-^Hl(G/(G!^}R)^,0)^HO(G/R^,nl(7^^^0)

First we note that the exact sequence of Lie algebras

0 -^ Cie{RI{G' n R)) -^ Cie{GI(G' H R)) —^ Cie(G/R) -^ 0

is always split. Hence /3 is surjective. Furthermore the adjoint action of G on £ie(G)
induces the trivial action on Lie(R/(G'r}R)). Thus 7Z1 (^O is a free 0-module sheaf
with rank equal to dime H1 {R /\G1'H R)F, 0). Note that G/G1 ^ R / ^ G ' ^ R ) and that
R / ( G ' n K) is a compact complex torus. It follows that dim^^Gy.Rr.TZ^^)^) =
dim(G7(y).

Finally we recall that by Akhiezer's theorem (thm. 8.2.1) we have the equality

dim H1 (G/RF, 0) = dim H1 {G/RY, C) = 61 (r/(7? n F)).

D

8.5.1. The vanishing criterion

PROPOSITION 8.5.7. — Let G be a complex Lie group and F a discrete cocompact
subgroup.

Then H^G/r, 0) = 0 if and only if &i(G/F) = 0.

Proof. — The exponential sequence yields an embedding

H^X.^^H^X.O).

Hence H^X, 0) = 0 implies bz(X) = 0 for X = G / F .
Conversely let us assume h (X) = 0. Then Hom(r, Z) = 0. Since F is a lattice, this

implies Hom(G, C) = 0. Hence G = G' and consequently R = [S,R]. This implies
in particular that R'A = A for A = [ S . R ^ N ' . Hence h(T/(R n F)), dim(C;/G/) and
dim^A/A all equal zero and ^(JC, 0) = {0} follows by the above theorem. D
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COROLLARY 8.5.8. — Let X be a compact complex parallelizable manifold. Then
H\X^r)=Oiffb,(X)=0.

8.6. Topological invariance of dim H1 {X, 0)

For compact Kahler manifolds dim H1 (X, 0) equals &i(X) and therefore depends
only on the fundamental group of X. Nakamura has shown (thus answering a ques-
tion of litaka) that for arbitrary compact complex manifolds dim H1 (X, 0) may jump
within a smooth family (see [110]). He gave an example of a parallelizable com-
plex manifold XQ which admits small deformations Xt for which dimU^X^O) /
dimJ^X, 0). In this example the Xt are no longer parallelizable for t / 0. This is
not by coincidence. As an application of the description of H1 (X, 0) obtained in the
preceding section we deduce the following result concerning the topological invariance
ofH\X,0).

THEOREM 8.6.1. — Let G, H be a complex linear algebraic groups, F and A discrete
cocompact subgroups ofG resp. H and X = G/F andY = H/A the respective quotient
manifolds.

Assume that 7Ti(X) ^ 7Ti(y).
Then dim H1 (X, 0) = dim H1 (V, 0).

Proof. — Let Go denote a complex-linear algebraic group, G 1st universal cover, Fo
a discrete cocompact subgroup of Go and F its preimage in G under the natural
projection G —> GQ.

We have to show that dimff^Gyr, 0) is completely determined by F.
We observe that simply connected complex Lie groups are linear and discrete sub-

groups in linear groups admit maximal normal solvable and maximal normal nilpotent
subgroups which we denote by rad(-) resp. n(-). The usual density theorems for lat-
tices in complex Lie groups imply that rad(F) and n(T) contain R D F resp. N D F as
subgroups of finite index (where R resp. N denotes the radical resp. nilradical of ff).

Among all subgroups of finite index of n(F) we choose one for which the commu-
tator group, which we call ni(F) has minimal Z-rank (see e.g. [121], Def. 2.9. for the
notion of Z-rank for finitely generated nilpotent groups). Then ni(r) is commen-
surable to N ' D r. Similarly we choose 7*1(7). Next recall that for a lattice A in a
semisimple Lie group S the image p(A) is Zariski dense in p(S). This holds for every
real representation p. Besides [5,A^]A^' = [G'.A^TV', since G' D R C N . It follows
that Fi := [r.^njn^r) must be a lattice in [ S , N } N ' .

Now b^G/RT) == &i(r/rad(r)),

dimG/G" = dimR/(Rn G') = dimR/[S,N]R' = rankz(rad(r)/Tin(r))

and dime (TV) equals half the dimension over Q of the Q-vector space Wo where Wo
is the maximal Q-linear subspace of (ri(r)ri/ri) (g)^ Q such that the natural linear
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transformation r(7) induced by conjugation is diagonalizable over R with only real
eigenvalues for every 7 G F.

Thus dim^G/r, 0) depends only on F. D

8.7. Small deformations

So far we proved that there exist infinitesimal deformations iff b\(X) > 0. Now
we shall discuss small deformations. By actually constructing a deformation family
we will show that every compact parallelizable complex manifold X with b^{X) > 0
admits non-trivial small deformations.

THEOREM 8.7.1. — Let G be a connected complex Lie group, F a discrete cocompact
subgroup and X = G/F the quotient manifold. Assume that b-^(X) > 0.

Then there exist small deformations ofX, i.e., there is a proper flat holomorphic
family Y -^ Ai with Yo ̂  X and Yt ^ X for t ̂  0.

Proof. — We will reduce the general theorem to two special cases, namely G c^
51/2 (C) and the case where G is commutative.

CLAIM 8.7.'2. — Under the above assumptions there exists a connected complex Lie
group H which is either commutative or isomorphic to SL^ (C), a cocompact discrete
subgroup A C H and a G-equivariant holomorphic surjection TT : X —^ Z = H / A .
Furthermore &i(Z) > 0.

Proof. — Let R denote the radical of G. By Mostow's theorem there is a fibration
p : G/T -> G/RT (thm. 3.5.3). If b^(G/RT) > 0, arithmeticity results for lattices
in semisimple Lie groups (see [92]) imply that there exists a fibration 71-0 : G/RT —>
5Z/2(C)/A such that TT = TTQ o p is the desired surjection. On the other hand, if
&i(G/J?r) = 0, then G'Y is closed in G and r' is a subgroup of finite index in G' H F
(see thm. 3.11.4). Thus in this case G/F —>• G/GT yields a surjection onto a positive-
dimensional torus. D

CLAIM 8.7.3. — Let G be either SL^(C) or (C^d-), F a discrete cocompact
subgroup, X = G/T the quotient manifold and r : F —>- (Z, +) a surjective group
homomorphism.

Then there exists an open neighbourhood U of e in G such that for every u G U
the r-action on G given by

7 : x !->- u~T^ ' x ' 7

is free and properly discontinuous. Moreover U contains a subset A of measure zero
such that the quotient manifold Xu is not biholomorphic to X for any u $? A.

Proof. — For G = (C7'^) this is easy to check and for G = 51/2 (C) it has been
proved by Ghys [42]. D
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Thus we deduced that we have a fibration G/F -^ H / A and non-trivial small defor-
mations of H / A . We need to show that these deformations can be lifted to non-trivial
deformations of G / F .

This is achieved by the following statement.

CLAIM 8.7.4. — Let G, H be connected Lie groups, F resp. A discrete cocompact
subgroups in G resp. H, TT : G -^ H a surjective Lie group homomorphism with
7r(r) = A, T : A —^ Z a surjective group homomorphism and u C C?.

Assume that the A-action on H given by

\:h^> (T^))-^) - h - \

is free and properly discontinous.
Then the F-action on G given by

7 : n-^^)) . g . ̂

is also free and properly discontinuous.

Proof. — In order to show that the action on G is properly discontinuous, we have
to verify that for every compact subset K C G the set

S = {7 G F : n-^^)) . K ' 7 H K ^ 0}

is finite. Now 7v(K) is compact and hence

5i = {X e A : (TT^))-^ . TT(K) ' \ H TT(K) / 0}

must be finite. Thus M = {u^W : X e Si} is likewise finite. Now

5 ' c { 7 G r : M . ^ . 7 n ^ / 0 } .

Both M • K and K are compact and consequently S is finite. The freeness can be
checked in a similar way. Q

8.8. Parallelizable deformations

The deformations of parallelizable manifolds obtained in the preceding section are,
in general, no longer parallelizable. Indeed, if G is a semisimple complex Lie group,
then (up to conjugcay) there are only countably many lattices (see prop. 3.13.2). In
particular, if G = SL^(C) and F is a cocompact lattice with 6i(G/F) > 0, then
X = G/F can be deformed within the class of compact complex manifolds, but not
within the class of compact complex parallelizable manifolds. Thus it is reasonable
to ask for conditions under which there exist parallelizable deformations.

PROPOSITION 8.8.1. — Let G be a simply connected complex Lie group, F a lattice,
Z the center of G and Z^ a totally real Lie subgroup of Z .

For p C Hom(r, Zp) let Fp = {7 . p^) : 7 G F} and Xp = G / T p .
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Then there is a non-empty open subset ^l C Hom(F, Z^) such that Tp is discrete
and a lattice for p G fL For any two elements p, C G ^ the following properties are
equivalent:

1. P=^
2. There is a biholomorphic map (f) : Xp —> X^ inducing the identity map on

Tri(^) ^ r^ r ^ r^ Tri(^).

Proof. — If there is such a biholomorphic map 0, it lifts to a complex Lie group
automorphism ^ C A\it(G) (see thm 5.2.5). Since G is assumed to be simply con-
nected, the center Z is isomorphic to some (C^+) and G ^ V x Z as complex
manifold, where V is a Stein manifold. We may assume Z^ C M^. Now let TI be
a strictly plurisubharmonic exhaustion function on V and r^ be the function on C^
given by r ^ ( z ^ , . . . , Zd) = ]̂  ^(^)2. Then T^,^) = Ti(v) + T2^) defines a strictly
plurisubharmonic function on G with T^^O}) == M^ C Z. Moreover r is invariant
under left or right multiplication by elements of Z^. Let F : G —^ R be defined by
F ( g ) = r { ^ ( g ) g - 1 ) . Then

F(g^=r((t>f(g)ct>l^-lg-l)=

= r (p(7)C(7)~1 • <t>\9)g~1) = r {^'(g)g-1) = F(g)

Thus F defines a stricly plurisubharmonic function on G / F . However, on G/F
every plurisubharmonic function is constant (see thm. 3.7.1). Hence F is constant.
This implies that (f)' = ido (because r is strictly plurisubharmonic). D

COROLLARY 8.8.2. — LetG be a complex Lie group with positive-dimensional center
and r C G a cocompact lattice. Then there exists a non-trivial deformation family of
X = G IT within the class of compact complex parallelizable manifolds.

It should be mentioned that a positive-dimensional center is (together with b^ (T) >
0) a sufficient condition for the existence of parallelizable deformations, but not a
necessary one.

EXAMPLE 8.8.3. — Let A = (^). Then A C 51/2 (Z) with an eigenvalue y/5/4 +
3/2. For any r G H^ = {z e C : Q(z) > 0} let Er = C/(Z C rZ) and X^ =
(C* x Er x Er) /(Z) with the Z-action on C* x Er x Er generated by

(;^,w)^(Arr,A.(^)).

This yields a smooth family {Xr)r^H+ of compact parallelizable manifolds. However,
on each of this compact complex parallelizable manifold the same three-dimensional
solvable Lie group G acts and the center of this group is discrete.
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8.9. Examples

1. Let A C SL^(C) be a cocompact lattice with a surjective group homomorphism
p : A —>• Z (see e.g. [84] for existence of such lattices). Let G = SL^(C) x C
and r = {{s,x) 6 G : s G F, x - V2p(s) C Z[%]}. Then F is a lattice in G such
that GT is not closed in G. Furthermore &i(G/T) = rankz(A/A7) + 2 > 0 and
dim^^G/F, 0) = rank^A/A7) + 1 > 0 although every holomorphic map from
Gyr to a torus is constant.

2. Nakamura ([110]) gave an example of a three-dimensional solvmanifold X =
G/F with dimG/G7 = 1 and dimJf^G/r.O) = 3. We will give another such
example which in addition demonstrates that dim H1 (G/F, 0) may jump within
a commensurability class of F.

Let p be a non-square positive natural number, L = Qt-^/p] and K = L[i]. By
Dirichlet's theorem the group 0^ of units of L contains an element of infinite
order a. We may assume that Nj^/Q^a) = 1. Fix two embeddings 0-1,^2 : K ->
C such that a\ ~^- 02', but cri(z) = i and 02 (z) == —z. Now a == (01, a^) '. K —> C2

embedds Oj< in C2 as a lattice. Let A^ (z = 1,2) be the subgroups of 0^
generated by a resp. a and z. Now a induces an embedding of the groups A^
into GZ/(2,C). Note that deta(a) = ̂ /Q(a) = 1 and detcr(%) = 1. Hence both
(Ti(Ai) are lattices in a Cartan subgroup T of 5Z/2(C). Let F^ = A ix O K ' Then
the groups F^ are lattices in a three-dimensional solvable complex Lie group
G = C* x (C2,^-). By construction, the Fi-action on C2 is totally real, while
a(i) G F2 acts on C2 without real eigenvalues.

Therefore we obtain a 2 : 1 covering of three-dimensional solvmanifolds
G/Fi -> G/F2 such that dim ̂ 1 (G/Fi, 0) = 3 but dim^G^, 0) = 1.

8.10. Powers of line bundles

Here we confirm that certain properties of line bundles are not affected by passing
to a finite tensor power. In particular this is true for the existence of (flat) holomorphic
connections as well as for the existence of a holomorphic structure on a topological
complex line bundle.

LEMMA 8.10.1. — Let X be a complex manifold, L a holomorphic line bundle,
k G N Then L admits a holomorphic connection resp. flat holomorphic connection if
and only if Lf^ admits such a connection.

Proof. — A connection D on L induces a connection D on Lk via

(*) D((T) = ka 0 V^~1 0 D (V^
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The k-th root of a section in L^ is a section in L which is well-defined only up to
multiplication with a A'-th root of unity. Taking the same branch of the A*-th root at
both occurances of the A;-th root in (*) makes the formula well-defined.

In the converse direction a connection D on Lk yields a connection D on L via

(**) D(a)=lal-k(S)D(ak).
K

This is exactly the reverse procedure of (*).
^ In a joint local trivialization D and D are given by D(a) = uj 0 a + da resp.
D(cr) = uj (g) a + da for some one-forms uj, uj. From (*) resp. (**) one can deduce
S = kuj.^ Since duj resp. duj yields the curvature form, it follows that D is flat if and
only if D is flat. Q

COROLLARY 8.10.2. — Let X be a complex manifold. Assume that the Picard group
Pic(X) =H1{X,0^ finite.

Then every holomorphic line bundle over X admits a flat holomorphic connection
and is therefore induced by a representation p : 71-1 (X) —^ S1.

LEMMA 8.10.3. — Let X be a complex manifold, L —^ X a topological complex line
bundle (i.e., a complex line bundle with continuous transition functions), k G N.

Then L admits a structure of a holomorphic line bundle if and only if Lk does.

Proof. — Topological line bundles are parametrized by ^(^Z). An element a e
H^^X, Z) corresponds to a line bundle admitting a holomorphic structure if and only
if it is mapped to zero by the natural group homomorphism ^(X^Z) -> H^^X, 0).
This implies the assertion, because H2^, 0) is a complex vector space and therefore
a torsion-free abelian group. Q

8.11. The Hodge-Frolicher spectral sequence

The Hodge-Frolicher spectral sequence ([41], see also [48]) relates Dolbeault- and
DeRham-Cohomology on complex manifolds as follows:

H^ (X, C) = E^ ^ E^

with
E^^H^X^^H^X^}.

It is a fundamental fact in Kahler geometry that this spectral sequence collapses
in E^ for every compact Kahler manifold. More generally it collapses in E^ for
all compact manifolds for which the Hodge-decomposition holds. This includes all
Moishezon manifolds and moreover all manifold in Fujiki's class C. It also collapses
in E^ for all compact complex surfaces. Now E\'° is isomorphic to the vector space
of all holomorphic one-forms H°(X^1), whereas E^° is isomorphic to the vector
space H°(X,dO) of all dosed holomorphic one-forms. Hence E^° -^ E^° for all
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compact complex parallelizable manifolds other than tori. Thus for compact complex
parallelizable manifolds other than tori the Hodge-Frolicher spectral sequence cannot
collapse before E^. A result basically due to Sakane ([33], Thm.9) states that for
nilmanifolds it does collapse in E^.

For quotients of 51/2 (C) by discrete cocompact subgroups the Hodge-Frolicher
spectral sequence likewise collapses in E^'^ this can be deduced from the results of
Akhiezer [3] on the Dolbeault cohomology of such quotients.

8.12. Line bundles: Comparison with Kahler manifolds

Now we want to compare the above results with the situation for compact Kahler
manifolds.

For compact complex manifolds X we consider the following properties for line
bundles:

(a) : There is a line bundle £ G Pic°(Alb(X)) such that Alb*£ ^ Lk for some
A ; e N ;

(/3') : L admits a flat holomorphic connection;
{f3) : L is given by a representation of the fundamental group;
(7) : L is admits a holomorphic connection and L^ is topologically trivial for some

k> 0,
(J) : A tensor power L^ is topologically trivial for some k G N;
( 8 ' ) : A tensor power L' = L^ for some k G N is divisible as an element in the

group Pic(X), i.e., for every m G N there exists a line bundle H G Pic{X) such
that H^ ^ L ' .

For arbitrary compact complex manifold there are the following implications:

a ^ ^ p ' ^ f t ^ ^ ^ S ^ ^ o '

Proof. — By the theorem of Appell-Humbert (see e.g. [108]) every topologically triv-
ial line bundle on a torus is induced by a representation of the fundamental group.
Hence a => f3'. The equivalence /3 <^ f3' is a classical result of Atiyah [5]. f3 =^ 7 =^ 8
is obvious. Finally note that the group of topologically trivial line bundles Pic°(X)
admits a surjection H^{X,0) —> Pic°(X). Hence Pic°(X) is a divisible group. On
the other hand topologically line bundles are parametrized by H2 (X, Z) which is a
finitely generated abelian group. This suffices to prove 6 <^> 6 ' . D

The converse implications hold only under special assumptions.

PROPOSITION 8.12.1. — a <= f3 holds if and only if the projection on the Albanese
X -> A = Alb(X) induces an isomorphism ^(X.C) ̂  ^(A.C).
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/3 <= 7 Wrf^ if and only if the natural group homomorphism H1 (X, 0) —>• H1 (X, dO)
induced by f \—^ df is the zero homomorphism. This happens if and only if E^ ^ £^'1

for the Hodge-Frolicher spectral sequence.
7 ^= S holds if and only if the natural group homomorphism H1 (X, 0) —^ H1 (X, n1)

(induced by the C-module sheaf homomorphism given by f \-> df) is zero. This is
equivalent to E^ ^ E^ for the Hodge-Frolicher spectral sequence.

a <^= S holds if and only if the projection map to the Albanese induces an isomor-
phism H^X.O) ̂  H^A^X^O).

Proof. — Clearly a <^ ft' holds if and only if the groups Hom(7Ti(Alb(X)),C*)
and Hom(7!-i(X),C*) coincide up to torsion. This is equivalent to ^(X.C) ^
^(Alb^^C), because ^(M.C) ̂  Hom(7Ti(M),C) for any topological space M.

If a line bundle L is topologically trivial, then there is a cocycle fzj G 0(Uij) (for
some Leray cover (Ui)i) such that L is defined by gij = exp(/^-). Explicit calculations
show that there exists a holomorphic connection if and only if the cohomology class of
d\oggij = d g i j / g i j = dfij in H1{X, n1) vanishes. (Here f^1 denotes the sheaf of holo-
morphic one-forms.) A flat holomorphic connection exists if and only if dioggij de-
fines the zero cohomology class in H^^X, dO), where dO denotes the sheaf of d-closed
holomorphic one-forms. For the Hodge-Frolicher spectral sequence it is well-known
that E^ ^ H^X^P) with di : E^ -> E^^ induced by ordinary differentiation
d : W —> ^PJrl. Hence E^1 ^ E^1 if and only if the natural group homomorphism
H1 (X, 0) —>• H1 {X, fl1) is zero. Now we consider the long exact cohomology sequence
induced by the short exact sequence of sheaves 0 —^ C —>• 0 —> dO -> 0. We obtain

0—^H°(X,dO) —^H^X.C) —^H^X.O) —^H^X.dO) — ^ " •

Let V denote the subvectorspace of H1 {X^ 0) for which there exists a flat holomor-
phic connection on the associated line bundle. Then (non-functorially) H1 (X, C) ^
H°{X,dO) © V. On the other hand the Hodge-Frolicher spectral sequence yields
E^ ^ E^° © E^ with E^ ^ H^X.C) and E^° ^ E^° ^ H°(X,dO). In this way
V ^ E^\ Hence f3 ^= 7 if and only if E^ = E^.

Finally a <= S is clearly equivalent to Pic°(X) ^ Pic°(Alb(X)). Using the ex-
ponential sequence it is easy to verify that this holds if and only if H1 (X, 0) ^
^(Alb^O). D

Thus all the terms -E^?'1 of the Hodge-Frolicher spectral sequence are significant for
line bundles and the existence of (flat) holomorphic connections. (E0'1 ^ E^ for
r > 3 ) .

COROLLARY 8.12.2. — For a compact Kdhler manifold X all the properties a, /3,
7, 6 are equivalent.

For compact complex parallelizable manifolds the picture is more complicated.
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PROPOSITION 8.12.3. — Let X = G/F be a compact complex parallelizable man-
ifold. Let S = G / R where R denotes the radical of G. Then one has the following
implications

a ̂  (3 holds if and only if G'T is closed and (F H G ^ / F ' is finite. In particular
this is true, ifS contains no SL^ (C) -factor.

(3 ^= 7 holds for every compact complex parallelizable manifold.
Finally, if R is nilpotent and no simple factor of G/R is isomorphic to SL^(C},

then all the properties a, (3, 7 and 6 are equivalent.

Proof. — The statement on the implication "a <^= /?" follows from cor. 3.11.5. For
implication "/? ^ 7" for compact parallelizable manifolds see cor. 6.6.7. The final
statement of the proposition is implied by cor. 8.5.3. D

There are parallelizable examples with a ̂  /3 and 7^5. Namely, ifX= G/F with
G = SL^(C) and F/F7 is infinite, then dim H1 (X, C) is larger than ^(Alb^), C)
(Alb(X) is trivial, because G = G ' ) . Hence a ̂  f3 in this case.

Nakamura has calculated ^(X, 0) explicitly for certain solvmanifolds (see [110]).
This yields an example with 7 ̂  6.

As mentioned above /3 ^= 7 for compact Kahler manifolds as well as for all com-
pact complex parallelizable manifolds. However, this does not hold for arbitrary
compact complex manifolds. Cordero, Fernandez and Gray produced an example for
which E^ -^ E^ ([32, 33]). It is a four-dimensional compact complex manifold,
diffeomorphic to a real nilmanifold, but not complex parallelizable. The above con-
siderations show that on this manifold there exists a topologically trivial line bundle
which does admit a holomorphic connection, but no flat holomorphic connection.

Property (7) stated that the line bundle has a holomorphic connection and a finite
tensor power of the bundle is topologically trivial. One may ask whether the presence
of a holomorphic connection implies that a finite power is topologically trivial. For
compact Kahler manifolds as well as for compact complex parallelizable manifolds
this is indeed the case.

LEMMA 8.12.4. — Let X be a compact manifold, which is Kahler or complex
parallelizable. Let L be a line bundle which admits a holomorphic connection. Then
there exists a k G N such that Lk is topologically trivial.

Proof. — If X is complex-parallelizable, then the existence of a holomorphic connec-
tion implies that there exists a flat holomorphic connection by thm. 6.6.6.

Now assume that X is Kahler. The presence of a holomorphic connection implies
that there exists a d-closed (2,0)-form representing ci(L). On the other hand every
line bundle admits a hermitian connection, hence there is also a d-closed (1, l)-form
representing ci(L). Thus Hodge-decomposition forces ci(L) = 0.

Thus ci(L) = 0 in both cases. For a compact manifold this implies that a finite
power of L is topologically trivial. Q
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However, we do not know whether there is such an implication for an arbitrary
compact complex manifold. (There is no such implication for a non-compact manifold.
For instance, if X is a Stein manifold, then every line bundle admits a holomorphic
connection, because ^(X.n1) = 0.)

8.13. The first Chern class

Using the results on homogeneous vector bundles, we will prove the following:

THEOREM 8.13.1. — Let S be a semisimple complex Lie group, F a discrete cocom-
pact subgroup, E a holomorphic vector bundle over S/F.

Then c^(E) =0.

The proof will be obtained through an analysis of the 6'-action on various coho-
mology spaces.

8.13.1. Group actions on ^(JC.O*)
LEMMA 8.13.2. — Let G be a complex Lie group acting on a complex space X by
biholomorphic transformations. Consider

(*) • • • -—-^(X.Z) —^H\X,0) —^H\X,0^ —^(Z.Z) --^•-

There is an induced G-action on these cohomology groups (by group automor-
phisms) such that (*) is equivariant. Moreover, the G-action on the complex vector
space H1 (X, 0) is holomorphic.

Proof. — Functoriality properties imply the existence of the induced actions. Holo-
morphicity of the G-action on ^(X, 0) has been discussed in §3.17. D

Before continuing our argumentation we recall some language. Given a complex
space X the group H1^, 0*) is denoted by Pic(X), the image of the natural group
homomorphism ^(X.O*) -^ ^(X.Z) is denoted by NS(X), and the kernel by
Pic°(X). Thus there is a short exact sequence

(*) 0 -—- Pic°(X) —^ Pic(X) —^ NS(X) —^ 0

LEMMA 8.13.3. — For every complex space X the short exact sequence (*) is split.

Proof. — The obstruction to such a splitting is given by an element in the group
Ext(7V5'(X),Pic°(X)). As a complex vector space the additive group H1(X,0) is
divisible, i.e., for every element g and every natural number n there exists an element
h such that nh = g . There is a surjective group homomorphism H1 (X, 0) —>• Pic°(X).
Hence Pic°(X) is divisible, too. This implies Ext(7v5'(X),Pic°(X)) =0. D

A similar arguments yields the following.

MEMOIRES DE LA SMF 72/73



8.13. THE FIRST CHERN CLASS 155

LEMMA 8.13.4. — Let A be a commutative Lie group and A° the connected compo-
nent of e. Then A is isomorphic (as a Lie group) to A° x A/A0.

Proof. — Since A/A0 is discrete, it suffices to prove that 0 —>• A° —> A —^ A/A0 -^ 0
splits as a sequence of abstract groups. But connected commutative Lie groups are
divisible, hence Ext(A/A°, A°) =0. D

LEMMA 8.13.5. — Let A be a commutative complex Lie group and A° the connected
component of e G A. Let S be a connected semisimple complex Lie group acting on A
by holomorphic group automorphisms.

Then the natural projection TT : A8 —> A/A0 is surjective (where A5 denotes the
fixed-point set).

Proof. — The projection A —> A/A0 is equivariant. Let G denote the group of all
holomorphic group automorphisms of A inducing the identity map on A/A0. Evi-
dently S C G, since A/A0 is discrete and S connected. There is an exact sequence

1 —^ C —> G —> Aut(A°) —— 1.

The group C consists of all holomorphic group automorphisms of A = A° x A which
may be written in the form (a, A) i-> (a + /(A), A) for some / G Hom(A, A°). Clearly
C is a commutative normal Lie subgroup of G. Furthermore G is a semidirect product
Aut(A°) ix C. The Levi-Malcev-decomposition for the connected component G° of
G implies that all maximal connected semisimple Lie subgroups of G are conjugate.
Since C is normal and commutative, it follows that S is conjugate to a subgroup of
Aut(A°) by an element (f) G G C Aut(A). Thus 0(A) C A5 which implies surjectivity
of A5 -> A/A0. D

PROPOSITION 8.13.6. — Let X be a complex space, S a connected semisimple
complex Lie group acting on X. Let NS{X) denote the image of H^^X^O^) —>
H2(X,'^). Assume that H1 (X, 0) is finite-dimensional.

Then the induced group homomorphism H^-^X^O*)8 —^ NS(X) is surjective.

Proof. — Since S is connected, every s G S induces an automorphism Ls '. X —>• X
which is homotopic to the identity map. Therefore the fi'-action on H9(X, Z) is trivial.
Let V denote the complex subvectorspace of ff^X.O) spanned by ./^(X.Z). Then
S fixes V point-wise. Let W denote the image of V in H1^, (9*) = Pic(X). Then
Pic°(X)/W ^ H1^, 0)/V is a finite-dimensional complex vector space on which S
acts holomorphically. Now we recall that 0 -^ Pic°(X) -4- Pic(X) -> NS(X) -> 0
splits. Endowing NS(X) with the discrete topology, we obtain a commutative com-
plex Lie group A ^ Pic(X)/W with A° ^ Pic°(X)/W on which 5 acts holomorphi-
cally. Now the preceding lemma implies surjectivity of Pic^X)8 —^ NS{X). D
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COROLLARY 8.13.7. — Let S be a connected complex semisimple Lie group acting
holomorphically on a complex space X with dime-^(X, (9) < oo.

Then every holomorphic line bundle is topologically equivalent to a homogeneous
line bundle.

COROLLARY 8.13.8. — Let S be a simply connected complex semisimple Lie group,
r a discrete cocompact subgroup, X = S/T.

Then NS(X) is finite. Furthermore there is a subgroup Fo C F of finite index such
that^L is topologically trivial/or every line bundle L G Pic(X), where TT denotes the
finite covering S/Fo —^ X .

REMARK 8.13.9. — Despite the finiteness of NS(X) the group H2(X^) is not
necessarily finite. For instance there is a discrete cocompact subgroup F C SL^{C)
such that bi(SL^{C)/T) = 1 (see A. §3). By the Kunneth formula this implies that
^(JC.Z) is infinite for X = (57.2 (C)/T) x (51/2 (C)/F).

Proof of the corollary. — Since S is semisimple, every homogeneous vector bundle is
flat. For a flat line bundle, the corresponding element in H^^X, Z) is a torsion element.
Thus the above corollary implies that NS{X) is a torsion group. Compactness of
S / F implies that ^(X.Z) and therefore NS(X) is finitely generated. A finitely
generated abelian torsion group is finite. Thus NS(X) is finite. By the universal
coefficient theorem there is a (non-functorial) isomorphism between the torsion part
of H^^X.T) and the torsion part of H^(X,T} for compact X. Recall that a flat line
bundle is induced by a representation p : H^ {X, Z) —>• C* and is topologically trivial if
and only if p vanishes on the torsion part of H^ (X, Z). Let r : F = 71-1 (X) —^ H^ (X, Z)
denote the natural projection, A a torsion-free subgroup of finite index in ^fi(X,Z)
(which exists, because ^(X.Z) is finitely generated) and Fo = r'^A). Then To
does the job. D

The theorem now follows using the fact that ci (E) = ci (del E) for any vector bundle
E.

For later application we note some further consequences.

PROPOSITION 8.13.10. — Let S be a complex semisimple Lie group, F discrete
cocompact, X = S/F, Z a compact Kdhler manifold, f : Z —> X a holomorphic map
andLePic(X).

Then either /*L is holomorphically trivial or H°(Z,fL) = {0}.

Proof. — Since Z is Kahler, every non-trivial line bundle with non-trivial section has
non-vanishing first Chern class contrary to /*ci(L) =0. D

One may pose the following question: Given a topological complex line bundle L
on a complex manifold X does there exists a holomorphic structure on L? This is
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equivalent to the question whether the group homomorphism

Pic(X) = H\X,0^ —^ H^X^)

is surjective. We can answer this for a special case.

LEMMA 8.13.11.— Let S = SL^(C), F a discrete cocompact subgroup with F/F'
finite, X = S / T .

Then Pic(X) -^ ^(X.Z) is surjective.

Proof. — This group homomorphism is part of a long exact sequence

• • • —-Pic(X) -^H\X,Z) —^H\X,0) — > • • •

Now H^^X^O) is a complex vectorspace, hence torsion-free. Thus surjectivity of c
is implied by finiteness of H2(X^). Since X is compact, finiteness of ^(X.Z) is
equivalent to H^^X^C) = {0} which follows from proposition B.7. D

8.14. The Serre-construction

Here we want to describe a method of construction which yields the existence of
non-homogeneous vector bundles of rank two over X = SL^(^C)/r for F discrete,
cocompact with F/F' finite.

Our goal is to prove the following

THEOREM 8.14.1. — Let S = SL^(C), F a torsion-free discrete cocompact subgroup
with F/F7 finite and C an elliptic curve in X = S/F.

Then there exists a unique non-homogeneous holomorphic vector bundle E of rank
two with as section a G H°(X, E) such that C = {x : (r(x) = 0}.

Furthermore E\c is trivial.

Note. — Every quotient X = SL^{C)/F of SL^(C) by a discrete cocompact subgroup
r contains an elliptic curve (prop. 4.3.2, see also prop. 4.15.1).

A key element in the proof of the theorem is the vanishing theorem on H1 (X, 0}
derived earlier.

Finally we investigate deformations of the vector bundles obtained in this way.
It turns out that there are only the obvious deformations. Every small deformation
is obtained by translation. Thus it is not possible to obtain further examples of
non-homogeneous vector bundles by deformation.

PROPOSITION 8.14.2. — Let S,T, X, E be as above, P a complex space U -^ P x X
a holomorphic vector bundle, p C P such that Up ^ E where Up —^ X is the vector
bundle obtained from U by embedding X into Px X as {p} xX. Furthermore let E —>•
S x X denote the vector-bundle E = ̂ E obtained by pull-back via the multiplication
map p, : S x X —> X.
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Then there exists an open neighbourhood W of p in P and a holomorphic map
f : W -^ S such that F^E = U with F = (/,idx).

A key step for this result on deformations is the calculation of certain cohomology
groups.

LEMMA 8.14.3. — Let E be as above. Then dime I^(X, £;* 0 E) = 2 for 0 < k < 3
and

dimc^(X,^)=J1 ̂ ^
[0 fork = 1 , 2

We also prove a result in the converse direction.

THEOREM 8.14.4. — Let S = SL^(C), F be a torsion-free discrete cocompact
subgroup with r/T' finite and E a non-homogeneous vector bundle on X = S/F
of rank 2. Assume that there exists a non-trivial section a C H°(X,E). Assume
in addition that the zero-set {a = 0} is irreducible and of multiplicity one. Then
{x : a(x) = 0} is an elliptic curve and the bundle E may be reconstructed by the
Serre-construction.

Proof. — First recall that there are no hypersurfaces in X, hence C = {a = 0} is a
curve. Observe that, given a vector field X C F(X,TX) and a section a G T{X,E)
we may calculate X((T) in a local trivialization. Of course the result depends on the
trivialization. But, (this is easy to check explicitly) the restriction of X(cr) to the
zero-set V(a-) = {a = 0} does not! Hence for any vector field X on X we obtain a
section Xa e T(C,E\c). Moreover, if two vector fields X and Y span the normal
bundle Nc,x at some point p e (7, then Xa and Ya span E\c at p. Thus Xcr A Y(J
defines a non-trivial section ^ in deiE\c. This section C, must vanish at the points
where X and Y fail to span the normal bundle NC,X- Using this, one can show
that either Nc,x is trivial or detE\c admits a section which vanishes at some point
q e C, but not everywhere. However, the second case is impossible. To see this, let
TT : C —^ C denote the normalization of C. Then C is a K abler manifold and we may
apply prop. 8.13.10. Thus the normal bundle has to be trivial. This implies that C
is parallelizable, i.e., an elliptic curve. D

We will apply the so-called Serre-construction in order to obtain non-homogeneous
vector bundles over certain quotients SL^(C)/r (T discrete).

In the context of complex-pro jective spaces the Serre-construction is well-known,
see e.g. [52], [114], [137]. Nevertheless we will briefly recall the main arguments in
order to underline that they are still valid in a non-projective setup.

We formulate now the general result which we will use.
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THEOREM 8.14.5 (Serre-Construction). — Let X be a complex manifold, Y a com-
plex submanifold^ of codimension two with r(V, Oy) = C and L a line bundle over
X such that C ̂  detZy/Z^ where C denote the sheaf of holomorphic sections in L
and Zy the ideal sheaf of Y. Assume that H^^X^ L) = {0}.

Then there exists a vector bundle E of rank two over X with a section a G F(JC, E)
such that Y = {x : a(x) = 0}. (If moreover ^(X^L) = {0}, then E is unique.)

Assume in addition that there exists no section in L* vanishing on Y but not
vanishing everywhere. Then T(X,E) is generated by a as T(X, Ox)-module.

For parallelizable manifolds this has the following consequence.

COROLLARY 8.14.6. — LetX = SL^(C)/F withF discrete and H a one-dimensional
subgroup with compact orbit Y = H/(H D T). Assume ̂ (X, Ox) = {0}.

Then there exists a holomorphic vector bundle E of rank two on X with a section
o- G F{X,E) such that Y = {a = 0}. Moreover F(X,E) = Ca, if F is Zariski dense
in 57.2(C).

Proof. — Any subvectorspace V transversal to jCie(H) in Cie(G) yields a trivial-
ization of the normal bundle Ny,x- Hence we may choose L as the trivial line
bundle. Since X is parallelizable, Kx is trivial. Hence Serre-duality implies that
^(X.L) = ̂ {X.Ox) is dual to ^(X.Ox), thus zero by assumption. Therefore
we can apply the theorem. Finally recall that the density assumption implies that
there are no hypersurfaces on X [58]. Thus any section in the line bundle L* vanishing
on Y must vanish everywhere. D

This implies the first theorem, because we proved already that H^^X^O) = 0 under
the assumptions of the theorem.

The statement on the sections T(X,E) = Ca has interesting consequences. It
implies that the curve C used to construct E may be recovered from E simply as the
zero-set of any non-trivial section. This clearly implies that E is not a homogeneous
vector bundle. Moreover it implies that there are infinitely many non-isomorphic
non-homogeneous vector bundles of rank two on X, because there are infinitely many
elliptic curves on X.

Proof of the theorem. — Instead of E itself we construct <?*, the coherent sheaf of
sections in the dual bundle E * . The sheaf <?* is constructed as an extension of
coherent sheafs

0 —^ C —> <?* —^ Zy —^ 0.

Such extensions are classified by Ext^Zy, C). In our situation (C locally free, Zy is a
coherent sheaf which locally admits a free resolution of length one) a lemma of Serre

^ Actually the condition of smoothness of Y may be relaxed to the requirement that Y should
be a local complete intersection.
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implies that the coherent sheaf associated to an element e C Ext^Zy,/^) is locally
free if and only if Cy generates £xi^(^Ly,C)y as a Oj^-module sheaf at every point
y C Y. By Nakayama's lemma this is equivalent to the assumption that Cy generates
Ext^^Ty.C)^) as complex vectorspace. (Here, as usual, S{x) = S^/m^Sx for any
coherent sheaf 5, where m^ is the maximal ideal of the local ring Ox a..)

In order to find such an e C Ext^Zy,/;), we will prove Ex^^Iy.jC) ̂  Oy and that
the natural map

Exi^Zy,/:) -^ r^^^Zy.r)) ^ r(0y) ^ c
is surjective.

There is a spectral sequence

E^ = H^X^xt^Iy^C)) => E^ = Ext^Zy,/:)

yielding the following exact sequence ("lower term sequence")

(11) O—^H^X.Hom^lY.C)) —^Ext^Zy,/;) —^

-^ H\X,£xt\ly,C)) -^ H\X,Uom(ly,C)) -^ • • .

Since Y is a smooth submanifold of codimension two (actually needed: locally
complete intersection of codimension two), we know that

^(Oy,5)J° for^051

[^om(detZy/Zy,5) for k = 2

for every locally free sheaf S, thus in particular for S = C. Now we deduce the long
exact Ext1^(-,£) sequence associated to

0 —— Zy —^ Ox —— OY —> 0

obtaining

0 —>nom(OY,C) —>nom(Ox,C) —>Hom{lY,C) —> £x^(py, C) • • •

Thus £xtk(Ox,C) = 0 for k > 0 implies <?^(Zy,£) ^ Ext^^Cy^) for all k > 0.
In particular Ex^^Iy.C) ̂  ^om(detZy/Zy,£) ^ Oy where the second equivalence
follows from our assumption L\y ^ detJy/Jy. Furthermore 7iom(Oy,C) is the zero
sheaf, since C is locally free and Oy is a torsion Ox -module sheaf. Hence

^om(Zy,£) ^ Hom^Ox^) ̂  C.

This means that locally every Ox -module sheaf homomorphism from Zy to C is
obtained via embedding Zy ̂  Ox and multiplying /a. e (Zy)^. C Ox,x by a section
Sx ^ Lye. Summarizing we obtain

o -^ H^X.C) -^ Exi^Zy.r) -^ ̂ (^(Zy.r)) -^ H\X,L)
with Ext^^Ty.O) ̂  Oy.
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Finally we have to study sections in E. For this purpose we consider the long exact
£xt(-, Ox)-sequence associated to 0 —> C —^ <?* —>• Zy. Since Exi^d-y , Ox) ^ Oy we
obtain

0 —> nom(Ty, Ox} ̂  Ox —>£ —> £* —> OY —> 0

Now for any surjective sheaf homomorphism £* —> OY the kernel sheaf must be
£* 0Zy. Therefore

o —^ r(x,0x) -^ F(X,E) —^ F(X,£* 0Zy) -^ .. .
Since by assumption there are no sections in £* vanishing in Y but not vanishing
everywhere, it follows that F(X^Ox) -^ F(X,6') is an isomorphism. Let a = a(l).
By construction o- is a section in £ inducing a Oj^-sheaf homomorphism from <?* to
Ox which fibers <?* —>• Zy —> 0^- where the first map is surjective and the second
map is ordinary inclusion. Hence [x : a(x) = 0} = Y. D

8.15. Deformations of vector bundles

For any holomorphic vector bundle E over a fixed compact complex space X there
exists a versal deformation space and the Zariski tangent space is exactly the space
^(X, Hom(£', E)) [40]. Thus we are led to calculate the dimension of this cohomol-
ogy group.

LEMMA 8.15.1. — Let S = 5I/2(C), r a discrete cocompact subgroup such that F/F'
is finite, X = S/F, Y C X an elliptic curve and E —> X a holomorphic vector bundle
of rank two with a section a G F{X, E) such that Y == {x : a{x) = 0}.

Then dimcH^X.Rom^E.E)) = 2.

Proof. — Exploitation of the long exact cohomology sequence associated to

0 —^ Zy —- Ox —^ OY —^ 0

yields

dimc^(X,Z.)=f° fo r f c=o ' l
M for k=2, 3.

Using duality between Hk(X,E) and ^""^(X,.^*), an evaluation of

O—^OX—^£—^IY—>O

yields

dimc^E)=J1 for^053

0 for k =1 ,2
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Now we apply T-iom{£*, -) to

O-^OX^S—^IY—^O
and obtain

(*) 0 —^ £ —, Uom{£,£) —^(g)Zy —> 0

(The higher ^-sheaves <?a;^ (<?,<?) with A* > 1 vanish for every coherent sheaf S
because E is locally free.)

(**) O — ^ £ ( S ) I Y — > £ — ^ £ ( S ) O Y — ^ O
Using the triviality E\y the last sequence yields

^ -rrk(^ c -T- \ I 1 for A: =0,3dlmcHk(X,£ 0Zy) = ^ '
[2 for A; =1,2

Finally exploitation of (*) yields

dime Hk(X, Hom(£1, E)) = 2for all k = 0,1, 2,3.

D

A family of vector bundles over a complex space X is given by a vector bundle
U —^ S x X. For every point s G S this gives a vector bundle Us —> X as pull-back via
the natural embedding X ̂  G x X given by x \-^ {s, x). Now any vector bundle E over
a G-space X yields a family E - ^ G x X b y E = ^ E where ^ : G x X -^ X is the map
denning the group action. Given a section a C H°(X,E) with C = {x : a(x) = 0}
one obtains sections (7g G H°(X,Eg) with g(C) = {x : a{x) = 0}.

In our situation it follows that Eg is not isomorphic to Eg unless g(C) = g(C).
Hence there is already a two-dimensional effective deformation induced by trans-
lations. Since the Zariski tangent space of the versal deformation space is two-
dimensional, too, it follows that every small deformation is obtained by a translation.
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CHAPTER 9

ON THE STRUCTURE OF COMPLEX NILMANIFOLDS

9.1. Survey

A nilmanifold is a compact complex parallelizable manifold X = G/F which is
a quotient of a nilpotent complex Lie group G by a discrete subgroup F. Such a
nilmanifold is a tower of torus principal bundles. We are interested in the structure
of those tori occuring in this tower and prove that unless the nilmanifold is somewhat
degenerate, they are all isogenous to products of simple tori with complex multipli-
cation. Conversely, every torus with complex multiplication occurs in the tower of a
nilmanifold in a non-trivial way. Here a torus T is defined as a torus with complex
multiplication if Endo(T) contains a number field K such that [K : Q] = 2 dime (T).
This implies that K is totally complex.

Tori with complex multiplication are rather special tori. A torus has complex
multiplication if and only if it "arithmetic" in a certain sense (see theorem. 9.5.10). Up
to isomorphism there exist only countably many tori with complex multiplication. A
one-dimensional torus C/ (1, r) has complex multiplication if and only if r2 G Q+rQ.
However, a torus with complex multiplication is not necessarily an abelian variety. In
fact, for every totally complex number field K which is not a CM-field there exists
a torus T with complex multiplication by K such that T admits no non-constant
meromorphic functions at all. (A totally complex number field K is called a GM-field,
if it contains a totally real subfield K^ with [K : K^} =2. ) We use this to give an
example of a non-trivial nilmanifold without non-constant meromorphic functions.

Now we present the main result.

THEOREM 9.1.1. — Let G be a connected, simply connected complex nilpotent Lie
group and F a discrete subgroup such that X = G/T is compact. Let G^ denote the
descending central series (i.e., G° = G, G^1 = [G^G^) andCk the ascending central
series (i.e., Co = {e}, C^+i = {c : cgc~~^g~^ G Ck V^ G G}).

Let

X = Xn -^ X71-1 T-n^L • • • T^ X1 = Ti = Alb(X)
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denote the tower of torus principal bundles associated to the descending central series,
(i.e., X71 = G/G^, Tn = G^/G^ H G^) and

V — V ^ V ^ ^n-1 ^ _ ^
A — AQ ——> AI ——>- • • • ——> Ayi—i — Dn

the tower of torus principal bundles associated to the ascending central series. (It is
well-known (see cor. 2.2.3 and [10][123]^ that all the G^T and G^F are closed in G.)

Then for k > 1 both Sk and Tk are isogenous to a product of simple tori with
complex multiplication.

If we impose a non-degeneracy condition on the nilmanifold, we can deduce certain
properties of the Albanese torus Alb(X). For the statement of this result we need
to explain the notion of a decomposition series for a torus T. This is a series of
subtori {e} = To C TI C • • • C Tm = T such that all the quotients Tk+i/Tj, are
positive-dimensional and simple. These quotients Tk+i/Tk are called simple factors
for this composition series. Up to ordering and isogenies, they are independent of the
particular choice of a composition series, i.e., depend only on T. If T is algebraic,
then it is isogenous to a direct product of these simple factors.

PROPOSITION 9.1.2. — Assume the notations of the above theorem.
Assume that Z = C\ C G' = G1. Then the composition series both for Alb(A")

and for any torus embedded in X as complex submanifold has the property that every
simple factor admits complex multiplication.

If in addition C C G' with C = {c G G : cgc~lg~l G G2}, then Alb(X) is isogenous
to a product of simple tori with complex multiplication.

The condition C C G' holds in particular in the following two cases:
1. G is a generalized Heisenberg group, i.e., Z = G ' .
2. G is a maximal unipotent subgroup in a complex semisimple Lie group.

(In the second case C C G' can be verified easily using the theory of root systems for
semisimple Lie groups.)

EXAMPLE 9.1.3. — Let G be a complex Heisenberg group, i.e., a simply connected
nilpotent complex Lie group G with one-dimensional center Z. (This implies G' = Z.)

Let r be a discrete cocompact subgroup. Then X = G/F -°-> G/GT = Alb(X) is
the Albanese, and our theorem implies that C == G' 1(G' Fl F) is an elliptic curve with
complex multiplication and Alb(X) is isogenous to a direct product of copies of G/1^

^The article On the Picard Group of a compact complex nilmanifold in the Rocky Mi. J . Math.
17, 65-76 (1987) contains some alleged examples of nilmanifolds which would provide counterexam-
ples to this conclusion. These examples are based on the assumption that certain subgroups (given
in terms of their generators) are discrete. But actually they fail to be discrete.
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In the converse direction, we confirm that every torus with complex multiplication
occurs in such a way.

THEOREM 9.1.4. — Let g be a nilpotent Q-Lie algebra, K a totally complex number
field, [K : Q] = 2g.

Then there exists a simply connected nilpotent complex Lie group G, and a dis-
crete cocompact subgroup F such that Cie(G) is isomorphic to a direct product of g
copies o/g0QC and every torus Gk/(Gk+l^) is a direct product of tori with complex
multiplication by K.

If K is not a CM-field, then G and T may be choosen in such a way that none of
the tori Gk /(G^1!') admits a non-constant meromorphic function.

Considering number fields which are neither totally real nor totally complex, one
can generalize this method of construction in order to obtain interesting non-compact
nilmanifolds X such that every holomorphic function on X is constant, but every
compact analytic subset is finite.

We have another type of converse to thm. 9.1.1 which characterizes nilmanifolds
among solvmanifolds.

THEOREM 9.1.5. — Let G be a simply connected solvable complex Lie group, T a
discrete cocompact subgroup. Assume that the center Z is contained in the commutator
group G'.

Then G is nilpotent if and only if every simple factor in a decomposition series of
Alb(X) c^ G/G'T has complex multiplication.

(By a result of Barth and Otte (see cor. 3.11.3) GT is closed in G, hence Alb(X) ^
G/GT.) For investigating the structure of tori occuring in the tower of a nilmanifold,
it is essential to use the structure theory for tori. For abelian varieties, there is a very
satisfactory structure theory. However, we need a structure theory for arbitrary tori,
not only the algebraic ones. Many results for abelian varities do not hold for arbitrary
tori. Most important, an arbitrary torus is not necessarily isogenous to a product of
simple tori. Thus we first have to develop a structure theory in the non-algebraic
setting.

One tool is the above mentioned composition series.

PROPOSITION 9.1.6. — Every torus T admits a composition series, i.e., an as-
cending sequence of subtori {e} = To C ' • • C Tm = T such that all the quotient
Sk = Tfc+i/Tfc are positive-dimensional and simple. The sequence Sk is called the
sequence of simple factors for this composition series.

If there exists another composition series, the sequence of simple factors differs
only by ordering and isogenies.

SOCIETE MATHEMATIQUE DE FRANCE 1998



166 CHAPTER 9. ON THE STRUCTURE OF COMPLEX NILMANIFOLDS

If there is a surjective morphism of tori T —^ T' or an injective morphism of tori
T' —> T, then the sequence of simple factors for T' is contained in the sequence of
simple factors for T (up to ordering and isogenies).

An algebraic torus always equals the sum of all its simple subtori. In contrast, an
arbitrary torus is generated by all its irreducible subtori. Here a torus T is called
irreducible, if it is not generated by its proper subtori. We prove that irreducible
non-simple tori can not occur in our context. The reason is the following:

PROPOSITION 9.1.7. — Let T = 0/A be an irreducible torus, E a commutative
subalgebra of EndQ(T). Assume that A 0 Q is a principal E-module, i.e., generated
as E-module by one element.

Then T is simple and E is a number field.

Gommutativity of E is essential, cf. the example in section §9.6.
For a nilpotent group, the commutator map ^(^, h) = ghg~lh~l is especially useful.

In particular it yields a Z-bilinear map G / G ' x G / G ' —^ G ' / G 2 . This enables us to
conclude that the tori we encounter have large endomorphism algebras. Furthermore
these algebras must contain large commutative subalgebras. This follows from an
auxiliary, purely algebraic result on bilinear forms on modules. Then the above stated
result implies that all tori occuring in the tower of a nilmanifold must be semisimple,
i.e., isogenous to a direct product if simple tori. Moreover these simple tori must have
complex multiplication.

For solvable, non-nilpotent groups it is quite possible that G' = G2. Hence the
Z-bilinear map from G/G1 x G/G1 —^ G ' / G 2 is not useful in this context. Thus the
proof of thm. 9.1.1 does not hold for solvable non-nilpotent groups.

In order to prove the converse statement, thm. 9.1.5, we note that for a non-
nilpotent Lie group the adjoint representation is never nilpotent. From this we deduce
the following structure theorem on solvmanifolds.

PROPOSITION 9.1.8. — Let G be a simply connected solvable complex Lie group, N
its nilradical, F a discrete cocompact subgroup in G, T = G/NF (NT is closed in G
by a result of Mostow (see thm. 3.5.3)). Let T = 0/A.

Then there exists a homomorphism of complex Lie groups (f) : C9 —^ (C*)^ with
discrete kernel such that <^(A) is contained in the ^-rational points, i.e., <^(A) C

(<r)1.
It should be noted that such a Lie group homomorphism (f> is very much transcen-

dental and thus does not carry algebraic numbers to algebraic numbers.
Using Baker's theorem from transcental number theory we prove the following
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PROPOSITION 9.1.9. — Let A be a lattice in C9 such that A C Q^. Let ( / ) : C9 -^
(C*)^ be a complex Lie group homomorphism such that <^(A) C (Q*)^.

Then (j) is constant.

Now any torus with complex multiplication admits a lattice, such that all elements
in the lattice are Q-rational. Therefore this result implies that G/7VT is never a torus
with complex multiplication. From this we deduce thm. 9.1.5.

9.2. A remark on the commutator group

Under special circumstances the commutator map ^ : (p, h) 1-4- ghg~lh~l is a group
homomorphism in both variables.

LEMMA 9.2.1. — Let G be a group, H a subgroup and assume that [G, H] is central.
Then C : G x H -> G defined by

C : (g,h) ̂  ghg^h-1

is a group homomorphism in both variables.

Note that the assumption implies in particular that ^((7, h) = e if g G G' or h C H ' ,
because [G, H] is abelian.

Proof. — This follows by explicit calculation.

(12) C(^2,^) = glg2h{glg2)~lh~l = g^ {g2hg^lh~l) hg^h-^ =

(13) =g,hg^h-lg^lh-l = CQn^)C(^).

A similar calculation yields C,{g^h\h^} = C(^^i)C(^ ^2)- D

As usual, let G^ resp. Ck denote the descending resp. ascending central series of a
given group G, i.e., G° = G, Co = {e}, G^ = [G.G^] and Ck+i/Ck is the center of
G / C k .

By the lemma, the commutator map yields Z-bilinear maps

G / G ' x G^/G^ — Gk|Gk'rl

and

G/G' x Ck-i/Ck —> Ck/Ck-\-i.

In the first case, the image of the map generates G^/G^"^1 as a Z-module (i.e., as an
abelian group). In the second case the map is non-degenerate in the second variable
in the following sense: For each c C Ck-i \Ck there exists an element g C G such
that gcg^c^ G Ck \Gfc+i. (This follows immediately from the definition of the Ck.)
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9.3. Nilmanifolds

We recall the fundamental fact that for nilmanifolds many natural subgroups have
closed orbits. In particular this true for all the subgroups of the descending and
ascending central series (see cor. 2.2.3, [89]).

From this one may deduce the following fact.

THEOREM 9.3.1. — Let X == G/r be a complex nilmanifold, i.e., a quotient of a
connected complex nilpotent Lie group G by a discrete cocompact subgroup F.

Then there exists a tower of torus principal bundles

X = Xn ——> Xn—l ——> • ' • ——> XQ,

where XQ is a torus, given by Xi = G/G^+1^.

For the ascending central series the assumption of cocompactness of F can be
weakened.

THEOREM 9.3.2 (Barth-Otte [10]). — Let G be a connected complex nilpotent Lie
group, r a closed Lie subgroup such that every holomorphic function on G/F is con-
stant.

Then all the Ck have closed orbits in G/F.

There is an example due to K. Oeljeklaus of a quotient G/T of a complex nilpotent
Lie group G by a discrete subgroup F such that every holomorphic function on G/T
is constant, but the G^-orbits are not closed ([112], p.64). Hence this theorem applies
only to the ascending central series and not to the descending central series. The
central goal of this chapter is to answer the question: Which tori can actually occur
in this tower, if X = G/F is non-trivial, e.g. not a direct product with a torus?

9.4. Compact complex tori

In order to study complex nilmanifolds, we need some basic facts on compact
complex tori. For abelian varieties, all the results in this section are trivial or well-
known. However, complex nilmanifolds are never projective manifolds unless they
are already abelian. Therefore it would be quite artificial to restrict our attention to
nilmanifolds with projective Albanese.

A major difficulty in dealing with non-algebraic tori arises from the fact that the
Poincare Reducibility Theorem does not hold for arbitrary non-algebraic torus.

In what follows a torus is always a compact complex torus, i.e., a quotient of a
complex vector space Cn by a lattice A of rank 2n. We always fix a base-point e in a
torus. Then there is a unique structure as a commutative complex Lie group with e
as neutral element. A morphism between tori is holomorphic map, which we require
to take the neutral element to the neutral element. It is well-known that every such
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morphism is a Lie group homomorphism and linear, if pull-backed to the universal
covering.

A very important notion for tori is that of an isogeny. An isogeny between two
tori 5, T is a holomorphic correspondence, given by a graph $ C S x T such that
both projections <I> —^ S and $ —>• T are finite unramified coverings. Isogenies define
an equivalence relation among tori and it is often useful to think of two tori being
essentially equal if there is an isogeny between them. Isogenies between two given
tori S and T are not necessarily maps, hence not contained in Hom(5,T). However,
there is a natural 1-1 correspondence between isogenies and invertible elements in
Hom(5',T)(g)zQ.

We call a torus T algebraic if it is a projective manifold. This is equivalent to
assume that T is Moishezon. It is also equivalent to assume that T is the complex
space associated to an abelian variety defined over C. Furthermore T = 0/A is
algebraic if and only if there exists a Riemann form H. A Riemann form H is a
positive definite Hermitian form with QH (A x A) C Z.

DEFINITION 9.4.1. — A torus T is simple if it does not contain any subtorus S with
0 < dim(5) < dim(r).

A torus T is semisimple if it is isogenous to a direct product of simple tori.

By a theorem of Poincare every algebraic torus is semisimple. However, there are
non-algebraic tori which are not semisimple.

Many results on abelian varieties generalize easily to semisimple tori. For instance,
it is a direct consequence of the definition that every subtorus of a semisimple torus
is again semisimple.

LEMMA 9.4.2. — Let

(*) 0 —> Ti -^ T2 -°^ Tg -^ 0

be an exact sequence of tori. Assume that T^ is semisimple. Then all of the T{
are semisimple. Moreover there exists an element s G Hom(T3,T2) 0z Q such that
a o s = idj3? i-e., (*) splits on the isogeny level.

Thus quotients and subtori of semisimple tori are semisimple.
This enables us to make the following definition.

DEFINITION/PROPOSITION 9.4.3. — Let T be a torus. Let To be the smallest
subtorus for which T/TQ is semisimple. Then the projection TTss : T —^ Tss = T/TQ is
called semisimple reduction of T.

Proof. — Let Ti, T^ be subtori of T with T/T, (z = 1, 2) semisimple. Then T/(T^r}T^)
may be embedded in T/Ti x T / T ^ . Therefore T / ( T ^ H T^) is again semisimple. This
implies that To is uniquely determined. D
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By the preceding lemma it is clear that dimTgs > 0 for every positive-dimensional
torus.

LEMMA 9.4.4. — Every torus T admits a non-constant morphism to a simple torus.

Proof. — By induction on dim(T). If dim(r) = 1, then T is simple. If T is not
simple (hence dim(T) > 1), there is a subtorus S and by induction hypothesis T / S
admits a non-constant morphism to a simple torus. D

The semisimple reduction fulfills a universality property.

LEMMA 9.4.5. — Let T, S be tori, f : T —>• S a morphism, S semisimple.
Then there exists a morphism fo : Tss —^ S such that f = fo o -n-ss -

Proof. — Let T ' denote the kernel of /. Then T / T ' is contained in the semisimple
torus 5', hence semisimple itself. It follows that ker 71-55 C T ' by the construction of
the semisimple reduction. D

Similarily, it follows that T —> Tss defines a covariant functor from the category of
complex tori to the category of semisimple complex tori.

Another variation on this theme yields the following.

LEMMA 9.4.6. — Let T he a torus, S a simple torus. Then there exists a surjective
morphism TT form T to some torus T' such that

1. T' is isogenous to a direct product of copies of S,
2. Every morphism from T to S fibers through TV : T —>• T'.

We mentioned already that every torus admits a non-constant morphism onto a
simple torus. By induction this fact allows the definition of a composition series.

DEFINITION 9.4.7. — A composition series for a torus T is a sequence of subtori

{e} = To C Ti C • • • C Td = T

such that Ti/Ti-t is simple.
The sequence of simple tori Si = Tz/T^-i is called the sequence of simple factors

of the composition series Ti.

Owing to the preceding lemma, it is clear that every torus has a composition series.
However, we need some kind of uniqueness.

LEMMA 9.4.8. — Let T be torus, T{ and T[ two composition series. Then the two
sequences of simple factors coincide up to ordering and isogenies.

Proof. — We will prove this by induction on dim(T). Note that the lemma is trivially
true for dim(T) = 1.

Let Z = Ti. This is a simple subtorus of T. Consider the morphisms TI : Z —^
T[jT[_^ = S[. Since Z and S[ are simple, every r^ is either constant or an isogeny.

MEMOIRES DE LA SMF 72/73



9.4. COMPACT COMPLEX TORI 171

It is clear that exactly TI is an isogeny for exactly one number i = io. Now we
have two composition series Zi and Z[ for T / S as follows: Zi = T^/S for all z,
Z[ = T[j (S H TO for % < %o and Z[ = T^/(S H T^_i) for z ^ %o. The statement now
follows from the induction hypothesis. D

Thus the sequence of simple factors does not depend on the particular choice of a
composition series, if we ignore ordering and isogenies. This legitimizes the following
definition.

DEFINITION 9.4.9. — A simple torus S is called a simple factor for a torus T, if it
is isogenous to a simple factor of a composition series of T.

In a similar way to the proof of the above lemma one can prove the following:

LEMMA 9.4.10. — Let S, T be tori. Assume that there is a surjective morphism
r : S —> T or an injective morphism i : T —> S.

Then (up to ordering and isogenies) the sequence of simple factors for T is a
subsequence of the sequence of simple factors for S.

DEFINITION 9.4.11. — A torus T is irreducible if T is not the sum of all its proper
subtori.

A semisimple torus is irreducible if and only if it is simple.

LEMMA 9.4.12. — A torus T is irreducible if and only if there is a subtorus To with
{e} C To ^ T such that T/TQ is simple and TQ contains every non-trivial subtorus of
T.

Proof. — Obviously T is irreducible if there exists such a To. Conversely, let T be an
irreducible torus. Then To defined as the sum of all proper subtori does the job. D

COROLLARY 9.4.13. — Let T be a torus which is not irreducible.
Then there exists a surjective morphism from T to a semisimple torus S which is

not simple.

LEMMA 9.4.14. — Every torus T equals the sum of all its irreducible subtori.

Proof. — By induction on dim(T) as follows. Let T be a torus. If there exist subtori
Ti C, T with T = (BiTi, the statement follows by induction. If there exists no such
family of subtori, then T is already irreducible. D

Caveat: These irreducible subtori may have large intersection.

DEFINITION 9.4.15. — For an irreducible torus T with To as above the quotient
T/To is called the dominant simple factor for T.
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LEMMA 9.4.16. — Let f : S —^ T be a surjective morphism of tori, S irreducible.
Then T is irreducible, too. Furthermore the dominant simple factors for S and T are
isogenous.

The relevance of dominant simple factors relies on the following fact.

LEMMA 9.4.17. — Let T be a torus, S a simple factor.
Then T contains an irreducible subtorus U with a dominant simple factor isogenous

to S.

Proof. — Consider all subtori Zi of T for which S is a simple factor. Choose U as
one of the Zi with the minimal possible dimension. Then S does not occur as simple
factor for any subtorus of U. This implies that S is not a simple factor for the sum
of all proper subtori of U. Since S is a simple factor for U, it follows that U is
irreducible. D

LEMMA 9.4.18. — Let T be a torus, Ti a family of irreducible subtori with T =
^iTi. Let T —>• T/S = Tss be the semisimple reduction. Then every simple factor of
Tss is a dominant simple factor for some Ti.

Proof. — Let A be a simple factor of T s s ' Then there exists a surjective morphism T
from T to a torus S ' isogenous to S. If Ti is irreducible with a dominant simple factor
not isogenous to 5", then the restriction of T to Ti must be constant. Now T = ]>^ Ti
implies that there is a Ti such that T\T, is not constant. D

Recall that, given a compact complex parallelizable manifold Xy there exists a
holomorphic surjective map / from X onto an abelian variety A such that / induces
an isomorphism between the respective function fields (thm. 3.15.4).

This has an immediate consequence for simple tori.

COROLLARY 9.4.19. — Let T be a simple torus. Then either T is algebraic or every
meromorphic function on T is constant.

Some tori admit closed complex subspace which are not subtori. This has implica-
tions for the decomposition series.

PROPOSITION 9.4.20. — Let T be a torus, Si the sequence of simple factors for a
decomposition series {0} = To C ' •' C Tn = T.

Assume that T contains a closed complex subspace Z which is not a subtorus. Then
at least one of the Si is algebraic, i.e., isomorphic to a complex abelian variety.

Proof. — There exists a subtorus A C T such that Z is A-invariant and Z / A is a
complex space of general type contained in the quotient torus T/A ([146]). Let ( Z / A )
denote the subtorus of T/A generated by Z / A . For some n E N there is a surjective
morphism (^/A)71 —> { Z / A ) . Hence ( Z / A ) is Moishezon and therefore an abelian
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variety. Now every simple factor for T / A is also simple factor for T. Hence there
must be a simple factor for T which is isomorphic to an abelian variety. D

9.5. Endomorphism algebras

In this section we summarize basic facts on the endomorphism algebra of a torus.
Most of this is well-known, see e.g. [79], [135].

For each torus T the set End(T) = Hom(r,r) is a ring with composition as
multiplication and pointwise addition in T as addition in End(T). Thus End(T)
is a Z-algebra. However, often it is easier to work with the Q-algebra Endo(r) =
End(T) 0z Q. For instance, the Z-algebra End(T) is not invariant under isogenies.

Furthermore, an endomorphism (f) of a torus T yields an invertible element in
EndQ(T) if and only if key (f) is finite.

Consider a torus T as quotient of complex vectorspace V = C9 by a lattice A.
Given an endomorphism (j) : T —^ T, this canonically induces endomorphisms on the
tangent space at e of T, which we may identify with V, as well as on the fundamental
group of T, which we may identify with A. Thus we obtain natural representations
of Q-algebras

pr : EndQ(T) -^ Endo(A 0z Q)

(often called the rational representation) and

pa : EndQ(T) -^ Endc(V)

(sometimes called the analytic representation). These representations are related,
because A 0z R is canonically isomorphic to the 2^-dimensional real vectorspace ob-
tained from V ^ C9 by restriction of scalars. It follows that pr ^ pa © pa considered
as representations in EndR(M2^).

THEOREM 9.5.1. — Let T = C^/A be a simple torus. Then E = EndQ(T) is a
skew field with dimq^E) < dim^(r).

Sketch of the proof. — Simplicity ofT implies that E is an integral domain. Further-
more, E is a finite-dimensional over Q, because pr : E —>• End(A 0 Q) is injective.
Now a finite-dimensional algebra over a field is necessarily a skewfield, provided it is
an integral domain. Finally, the dimension bound follows because A (g) Q is a E-\eft
vector space. D

For our applications the most important case involves tori with complex multiplica-
tion.

DEFINITION 9.5.2. — A torus T (not necessarily simple) has complex multiplication
(by a number field K) if EndQ(T) contains a number field K with [K : Q] = 2 dimc(r)
as subring.
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Caveat: This notion is often reserved to algebraic tori, a restriction which would
be unnatural for us.

EXAMPLE 9.5.3. — A one-dimensional torus T = C/ (l,r)^ is a torus with complex
multiplication if and only if r2 = pr + q for some p, q G Q.

Complex multiplication is a rather rare phenomenon among tori.

LEMMA 9.5.4. — Let T be a torus with complex multiplication. Then T is isogenous
to some S x • ' ' x S, S simple.

Proof. — For dimension reasons, every torus T contains a simple subtorus S. Now
let A denote the subtorus of T which is the sum of all subtori isogenous to S. Recall
that a morphism from a simple torus to any torus is either constant or an isogeny
to the image. Therefore A is stabilized by all endomorphisms of T. However, the
assumption of complex multiplication implies that K C EndQ(T) does not stabilize
any proper subtorus. Hence A = T. D

COROLLARY 9.5.5. — Let T be a torus with complex multiplication.
Then either T is algebraic or a(T) = 0, i.e., every meromorphic function is con-

stant.

Let T = V / A be a torus with complex multiplication by a complex number field
K. It is important to study the natural representations of K C Endo(r).

LEMMA 9.5.6. — Let T be a torus with complex multiplication by a number field K.
Let 2g = [K : Q] and let TI, ..., r^g : K —^ C denote the 2g distinct embeddings of K
into C.

Then pr '. K —> End(Q)(A 0 Q) is isomorphic to the representation (B^i^.

Proof. — This is immediate, since A 0 Q is a one-dimensional X-vectorspace. D

COROLLARY 9.5.7. — Let T be a torus with complex multiplication by a number
field K, 2g = [K : Q]. Then there exist g distinct, pairwise non-conjugate embeddings
o-i,.. .o-g —^ C such that pa ^ ©f=i^- In particular K is totally complex, i.e., admits
no real embedding.

Proof. — Recall pr ^ pa © Pa- It follows that pa is isomorphic to the direct sum of a
choice of g embeddings Oi : K —)• C such that every embedding of K in C equals one
of the <7i or ai. The existence of such a choice implies that K is totally complex. D

Thus for each torus with complex multiplication by a (totally complex) number field
K one obtains a type in the sense of the definition below.

DEFINITION 9.5.8. — Let X be a totally complex number field, [K : Q] = 2g. A
type a for K is a choice of g complex embeddings which are mutually distinct and
non-conjugate.
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Since there are g pairs of conjugate embeddings, there are exactly 29 types for a
given totally complex number field K of degree 2g.

DEFINITION 9.5.9. — Let K be a totally complex number field and a a type. A torus
T has complex multiplication of type (X, a) if the complex linear representation pa '.
K —> End(C^) induced by the representation on the tangent space at e is equivalent
to the sum of the complex embeddings of K contained in a.

THEOREM 9.5.10. — Let K be a totally complex number field, OK the ring of
algebraic integers and a a type.

Then A == a(0j<) = {(cri(p),..., (Tg(p)) : p G Op} is a lattice in C9 such that V/A
is a torus with complex multiplication type (K, a).

Conversely, every torus T with complex multiplication type (K, a) is isogenous to
y/A.

The following consequence will be needed later on.

COROLLARY 9.5.11. — Let T by a g-dimensional torus with complex multiplication.
Then there exists a lattice Y C C9 such that T ^ 0/F and F C Q^, where Q denotes
the algebraic closure o/Q in C.

Given a torus with complex multiplication, there are criteria how to determine
whether the torus is simple and whether it is algebraic.

DEFINITION 9.5.12. — Let k, K be a totally complex number fields, k C K. A type
a for K is lifted from A", if there is type ak for k such that a consists of all complex
embeddings of K whose restriction to k is contained in a^.

PROPOSITION 9.5.13. — Lei T be a torus with complex multiplication type (K,o~).
Then T is simple if and only if a is not lifted from a proper totally complex subfield
k ^ K .

There are totally complex number fields such that every type is lifted from a proper
subfield. For instance, let p be a prime number, K = Q(^/p, i ) ' Then every type of K
is lifted either from Q(z) or from ^{-^pi). Thus, given a totally complex number field
K, it is not always possible to find a simple torus with complex multiplication by K.

Now we recall the characterization of the algebraic tori with complex multiplication.
For this we need the notion of a CM-field. (CM stands for "complex multiplication").

DEFINITION 9.5.14. — A totally complex number field K is called a CM-field if and
only if it is the quadratic extension of a totally real number field.

It is easy to see that K is a GM-field, if it admits a totally real subfield K^ and a
totally imaginary element a such that K = K^^a).
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THEOREM 9.5.15 ([78], Th.4.4,p.l9). — Let T be a torus with complex multiplica-
tion type (K^a). Then T is algebraic if and only if a is lifted from a CM-field.

Thus for the construction of non-algebraic tori with complex multiplication one
needs a totally complex number field K with a type not lifted from a CM-subfield.
We will show that such a type always exists unless K itself is a CM-subfield.

LEMMA 9.5.16. — Let K be a number field which contains a CM-subfield KQ.
Then K contains a CM-subfield K' such that every CM-subfield of K is contained

in K'.

Proof. — Let K^~ denote the subfield of K which consists of all totally real elements of
K. Let a be a totally imaginary element in KQ such that KQ = {K^ F}Ko){a). Define
K ' = K+(a). Let K^ be an arbitrary CM-subfield of K. Then Xi = {K^ H ^i)(/3)
for a totally imaginary element f3. Now a/3 is totally real, hence contained in K^. It
follows that K^ C K^(0) = K^{a) = K ' . D

COROLLARY 9.5.17. — Let K be a totally complex number field which is not a
CM-field. Then K has a type which is not lifted from a CM-subfield.

Proof of the corollary. — If K has no GM-subfields, there is nothing to prove. Oth-
erwise let K ' be the maximal CM-subfield provided by the lemma. Then every type
which lifts from a subfield of K ' may be lifted through K1. Since 2/z = [ K ' : Q] < 2g =
[K : Q], it follows that there are 29 - 2h > 0 types not lifted from a CM-subfield. D

COROLLARY 9.5.18. — Let K be a totally complex number field which is not a
CM-field.

Then there exists a torus T with complex multiplication by K such that every
meromorphic function on T is constant.

9.6. Endomorphism algebras of irreducible tori

For an abelian variety, the endomorphism algebra is always semisimple. The proof
(see e.g. [78] or [108]) carries over to arbitrary semisimple tori. However, for non-
semisimple tori the structure of the endomorphism algebra can be more intricate.
In this section we study the structure of the endomorphism algebra of irreducible
non-semisimple tori.

We will prove in particular that given a large commutative subalgebra in the en-
domorphism algebra of a torus the very existence of this subalgebra implies that the
torus is semisimple. This is a key ingredient for our later proof that the Albanese of
a nilmanifold is always semisimple unless the nilmanifold is degenerate in a certain
sense.

To illustrate the phenomena occuring for non-semisimple tori, we first give an
example.
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EXAMPLE 9.6.1. — Let C = C/ (l,r)^ be an elliptic curve with complex multipli-
cation, i.e., r2 = pr + q for some p, q G Q. Let a C C, but a ^ Q(r). Consider the
torus T with period matrix

n = ( 1 r ° ^
\o o i T/

Then T is irreducible with a unique subtorus T ' . Both T ' and T/T' are isomorphic
to C. By explicit calculations, one can check that

End,(T)^ ^^^eQMl
IA° •r 7 J

with ^ : Q(r) -> Q denned by ^(ar + b) = a for a, & G Q. There is a two-sided ideal

which consists of all nilpotent elements in E. The algebra E is not commutative and
not semisimple.

Now we start with the general theory for non-semisimple tori.
Let T be an irreducible torus. By definition, this means that there is a subtorus

{e} C T1 C; T such that T ' contains every proper subtorus of T. The quotient T / T ' is
simple. We represent T as a quotient of a complex vectorspace V by a lattice A. Then
T1 = V ' / A ' with A' = V H A for some subvectorspace V C V. Let E = Endo(r).
Then we have the following basic facts.

LEMMA 9.6.2. — The algebra E admits a two-sided ideal N such that the following
are equivalent:

1. 0 G 7 V ,
2. (f>(T) C T ' ,
3. (/) is not an isogeny, i.e., not invertible.
4. (f) is nilpotent.

Proof. — We may define N by N = {(f) e E : (/){T) C T ' } . Since T ' contains every
proper subtorus of T, it follows that ( / ) G N if and only if (j) is not an isogeny. This
implies that N is a two-sided ideal. To check nilpotency, choose (f) G N and let
A = n,GN<^(T). For dimension reasons, A = ̂ (T) for some n G N. Now A = ̂ (T)
implies that (t)n\A is an isogeny. Hence T = A + ker ((^n). Since T is irreducible, and
A ^ T, it follows that T = ker (^n). Thus every 0 E N is nilpotent. D

LEMMA 9.6.3. — There is an injective algebra homomorphism

E/N -^ EndQ(^/^/)

and an injective homomorphism of additive groups N —> Hon^T.r7).

SOCIETE MATHEMATIQUE DE FRANCE 1998



178 CHAPTER 9. ON THE STRUCTURE OF COMPLEX NILMANIFOLDS

Proof. — Both assertions follow immediately form the definition of N . D

LEMMA 9.6.4. — Let T = 0/A be an irreducible torus, T' the sum of all proper
subtori, A' C A the corresponding subgroup of the lattice.

Let E = Endo(r) and 7 G A, but^f ^ A1. Then E^f is a free E-submodule o/A(g)Q.

Proof. — Assume that there is a (/) G E with (^7=0. With 7 ^ A' this implies that
ker<^ is not contained in T ' ' . Hence T == ker<^, i.e.y (j) = 0. D

We are now approaching the main result of this section. It shows that the non-
commutativity in our above example is not a coincidence.

PROPOSITION 9.6.5. — Let T = V/F be an irreducible torus and let E denote the
endomorphism algebra Endo(T). Assume that E contains a commutative subalgebra
F such that A 0 Q is a principal F-module.

Then T is simple, F = E and F is a number field, i.e., T admits complex multi-
plication.

The previous example shows that commutativity of F is essential for the proposi-
tion.

The proof requires several steps. For brevity we make the following definition.

DEFINITION 9.6.6. — A torus T = V / A has weak CM (weak complex multiplication)
if the endomorphism algebra EndQ(T) contains a commutative subalgebra F for which
A (g) Q is a principal F-module.

Thus our goal is to prove that a torus has weak complex multiplication (weak CM)
if and only if it has complex multiplication.

LEMMA 9.6.7. — Let S be a simple torus with weak CM.
Then S has complex multiplication.

Proof. — Since S is simple, E = Endq(S) is a skewfield. By the assumption of weak
CM, E admits a commutative Q-subalgebra F such that A (g) Q is a principal F-
module. Thus a forteriori A 0 Q is a one-dimensional E-\efi vectorspace. Now E = F
for dimension reasons, i.e., E is commutative. D

LEMMA 9.6.8. — Let T be an irreducible torus with weak CM. Then there exists
a subtorus A C, T' such that T/A likewise has weak CM and T' /A is the only (non-
trivial) subtorus of T/A.

Furthermore T /T' is isogenous to T' /A.

Proof. — The problem is to construct quotients of T in such a way that enough
endomorphisms of T descend to endomorphisms of the quotient.

Let r : T ' —> T^ denote the semisimple reduction of T', and C = kerr. Since T '
and therefore C are canonically defined, it is clear that (f)(C) C C for all (j) G EndQ(T).
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Hence all endomorphisms of T can be pushed forward to endomorphisms of T / C . This
implies that T / C has weak CM and we may assume that T ' is semisimple.

Now let ( / ) G N. Then (J)(T) is an irreducible subtorus ofT7. Since T1 is semisimple,
every irreducible subtorus is simple. It follows that (f)(T) is a simple subtorus of T '
and (f)(T') = {e} for all 0 G N.

Recall that E / N injects into EndQ(r/T7). Therefore the assumption that A 0 Q
is a principal F-module implies that T ' = ]L^eA^(^)- ^ f0!!0^ tnat every simple
factor of T ' is isogenous to T/T7. Furthermore this implies that for every simple
subtorus S C T ' there is a (/) G N with (/)(T) = S. Dimension reasons imply E = F.
Now a(f) = (f)a for (f) G N^ a G F, clearly implies that every a C F must stabilize
the image of <j) for all ( / ) G N. It follows that every simple subtorus (hence: every
subtorus) of T ' is stabilized by all a C E. Consequently every quotient of T has weak
CM as well. We may therefore assume that T ' is simple and isogenous to T / T ' . D

PROPOSITION 9.6.9. — There is no irreducible torus T with weak CM such that the
maximal non-trivial subtorus T' is simple and isogenous to T/T'.

Proof. — We keep the above notation. Since E / N injects into Endo(r/r7), it is
clear that S = T / T ' is a simple torus with complex multiplication. Therefore there
is a totally complex numberfield K and a type a : K —> C9 such that 5 is isogenous
to C^/r with r = O(OK)' There is an induced representation of K in Endc^C9)
given by x : ( 2 ^ 1 , . . . , Z g ) i-)- (<J\(x)z^,..., ( T g ( x ) z g ) . By abuse of language, this algebra
homomorphism from K to Endc(C^) is again denoted by a.

Replacing T be a suitable isogenous torus, we may represent T as a quotient of
the vector space V © V with V ^ C9 by a discrete subgroup A with (^1,^2) G A if
and only if ^1,^2 — C(^i) (= r ^OY some Q-linear map C : V —>• V. (Note that the
"coordinates55 Vi are vectors in V and not numbers). Since only ^|r is relevant and
V C^R r 0 M, we may assume that ^ is R-linear. However, we can not assume that
^ is C-linear. Now for every A G Endc(^) we have a C-linear change of coordinates
given by v[ == Vi, v'^ = v^ + A(i^) which transforms ^ into A + C with addition taking
place in End^Y). We will keep this in mind.

All endomorphisms of T lift to C-linear endomorphisms of V ® V and therefore are
representable in the algebra M(2, Endc(^)) of 2 x 2-matrices with entries in Endc(^).
Clearly E is a subalgebra of

A \
:x,y^K;AeEndc(V)

^Q/V

Furthermore
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Consider an element (f) = (^ ^) . Commutativity of ^ implies that ̂  = r](f) for all
^ = (S f ) with z e ^W- This reduces to AZ = ZC. Since A, Z, G C a(^), which
is commutative, this implies that A = C for all (/) ^ E.

The Zariski closure of cr(JC*) in GLc(V) is evidently the Cartan subgroup H con-
sisting of all endomorphisms

(zi , . . . ,^) ̂  (Ai^i , . . . ,A^)

with A, C C*. Now let G denote the complex linear algebraic subgroup ofGLc(V@V)
defined by

G=\(A B} :AeH,B^Endc{V)\.
l \° A) }

Let E* denote the multiplicative group of invertible elements of E. Then E* is a
subgroup of G. Let A denote the closure of E" in G with respect to the (complex-
algebraic) Zariski topology. A is commutative, because E* is commutative. It follows
that A = As x Au with As reductive and Au unipotent. Now

u = { ( l J '•BeEndc(V)\

is the maximal unipotent subgroup of the solvable algebraic group G. Hence Au C U.
Consider the projection TI- : G —^ G / U . The quotient G/U is reductive and cr(JC*)
being dense in H implies that 7r(£1*) (hence a forteriori 7r(A)) is dense in G/U.
Therefore 7r(As) = G/U. This in turn implies that As is a Cartan subgroup of G.
Now every two Cartan subgroups are conjugate. It follows that (by a suitable change
of coordinates) we may assume that

Now the centralizer of As in G is just

CG{As)=t(^ B} : A ^ H , B e H \

where H denotes the closure of H in Endc(V), i.e., H consists of all endomorphisms
given by

(2;!,...,^) 1-4- (AiZi , . . . ,A^)

with \i 6 C. Since A is commutative and contains As as well as

it follows that A = Co(As).
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Now let x G OK, x ^ 0. Then 70 = a(x) C F. Since

70 = (cri(a ') , . . . ,C^(a;))

and ai(x) / 0 for all %, there is a B G ̂  C Endc(VQ such that JE?7o = —C(7o) (with
C G EndiR(Y) denned as above). A change of coordinates v[ = ^i, v^ = v^ + £^i
does not affect A, because ( o f ) ^ ^4- Thus we may assume that C(7o) = 0, i.e.,
(0 ,7o)eA.

The number field K is a finite extension of Q. Hence there exists primitive element
r e K such that K = Q(r). Then r29 = E '̂o1 P^ with pk G Q. Let 0 G E be such
that the natural projection p : E —> E / N ^ K maps ^ to r. Then £" is generated (as
a Q-algebra) by TV and ( / ) . Furthermore 0 G A. Hence (j) = (^) with 0 = a(r) and
^ ^ H. The Q-vector space A 0 Q is now generated by the elements (7,0) with 7 € r
together with the elements ^(0,70) with n C N. Recall that r29 = E^L'o1 Pfe^- This
implies that (f)29 — ̂ ^Pk^ ^ N- Hence

^-E^' ^ 0 ^

<70y

for some 7 G F. Observe that

^ ^

<0 ^>

f0m rn0m-\^

< 0 ^m ,

(Here as well as in the following calculations it is essential that 0 and ^ commute.)
Thereby we obtain

^ 2^-1-^^^-1 70 e r
L k

Now recall that r is a primitive element for [K : Q]. Therefore 0°,... .O29"1 are Q-
linearly independent, which implies that the expression [2g02g~l + • • • ] in the formula
above can not be zero. It follows that there is a number y G K" such that ^a(y) G
r (g) Q = a{K). Thus ^a(y) = a(z) with y C K\ z C K. Recall that S , ^ H . Hence
there are complex numbers A i , . . . , \g such that

^ : ( Z l , . . . , Z g ) ̂  ( \ Z Z l , . . . , \ g Z g ) .

It follows that \i = ( T i ( z ) / a i ( y ) = a i ( z / y ) for all i. Thus ^ G cr(K). It follows
that ^(7) G r 0 Q for all 7 G F. This furthermore implies that ^(0,70) G r 0 Q
for all n G N. Finally this implies that A 0 Q = {(^1,^2) : ̂  G F 0 Q}. But this
contradicts the assumption that T is irreducible, because it implies that T is isogenous
to y/r x v/r. n
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9.7. Primitive elements

Let T == O/A be a torus. To each element A in the lattice A we may associate a
subtorus 0(A) in the following way. We consider the complex line (A)(^ in C9 and let
0(A) be the smallest subtorus of T containing 7r((A)^), where TT : C9 —^ T denotes
the natural projection. Equivalently, 0(A) may be defined as the smallest subtorus S
of T with A C Image (^ : 7ri(5) -> 7Ti(r)), identifying A with 7Ti(T).

DEFINITION 9.7.1. — Let T = 0/A be a torus. An element A G A is called
primitive if the associated subtorus 0(A) (defined as above) is irreducible.

The set of all primitive elements in A is denoted by A151'1111.

LEMMA 9.7.2. — Let f : T —^ S denote a morphism of tori, /* : A —^ F the
associated group homomorphism between the lattices ofT and S.

Let A G A. Then f (0(A)) = O(AA).
Furthermore ^(AP1-1111) C PP™.

Proof. — The inclusion / (9(A)) D ©(/*A) is obvious as well as 0(A) C f~1 (0(/*A)).
This yields the first assertion. The second is an immediate consequence, since a
quotient of an irreducible torus is again irreducible. D

LEMMA 9.7.3. — Let T = C^/A be an irreducible torus, To a maximal proper
subtorus, Ao the corresponding sublattice.

Then 0(A) = T for all A C A \ Ao.

Proof. — Obvious. D

COROLLARY 9.7.4. — Let T = C^/A be a torus.
Then A 0 Q is generated (as Q-vector'space) by A?1'1"1.

Proof. — Thanks to the lemma, this is clearly true for irreducible tori. This implies
the statement for arbitrary tori, because every torus equals the sum of it irreducible
subtori. D

The Z-module A is not necessarily generated by A131'1"1, e.g. let S be a simple torus,
TO G End(5) an involution, r = (TO, To) and T = S x S / r .

LEMMA 9.7.5. — Let T = 0/A be an irreducible torus, A G A^^ with 0(A) = T
and E = EndQ(T).

Then EX is a free E-submodule of the E-module A 0 Q.

Proof. — We have to show that (f)\ = 0 implies ^ = 0 for all (/) C E. But this is
evident, since (f)\ = 0 implies 0A C ker^>. D
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9.8. Bilinear forms on modules

Here we deduce an auxiliary algebraic result on bilinear forms on modules over pos-
sibly non-commutative rings. We will need this later on in order to deduce that all the
tori in the tower of a non-degenerate nilmanifold admit weak complex multiplication.

PROPOSITION 9.8.1. — Let F be a finite-dimensional associative algebra over a
field, M a F-left module, A, p : M —^ F , B : M x M —^ M maps such that

B(x,y) = X(x)y = p(y)x

for all x,y G M. Furthermore assume that there are elements m,n,p e M such that
Fp is a free F-module and B(m, n) = p.

Then F is commutative and M is a principal free F-module generated by each of
the elements m, n and p, i.e., M = Fm = Fn = Fp.

Proof. — We start by evaluating

B(m, n) = \{m)n = p{n)m = p.

Since Fp is free, this implies that right multiplication by A(m), p(n) in F is injective.
Now F is a finite-dimensional vector space over a field, thus injective linear maps
are bijective. It follows that right multiplication by A(m) resp. p{n) is a bijective
self-map of F. Hence A(m), p(n) admit left inverses. It follows that Fm = Fn = Fp.
In particular Fm is a free F-module. Therefore B(m,m) = \(m)m = p(m}m implies
A(m) = p(m}. For the sake of brevity, let a = A(m) = p(m). For arbitrary x C M,
consider

B(m,x) = \(m)x = ax = p(x)m.

Since a has an left-inverse, x C Fm. Thus M = Fm, i.e., M is a principal F-module.
Now let x = am with a G F. Then B(am, m) = \(am)m = aam, hence \(am) = aa.
Similarily one obtains p{am) = aa. Therefore

B (am, bm) = aabm = abam

for all a, b G F. Since a has a left inverse and Fm is free, it follows that ab = ba for
all a, b C F. D

9.9. Bilinear forms for tori

DEFINITION 9.9.1. — Let Ti (i = 1,2,3) be tori with lattices A, and universal
coverings T,. A bilinear form for the Ti is a C-bilinear map B : Ti x f^ —^ f^ such
that 5(Ai x A2) C As.
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Caveat: Such a bilinear form does not yield a map from Ti x T^ —^ T^. However for
A € AI one obtains a morphism of tori 2?'(A) :T^ —^ T^ induced by £?(A, •) : T^ -4- Ts.
The similar statements hold for A G As.

Using our results on primitive elements, it follows that ^(A^1'1"1 x A^1"1) C AJ1'1"1.
Now, given such a bilinear form we have the left kernel

K^ = {v C TI : B(v,w) = 0 Vw G Ts},

the right kernel Jfs C Ta and the image Image(B) C Ts. Observe that v G ^i if and
only if B(v, A) = 0 for every A G As. This implies that ^i/Ai equals the intersection
of the kernels of the morphisms of tori T\ —f T^ induced by the £?(-, A) with A G As.
Therefore K^ = Xi/(^i H Ai) is a subtorus of Ti. Similarily for K^ = K^(K^ H As).
Furthermore, if S denotes the C-vector space spanned by the image of JE?, similar
arguments yields that S = S / ( S D Ag) is a subtorus of T^. We call these subtori Ki,
S the subtori associated to the kernel resp. image of B.

We are interested in these bilinear forms, because they arise in a canonical way
from nilmanifolds.

LEMMA 9.9.2. — Let X = G/F be a nilmanifold, Gk the descending and Ck the
ascending central series.

Then the commutator map ^ : (^, h) 1-4- ghg~lh~l induces bilinear forms for
each of the triples G/GT, G^^G^F H G^, (^/(G^r H G^+1) and G/G',
Cw/(Ck+iF n Ck+2), Cfc+i/(C4r n C^i) for all k > 0. Let B1^ resp. B^ denote
these bilinear forms.

Then for B^ the right kernel is trivial, while for Bk the image generates everything.

Proof. — This is an immediate consequence of the results in the section on nilmani-
folds. D

Furthermore such bilinear forms are related to the bilinear forms on modules discussed
in the preceding section.

LEMMA 9.9.3. — Let T = C^/A be an irreducible torus, 7, (= A1™1 with T = 6(7^
B a bilinear form for T\, T^, T^ with T ^ Ti for i = 1, 2,3 such that B (71,72) = 73.
Furthermore let E = EndQ(T) and M = A 0 Q.

Then B induces a map BQ : M x M —>• M, such that there exist maps A : M —> E,
p : M -> E with

B{x,y) = \{x)y = p(y)x.

Moreover E\^ is a free E-submodule of M.

Proof. — Evidently B induces a map A ( g ) Q x A ( g ) Q - ^ A 0 Q simply by restriction.
Since B induces a morphism of tori -0(7, •) : T —>• T, it is clear that for each 71 G A

there exists an element A(7) G E such that B(^,y) = \{^f)y.
Finally, £"73 is a free i?-module due to lemma 9.7.5. D
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Now we will use these bilinear forms to deduce some properties of the tori which
are involved.

LEMMA 9.9.4. — Let B be a bilinear form for tori T^,T^,T^ with lattices A,,
\i C A?""1 with B(\^,\^) = As and let Qi = 9(A,) denote the irreducible subtori of
Ti associated to \i.

Then

B(Qi x 62) C ©3

Moreover, 63 is a simple torus with complex multiplication and there exist subtori
Ki cQi (i= 1,2) such that 63 ^ Qi/Ki.

Proof. — Let

Ci :=ker[^( . ,A2):Oi-^e3]

and

C2:=ker[ .B(Ai, . ) :e2-^e3] .

Then Qi/Ci ^ 63 (z = 1,2). Now consider A G Ai with B(\,\^) = 0. Since
63 is irreducible and equals the subtorus 0(A2) associated to A2 (as denned in the
section on primitive elements), it follows that B(\,v) = 0 for all v G §2 as soon as
B{\,\^) = 0. Thus B induces a bilinear form for the triplet of tori Oi/Gi, Q^/C^,
63. Furthermore these tori are pairwise isomorphic. Now lemma 9.9.3, prop. 9.6.9
and prop. 9.5.13 imply that 63 is a simple torus with complex multiplication. D

COROLLARY 9.9.5. — Let B be a bilinear form for tori Ti, T^, Ts, and let S denote
the subtorus ofT^ associated to the image and Ki C Ti (i = 1,2) the subtori associated
to the kernel.

Then S and both TilKi are isogenous to products of simple tori with complex
multiplication.

Proof. — Recall that for any torus T = C^/A, the set of primitive elements AP1'1"1

generates A(g)Q as Q-vector space. Therefore S is generated by its simple subtori with
complex multiplication. It follows that S is isogenous to a direct product of simple
tori with complex multiplication. Now Ki (for z = 1,2) is the intersection of kernels
of morphisms of tori to S. Thereby Ti/Ki is isomorphic to a subtorus of a S^ for
NI e N sufficiently large. This implies that Ti/Ki is likewise isogenous to a product
of simple tori with complex multiplication. D

This completes the proof of thm. 9.1.1.
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9.10. A nilmanifold without non-constant meromorphic functions

Here we construct a non-trivial complex nilmanifold of algebraic dimension zero.

PROPOSITION 9.10.1. — Let Go be the usual complex Heisenberg group i e

J A , A 1
< 1 y • . x , y , z ^ C ^ .

[\ v J
Let G = Go x Go, n € Z\{0}, ^ <= C such that ̂  = n+i and F the set of all elements
of the form

( ^1 ai + 61^ as + b3^\ <! ai - bi!i 03 - bst\ \
1 02 + &2$ ' 1 a-i - b^

V 1 M i / /
with d j . b j G Z + zZ. Then F is a discrete subgroup of G and the quotient G/F is a
compact nilmanifold without non-constant meromorphic functions.

We start with the construction of a certain number field. Fix n G Z \ {0}. Choose
^ G C with ^ = n + i. Let K = Q(z)(Q. A general element of K is given by a + ̂
with a, &_G_Q(z). The four embeddings of K into C map a + bf, to a + b^ a - b^ a + b^
and a - 6^ respectively. Thus an element a + bf, is totally real, if both a and ^ are
real. However ^ G M implies (%)2 G R H Q(z) = Q, since b G Q(z') and $2 = n + %.
Now (^)2 = p G Q implies A^(,)[Q(&2) • (n2 + 1) = p2, which is impossible for b / 0,
since n2 + 1 is not a square in Q. Thus X contains no totally real elements except the
rational ones. In particular, K is not a GM-field. Furthermore, using lemma 9.5.16 it
follows that Q(z) is the only CM-subfield of K.

LEMMA 9.10.2. — Let^ G C with ^ = n + % , n G Z \ {0}. Let K = Q(z)(^) with
type a given by a^(z) = a + ̂  and a^z) = a - ̂  for z = a + bS. (a,b G Q(z)/ 2^
2? = {a + ̂  : a, b G Z + z'Z}

Then T = C'2/a{R) is a simple two-dimensional complex torus with complex mul-
tiplication by K such that every meromorphic function on T is constant.

Proof. — Clearly R = {a + bf, : a, b G Z + zZ} C OK. Thus R is a subring of OK
with O K / R finite (because rankz(^) = 4 = [K : Q]). In particular C2/a(OK) is
isogenous to C2/a(R) for every type a. As we have seen above, K contains no CM-
subfields except Q(%) and the type a is clearly not lifted from Q(z). Therefore T is not
algebraic. This implies the statement, since a torus with complex multiplication is
either algebraic or does not admit any non-constant meromorphic function at all. D

Proof of the proposition. — First note that F is indeed a discrete subgroup. This
is verified easily using the fact that R = {a + b(, : a, b G Z + z'Z} is a ring and
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(7i\p : R —> C are ring-homomorphisms. Recall that for any nilmanifold X every
meromorphic function is a lift from Alb(X). In our case this implies that G/F has no
non-constant meromorphic function. D

9.11. An arithmetic method of construction

Let K be a totally complex numberfield, [K : Q] = 2g. Let a = (o- i , . . . , ag) a type
for K, i.e., a choice ofg mutually distinct and non-conjugate embeddings K —> C.

Any field homomorphism ( f ) : K —> K ' yields a covariant functor from K- varieties to
K ' - varieties. For an affine variety V C A"' defined by polynomials Pi G K[X\^..., Xn\
this functor simply takes V to the variety ^V defined by the polynomials (f)^Pi G
K'[X^^ . . . ,Xyj.

Thus a type a == (a\,..., (7g) on a totally complex number field K yields a covariant
functor

a : v ̂  "v = [y x • • • x ^v.
This functor takes 77-dimensional K- varieties to ^-dimensional C-varieties. It takes
JC-groups to algebraic groups defined over C.

For an affine space A71, the map a maps A^Oj^) onto a lattice in A^(C) = C^.
We will apply these methods to construct nilmanifolds.

DEFINITION 9.11.1. — A nilpotent algebraic group defined over a field k is called
a nilpotent flag group, if it is A'-isomorphic to the affine space A" endowed with a
group structure defined by a A'-morphism m : A71 x A77' —)• A71 with m = ( m i , . . . , rrin)
such that

mi(x^,...,Xn,yi . . . , 2 / n ) = Xi +^ +Pi(;ri,. . . ,^-i^i,.. . ,^-i)

for some polynomials Pi.

Note. — If k is algebraically closed, then every unipotent fc-group is a nilpotent flag
group. For arbitrary fields this is not true.

LEMMA 9.11.2. — Let g be a nilpotent Lie algebra over a field k of characteristic
zero. Then there exists a nilpotent flag k-group G with g = Cie{G).

Proof. — By the Ado-Iwasawa theorem, there is an embedding p : g —^ CieGLn(k)
such that all the p(v) (v G g) are nilpotent. Thus the exponential power series
exp(A) = ̂ ^. l / k ' A k restricts to a polynomial isomorphism of varieties from p(g) to
a unipotent subgroup U of GLn (k). Now suitable linear coordinates on g induce the
structure of a nilpotent flag group on U. D

LEMMA 9.11.3. — Let G be a nilpotent flag group defined over a field k of char-
acteristic zero. Let 0 be an additive subgroup of k, which generates k as a Q-vector
space.
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Then G is k-isomorphic to A" (as k-variety) with the group structure defined by a
polynomial map m : A" x A71 -^ A" such that all coefficients of m are in 0.

Proof. — Note that for each x C k there is a natural number q e N such that qx e 0.
Using this, one can prove easily by induction on dim(G) that by an application of a
linear change of coordinates of the type

(^i,...,2^) ̂  ( p l Z l , - - - , P n Z n ) {pi G N)

one can achieve that all the coefficients of the polynomial map denning group multi-
plication are in 0. D

These auxiliary results enable us to construct interesting nilmanifolds.

THEOREM 9.11.4. — Let K be a totally complex numberfield, a : K -^ C9 a type
and g a nilpotent K-Lie algebra.

Then there exists a torus T with complex multiplication type (K,a), a connected
complex nilpotent Lie group G and a discrete cocompact subgroup F C G such that

1. Cie(G) ̂  g 0^ C x • • • g 0^ C.
2. Each of the tori Gk /(G^1 D F) is isogenous to a direct product of copies of T.

Proof. — Let GK be a nilpotent flag group denned over K such that Cie GK = g.
Now GK is isomorphic to the afflne space A" as a K- variety and due to the preceding
lemma we may assume that the multiplication map is given by a polynomial map
such that all the coefficients are contained in the ring of algebraic integers OK- This
implies that A^O^) = { ( ^ i , . . . , Zn) : zi G OK\ is a subgroup of GK- Now the type a
yields a complex unipotent group G given by G = aGK with a group homomorphism
C : GK —^ G given by x i-̂  (o-i ( x ) , . . . , (jg (x)). Finally recall that a : K —^ C9 embedds
OK as a discrete cocompact subgroup in (CP,+). Using induction, this implies that
o- (GK^OK)) is a discrete cocompact subgroup ofG. Moreover T = C9 /cr(0j<) is torus
with complex multiplication type (K, a) which yields the second assertion, again by
induction. D

9.12. Examples of non-compact nilmanifolds

A variation of this procedure described above may be used to construct interesting
non-compact nilmanifolds composed out of Cousin groups. (A Cousin group is a
commutative complex Lie group without non-constant holomorphic functions.) The
key point is to consider number fields which are not totally complex.

PROPOSITION 9.12.1. — Let K be a number field with r real embeddings K ^ R
and s pairs of conjugate complex embeddings. Let a = (o-i,..., oy+s) a choice of r + s
mutually distinct and non-conjugate embeddings such that (Ji is real for i < r. Let g
be a nilpotent K-Lie algebra.
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Then there exists a Cousin group H ^ C^8 /(T(OK), a connected complex nilpotent
Lie group G and a discrete subgroup F C G such that

1. Cie{G) ̂ g0,i C x • • •g (g)^C.
2. G^r ?5 closed in G for all k and Gk /(G^1 D F) is isogenous to a direct product

of copies of H.
3. If r > 0, then every compact analytic subset of X = G/F is finite. If s > 0,

then every holomorphic function on X is constant.

Once one has derived the technical lemma below, the proof is an easy generalization
of the proof of thm. 9.1.4. Therefore we only prove the subsequent lemma.

LEMMA 9.12.2. — Let K be a number field with r real embeddings and s pairs of
conjugate complex embeddings. Let g = r + s. Let OK denote the ring of algebraic
integers.

Let(T\,..., cfg be a choice of distinct and pairwise non-conjugate embeddings K —)• C
such that (TI ,..., 0'r are real.

Then (T(OK) = {(^1(^)5 • • • ^^f^)) : x ^ OK} is 0' discrete subgroup ofC9.
If r > 0, then G = ̂ /(T^OK) has no non-finite compact analytic subset. If s > 0,

then G admits no non-constant holomorphic functions.

Proof. — Every embedding of a number field K into C induces an absolute value
on K by pulling-back the ordinary absolute values on C. Moreover, two embeddings
cr, T : K -4- C induce independent absolute values unless a = r or a = f. Thus the
Artin-Whaples Approximation theorem implies that for all x = (a: i , . . . , Xg) G K9 and
e > 0 there exists an element z G K such that ||C(^) — ^^Oll < e where ^ : K9 —^ C9

denotes the map given by (^{x) = ( (J i (x \ ) ^ . . . , ( T g ( x g ) ) . Now the image of C,{K9) is
easily seen to be dense in W © C5. Thus a{K) is dense in V = R7' C 0s. Since
K ^ OK 0zQ as Z-module and dim^Y) = [K : Q], it follows that CT(OK) is a lattice
in V. Now K acts by complex-linear endomorphisms on C9 stabilizing the discrete
subgroup cr(Ok). Since K ^ OK ^ Q? it follows that no subgroup of A = O~(OK) can
be stable under all endomorphisms of G = C^/A. It follows that for r > 0 the group
G cannot contain a compact complex Lie subgroup. Since any connected compact
analytic subset (containing 0) would generate a compact Lie subgroup, this implies
that every compact analytic subset is finite (for r > 0).

We still have to show that there are no non-constant holomorphic functions on
G for s > 0. Recall that for any complex Lie group G there exists a holomorphic
reduction, i.e., a holomorphic map TT : G —> H onto a Stein Lie group H such that
all holomorphic functions on G are lifted from H [96]. Observe furthermore that a
complex Stein manifold of complex dimension n is homotopy-equivalent to a CW-
complex of real dimension n. Therefore a commutative complex Lie group C9 /Y can
not be Stein unless rankz(r) < dimc(C*7) = g . It follows that for s > 0 the group G is
not Stein. Furthermore it is clear that, for any complex-linear projection TT : C9 —^ Cd
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with C^/T^A) Stein, there must be a non-trivial intersection kerpr H A. Since A has
no non-trivial subgroups stable under all endomorphisms of G, this implies that there
are no non-constant holomorphic functions on G. D

9.13. Solvmanifolds

Our results obtained so far are specific to nilmanifolds. They do not apply to
solvmanifolds.

EXAMPLE 9.13.1. — Let E be an elliptic curve {i.e., a one-dimensional torus)
without complex multiplication, A G SL^ (Z) with eigenvalues a, a~1 such that |a| <
1. Let X' = C* x E x E and X = X ' / ~ with ( x , y , z ) - (ax,A(^)).

Then X is a three-dimensional compact complex solvmanifold, which is a E x E-
bundle over Alb(X) c± C/ (27r%,r)^ with e271^ = a.

Neither E nor Alb(X) have complex multiplication. To check that Alb(X) has no
complex multiplication, note that Alb(X) = C/ (l,r) with e27^ = a. The theorem
of Lindemann-Weierstrafi implies that r is not algebraic. But C/ (l,r) has complex
multiplication if and only if [Q(r) : Q] == 2.

We will now generalize this special result. First we need an auxiliary result in tran-
scendental number theory. For this we recall Baker's theorem which is a generalization
of the Lindemann-Weierstrafi theorem ([83]).

THEOREM 9.13.2 (Baker [8]). — Let o / i , . . . ,a^ be non-zero algebraic numbers. Fix
a branch of the logarithm and assume that l . logai,. . . ,logo^ are linearly dependent
over Q (the algebraic closure ofQ) in C).

Then logai , . . . , logo^ are already linearly dependent over Q.

This result on linear forms of logarithms constitutes the base for the following
auxiliary result in transcental number theory.

PROPOSITION 9.13.3. — Let V = (C^ +), S = (C*)< Let A be a discrete subgroup
ofV such that every holomorphic function on V / A is constant (e.g. a lattice). Let ( j ) :

V —^ S be a complex Lie group homomorphism. Assume A C (QT and ^(A) C fQ*)
Then (/) is constant.

Proof. — First note that there is no loss in generality in assuming d == 1.
The statement is trivially true for d = 0. Thus we may argue by induction. Now let

S denote the kernel of (^IA : A -> S. Furthermore let W = (S)^ denote the complex
subvectorspace of V spanned by S. We claim: dimc(TV) = rankzE. To prove the
claim, let U = (S)^ and K = U D iU. We have to show that K = {0}. Now K is a
complex subvector space of V which is defined over Q. It follows that V = V / K ^ C171

may be endowed with complex coordinates such that 7r(A) C V(Q) = Q"". Moreover
there is a subgroup A' C 7r(A) which is a lattice in V. (A lattice has to be cocompact
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and discrete and 7r(A) itself is possibly not discrete). Thus we may invoke induction,
if we can show that (j) : V -> S fibers through V / K . This is equivalent to (f)\K = 1.
Now (^|E = 1 and ?7/S is compact, hence (J){K) C (f)(U) is a compact subset of 5 ̂  C*.
By the theorem of Liouville it follows that (/)K = 1. Thus invoking induction we may
assume that K = {0} which implies dimc(W) = rank^S as claimed.

There is a vector a G Cn such that (f)(z) = e"^ with a • z = ]^a^. We may
fix a basis A i , . . . , An of V ^ C" in such a way that \j G A for all j and \j G E
for j < k = rank^S. Then ai G ZTTZ for i < k. Moreover ZTT, a ^ + i , . . . , On are Q-
linearly independent because ker (f) D A is contained in the Q-vector space spanned by
a i , . . . , Gfc. Choose an element A = ̂ . f3jdj of A. If k < n, we require (3n ^ Q. (This
is possible, because otherwise

E^A-^e^"
j

will be a non-constant A-invariant holomorphic function on V for N » 0.) Now
(f){\) = e^j f33aj and all the numbers (j)(\j) = e0'3 are algebraic. Furthermore A C Q"'
implies that (3j C Q, i.e., log0(A) is Q-linearly dependent on Z 7 r , a i , . . . , a^. Thus
Baker's theorem implies that ^, f3j(ij is Q-linearly dependent on ZTT, a i , . . . , On. If
k = rankS < n, then an is Q-linearly dependent on Z T T . O I , . . . , On and we arrive at
a contradiction, since /?n ^ Q. Thus we may assume k = n. In this case ̂  • (3jdj =
log(^(A)) is a Q-multiple of I T F . But this implies that <^(A) is a root of unity. Recall
that for k = n the element A C A was choosen arbitrarily. Hence 0(A) is a root of
unity for all A C A. Since A is a finitely generated group, it follows that </)(A) = E is
a finite subgroup of S ^ C*. Thus we obtain an induced Lie group homomorphism
(J)Q : V / A —> (C*/£J) ^ C*. Since V / A does not admit any non-constant holomorphic
function, it follows that 0o and therefore (f) are constant. D

LEMMA 9.13.4. — Let G be a solvable complex Lie group, N its nilradical, i.e., the
maximal connected nilpotent normal Lie subgroup.

Then there exists a complex Lie group homomorphism p —^ (C*) (d = dim(G)^
such that

1. The connected component of the kernel of p equals N.
2. For each g C G, pi(g),... ,pd{9) ^ C* ^e the eigen-values for Ad(^) C Cie(G).

Proof. — Let Ad : G —>• GL(de G) denote the adjoint representation. Since this is
a complex linear representation of a connected solvable Lie group, there is a Borel
group B of GL(Cie G) with Ad(G) C B. Now B' = [B, B} is nilpotent and conjugate
to the group of all unipotent upper triangular matrices. Moreover B ' is the set of all
unipotent elements in B. In particular Ad (TV) C B ' .

Conversely B' is nilpotent and Ad"1^') is a central extension ofB', hence likewise
nilpotent. It follows that N equals the connected component of Ad"^^). Finally,
for each b G B C GL(CieG) the eigenvalues of b depend only on the projection
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7r(b) C B / B ' , since B is conjugate to the group of upper triangular matrices. Thus
p = TT o Ad : G -^ B / B ' does the job. D

We want to apply this to groups with lattices. For this purpose we need the following
fact.

LEMMA 9.13.5. — Let V be a complex vectorspace, A a lattice, (j) G GL(V) with
(^(A) c A.

Then all the eigen-values of (f) are algebraic.

Proof. — This follows immediately from V ^ A 0z R. D

PROPOSITION 9.13.6. — Let G be a solvable complex connected Lie group, F a
lattice, N the nilradical.

Then G/NF is a torus, hence isomorphic to a quotient V/A of a complex vector
space V by a lattice A.

Furthermore there exists a complex Lie group homomorphism (f) \ V —> (C'1^
(n = dimc(G)) such that ker<^ is discrete and for all X G A all the <^(A) are algebraic
numbers.

Proof. — It is a result of Mostow (see thm. 3.5.3) that NT is closed in G, which
implies the first assertion. Moreover, a result of Malcev 2.2.3 implies that all the
Nk^ are closed in 7VT, hence closed in G. Now the adjoint action clearly stabilizes
all the Cie^N1^), furthermore induces the trivial action on Cie(G)/ £ie(N)^ because
G' C N . It follows that all the eigenvalues of Ad(G) are eigenvalues of some action
on N k / N k ^ l with Ad(A) stabilizing the lattice A^ = (A^ H A)/(A^+1 H A). Hence
all the eigen-values of Ad (A) are algebraic by the preceding lemma. With the help of
lemma 9.13.4 this implies the last assertion of the proposition. D

COROLLARY 9.13.7. — Let X = G/F be a complex solvmanifold. Assume that
Z CG'.

Then G is nilpotent if and only if Alb(X) is isogenous to a product of simple tori
with complex multiplication.

REMARK 9.13.8. — Due to a result of Barth and Otte (see cor. 3.11.3) the commu-
tator group G' has closed orbits in G / F . Therefore Alb(X) = G / G ' F .

Proof. — The nilradical N of G contains the commutator group G ' ' , hence G/NF is
a torus. It follows that G/NT is a quotient of the Albanese Alb(X). Thus G / N F is
likewise isogenous to a product of simple tori with complex multiplication. It follows
that G/NT ^ C9 /A for a lattice A with A C Q3. Now prop. 9.6.9 and prop. 9.8.1
together imply that G/NF is a point, i.e., G = N . D
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CHAPTER 10

HOLOMORPHIC FUNCTIONS ON AN ALGEBRAIC
GROUP INVARIANT UNDER A ZARISKI DENSE

SUBGROUP

10.1. Survey

Let G be a reductive complex linear algebraic group, F a subgroup, 0{GY the
algebra of F-invariant holomorphic functions on G. It is known [11] that 0(GY =
C if r is dense in G with respect to the algebraic Zariski topology. This can be
proved in different ways. Barth and Otte indicated one method based on studying
the representation of a maximal compact subgroup of G acting on the Frechet space
of holomorphic functions on G/F and another method based on Fourier series. We
will use yet another method where the theorem of Liouville plays a key role.

We are interested in similar results for non-reductive groups. If G is a complex
linear algebraic group with G/G1 non-reductive, then there exists a surjective group
morphism r : G —> (C,+) and F = T'^Z) is a Zariski dense subgroup of G with
0(GY ^ 0(C*) / C. Hence we are led to the question whether, given a connected
complex linear algebraic group G, the following two properties are equivalent:

(i) G I G ' is reductive.
(ii) O^G)^ = C for every Zariski dense subgroup F.

The above argument gave us (ii) ===^ (i) and the result of Barth and Otte [11]
implies the equivalence of (i) and (ii) for G reductive.

We will prove that (i) and (ii) are likewise equivalent in the following two cases:
(a) G is solvable.
(b) The adjoint representation of S on £ie(U) has no zero weight, where S denotes

a maximal connected semisimple subgroup of G and U the unipotent radical of
G.

Case (b) is equivalent to each of the following two conditions

1. G J G 1 is reductive and the semisimple elements are dense in G ' .
2. G / G ' is reductive and NG' (T)/T is finite, where T is a maximal torus in G' and

N G ' ( T ) denotes the normalizer of T in G ' .



194 CHAPTER 10. INVARIANT HOLOMORPHIC FUNCTIONS

For instance, if we take G to be a semi-direct product SL^ (C) K p (C^-h) with p :
5^2 (C) -> GLn(C) irreducible, then G fulfills the condition of case (b) if and only if
n is an even number.

The proof for case (a) is based on the usual solvable group methods and the struc-
ture theorem on holomorphically separable solvmanifolds by Huckleberry and E. Oel-
jeklaus [60].

The proof for case (b) relies on the discussion of semisimple elements of infinite
order in such a F. For this reason we conclude our investigation with an example of
Margulis which implies that G = SL^ (C) K p (C3^) {p irreducible) admits a Zariski
dense discrete subgroup F such that no element of F is semisimple. Thus condition (b)
is really needed in order to find semisimple elements in Zariski dense subgroups. We
underline that, although our method does not work for the example of Margulis, we
have no knowledge whether there actually exist non-constant holomorphic functions
in this case.

Finally we discuss invariant meromorphic and plurisubharmonic functions on cer-
tain groups.

Most of the material covered in this chapter has been published in [154].

10.2. Commutative groups

For the convenience of the reader we provide a rather elementary proof for the
commutative case.

LEMMA 10.2.1. — Let V be a complex vector space, F a discrete subgroup and VR
the real vector space spanned by F.

Then X = V/T is holomorphically separable if and only if V^ is totally real, i.e.,
^nzVR={o}.

Proof. — If VR is tolally real, then a Z-basis of F can be extended to a C-basis of V
and consequently V/F ^ (C*)^ x (C)"^ (with k = rankzF and n = dimc(V)).

Conversely, if V^ D Z'VR 7^ {0}, there is a complex line contained in V^. It follows
that there is a non-constant holomorphic map (f) from C to X = V/F such that
(/)(C) is contained in the compact subset VM/F of X. However, this implies that every
holomorphic function on X is bounded on (f)(C). By Liouville's theorem it follows that
fo(f) is constant for every holomorphic function on X. Hence X is not holomorphically
separable. D

LEMMA 10.2.2. — Let G = (C*)^ F a subgroup and T the closure of F in G with
respect to the (algebraic) Zariski topology.

Then every F -invariant holomorphic function on G is already invariant under F.
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10.3. SOLVABLE GROUPS 195

Proof. — Let H be the set of all g € G such that f(g) = f(e) for all / € 0(6^. Then
If is a closed complex Lie subgroup of G and by construction G / H is holomorphically
separable.

Observe that every holomorphic Lie group homomorphism from (C*,1) to (C,+)
is constant. It follows that G / H ^ (C*)771 for some m G N. Observe furthermore that
every holomorphic Lie group homomorphism from C* to C* is given by z i—>- ^fc for
some k G Z and therefore is algebraic. This implies that the Lie group homomorphism
G —>• G / H is an morphism of algebraic groups. Since F C H , it follows that F C
H. D

10.3. Solvable groups

Here we will discuss solvable groups. First we will develope some auxiliary lem-
mata.

LEMMA 10.3.1. — Let G be a connected complex linear algebraic group such that
G/G' is reductive.

Then [G,G'} = G'.

Proof. — By taking the appropriate quotient, we may assume [G,G'} = {e}. We
have to show that this implies G' = {e}. Now [G, G'} = {e} means that G' is central,
hence Ad(G) factors through G / G ' . But G / G ' is reductive and acts trivially (by
conjugation) on both G / G ' and G ' . Due to complete reducibility of representations
of reductive groups it follows that Ad(G) is trivial, i.e., G is abelian, i.e., G' = {e}. D

LEMMA 10.3.2. — Let G be a connected complex linear algebraic group, H C G' a
connected complex Lie subgroup which is normal in G'.

Then H is algebraic.

Proof. — Let U denote the unipotent radical of G ' . Then G ' / U is semisimple. Now
A = (H D U)° is algebraic, because every connected complex Lie subgroup of a
unipotent group is algebraic. Normality of H implies that H / { H H U) is semisimple.
Hence H / A is semisimple, too. Since H / A is an algebraic subgroup o f G ' / A , it follows
that H is algebraic as well. D

LEMMA 10.3.3. — Let G be a connected topological group, H a normal subgroup
such that H D G1 is totally disconnected.

Then H is central.

Proof. — For each h C H the set Sh = [ghg^h'1 : g G G} is both totally discon-
nected and connected and therefore reduces to {e}. D
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LEMMA 10.3.4. — Let G be a connected complex linear algebraic group and A C G'
a complex Lie subgroup which is normal in G and Zariski dense in G ' . Assume
moreover that [G,G'] = G ' .

Then A = G ' .

Proof. — The connected component A° of A is algebraic (lemma 10.3.2). Thus G/A°
is again algebraic. Moreover G' /A° is the commutator group of G/A°. Therefore, by
replacing G with G/A° we may assume that A is totally disconnected. But totally
disconnected normal subgroups of connected Lie groups are central (lemma 10.3.3)
Since A is Zariski dense in G ' , and [G,G1} = G ' , this may occur only for A = G' =
M- D

THEOREM 10.3.5. — Let G be a connected solvable complex linear algebraic group,
F a subgroup which is dense in the algebraic Zariski topology. Assume that G/G' is
reductive.

Then 0(Gf = C.

Proof. — Let G/F -^ G / H denote the holomorphic reduction, i.e.,

H = { g ^ G : f ( g ) = f ( e ) V/ C 0(Gf}.

Now F C H normalizes H°. Since F is Zariski dense in G and the normalizer of
a connected Lie subgroup is necessarily algebraic, it follows that H° is normal in
G. Let A = H° H G ' . This is again a closed normal subgroup in G. By a result of
Huckleberry and E. Oeljeklaus [60] H / H ° is almost nilpotent (i.e., admits a subgroup
of finite index which is nilpotent). Let Fo be a subgroup of finite index in F with
WO^o H H°) nilpotent. By definition this means there exists a number k such that
C^Fo C H° where C^ denotes the central series. Now [G, G'} = G' implies CkG = G'
for all k > 1. Therefore C^o is Zariski dense in G ' . It follows that A = H° n G'
is a closed normal Lie subgroup of G which is Zariski dense in G ' . By the preceding
lemma it follows that A = G ' , i.e., G' C H. Now G / G ' is assumed to be reductive.
Thus the statement of the theorem now follows from the result for reductive groups
([11]). D

10.4. Groups with many semisimple elements

Here we will prove the following theorem.

THEOREM 10.4.1. — Let G be a connected complex linear algebraic group. Assume
that G / G ' is reductive and that furthermore one (hence all) of the following equivalent
conditions is fulfilled.

1. G' contains a dense open subset ^ such that each element in n is semisimple.
2. For any maximal torus T in G1 the quotient NG'(T)/T is finite.
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3. Let S denote a maximal connected semisimple subgroup ofG and U the unipotent
radical of G. Lei p '. S —t GL(£ie U) denote the representation obtained by
restriction from the adjoint representation Ad : G —>• GL(CieG). The condition
is that all weights of p are non-zero.

Under these assumptions O^G^ = C for any Zariski dense subgroup F C G.

EXAMPLE 10.4.2
- Let G be a reductive group. Then G / G ' is reductive and G' semisimple, hence

N G ' ( T ) / T finite for any maximal torus T C G ' . Therefore this theorem is a
generalization of the result of Barth and Otte [11] on redutive groups.

- Let G be a parabolic subgroup of a semisimple group S.
G / G ' is obviously reductive. Furthermore a maximal torus T in C? is already

a maximal torus in S. Hence Ns(T)/T is finite. Consequently No(T)/T is
finite and G fulfills the assumptions of the theorem.

- Let G be a semi-direct product of SL^ (C) with a unipotent group U ^ C^
induced by an irreducible representation ^ : SL^(C) —>• GL(U). Then G fulfills
the assumptions of the theorem if and only if n is even.

Now we will demonstrate that (1), (2) and (3) are indeed equivalent. The equiva-
lence of (2) and (3) is rather obvious from standard results on algebraic groups. For
the equivalence of (1) and (2) we need some elementary facts on semisimple elements
in a connected algebraic group G. Let Gs denote the set of all semisimple elements in
G and T be a maximal torus in G. Now g G Gs iff g is conjugate to an element in T.
It follows that Gs is the image of the map ( : G xT —^ Gs given by C,(g, t) = gtg~1. In
particular Gs is a constructible set. Now a torus contains only countably many alge-
braic subgroups, hence a generic element h C T generates a Zariski dense subgroup of
T. It follows that for a generic element h G T the assumption g G G with ghg~1 G T
implies gTg~1 = T. From this it follows that a generic fiber of C has the dimension
dimA^G?(r). Therefore the dimension of Gs = Image(^) equals dim (7 — dimA^G'(T).
Thus we obtained the following lemma, which implies the equivalence of (1) and (2).

LEMMA 10.4.3. — Let G be a connected linear algebraic group, T a maximal torus
and Gs the set of semisimple elements in T.

Then Gs is dense in G if and only if dimNG(T) = dimT.

Next we state some simple consequences of the assumptions of theorem 10.4.1.

LEMMA 10.4.4. — Let G be an algebraic group fulfilling the assumptions of theo-
rem 10.4-1 and r : G —> H a surjective morphism of algebraic groups.

Then H likewise fulfills the assumptions of thm. 10.4-1-

Proof. — Surjectivity of T gives a surjective morphism of algebraic groups from G / G '
onto H / H ' . Therefore H / H ' is reductive. The surjectivity of r furthermore implies
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T ( G ' ) = H ' . Since morphisms of algebraic groups map semisimple elements to semi-
simple elements, it follows that H fulfills condition (1). D

LEMMA 10.4.5. — Let G be an algebraic group fulfilling the assumptions of theo-
rem 10.^.1. Then the center Z of G must be reductive.

Proof. — Condition (2) implies that (Zr\G')° is contained in a maximal torus ofG7 .
Since G / G ' is reductive, this implies that Z is reductive. D

The following lemma illuminates why semisimple elements are important for our pur-
poses.

LEMMA 10.4.6. — Let G be a complex linear algebraic group, g G G an element of
infinite order, T the subgroup generated by g and H the Zariski closure ofY.

Then Z = H/F is a Cousin group (hence in particular 0{Z) = C) ifg is semisim-
ple; but Z is biholomorphic to some (C*)"' (hence holomorphically separable) if g is
not semisimple.

Proof. — Note that F = H implies H = H°r. Hence H/T = H ° / ( H ° U F) is
connected. If g is semisimple, the Zariski closure of F is reductive and the statement
follows from [11]. If g is not semisimple then H ^ (C*)""1 x C for some n > 1 and
g is not contained in the maximal torus of H. This implies H / F ^ (C*)77'. D

LEMMA 10.4.7. — Let G be a connected real Lie group, F a subgroup such that each
element 7 G F is of finite order.

Then F is almost abelian and relatively compact in G.

Proof. — If G is abelian, then G ^ R^ x (51)7'. In this case F C (5'1)7' and the
statement is immediate.

Now let us assume that G may be embedded into a complex linear algebraic group
G. Let H denote the (complex-algebraic) Zariski closure of F in G. By the theorem of
Tits [145] r is almost solvable, hence H° is solvable. Now the commutator group of
H° is unipotent and therefore contains no non-trivial element of finite order. Hence
r n H° is abelian, which completes the proof for this case, since we discussed already
the abelian case.

Finally let us discuss the general case. By the above considerations Ad (To) is
contained in an abelian connected compact subgroup K of Ad(G) for some subgroup
TO of finite index in r. Now N = (Ad)^^) is a central extension 1 —)• Z —^ N —^
K —^ 1. (where Z is the center of G). But complete reducibility of the representations
of compact groups implies that this sequence splits on the Lie algebra level. Hence
N is abelian and we can complete the proof as before. D

Thru. 10.4.1 follows by induction on dim(G) using the following lemma.

MEMOIRES DE LA SMF 72/73



10.6. MARGULIS' EXAMPLE 199

LEMMA 10.4.8. — Let G be a positive-dimensional complex linear algebraic group
fulfilling the assumptions of thm. 10.4.1 and F be a Zariski dense subgroup.

Then there exists a positive-dimensional normal algebraic subgroup A with 0(GY C
0(G)A.

Proof. — If G is abelian, the assumptions imply that G is reductive and 0(0)^ = C.
Otherwise let H = [g : f(g) == f{e) V/ G 0(0^}. Now F C H , hence r normalizes

H°. The normalizer of a connected Lie subgroup is algebraic, thus H° is a normal
subgroup ofG. It follows that {HnG')0 is a normal algebraic subgroup (lemma 10.3.2).
This completes the proof unless H H G' is discrete.

If (H H G ' ) is discrete, then lemma 10.3.3 implies that H° is contained in the
center Z of G. Let A denote the Zariski closure of H°. The center is reductive
(lemma 10.4.5). It follows that for each Z-orbit every J^-invariant function is already
A-invariant.

Therefore we can restrict to the case where H is discrete. Now r is discrete and
contains a subgroup Fo which is finitely generated and whose Zariski closure contains
G ' . By a result of Selberg Fo contains a subgroup of finite index Fi which is torsion-
free (see prop. 1.7.2). Now let 1̂  = Fi H G1'. Then being Zariski dense, I^ must
contain a semisimple element of infinite order. Using lemma 10.4.6, this yields a
contradiction to the assumption that H is discrete. D

10.5. An example

At a first glance it would seem to be obvious that a Zariski dense subgroup should
contain enough elements of infinite order to generate a subgroup which is still Zariski
dense. However, one has to careful.

LEMMA 10.5.1. — LetG=C^C with group law (\,z) • (^,w) = (A/^ + Aw) and
r the subgroup generated by the elements a^ = (e^/^.O) (n C N^) and ao = (1,1).
Then 7 e G' = {(1,^) : x G C} for any element 7 G F of infinite order, although T is
Zariski dense in G.

Proof. — It is clear that F is Zariski dense in G. The other assertion follows from the
fact that an arbitrary element in G is either unipotent or semisimple. Hence every
element g G G \ G' is conjugate to an element in C* x {0}. D

10.6. Margulis9 example

We will use an example of Margulis to demonstrate the following.

PROPOSITION 10.6.1. — There exists a discrete Zariski dense subgroup T in G =
5I/2(C) Kp (C3^) with p irreducible such that F contains no semisimple element.
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Thus the condition G I G ' reductive is not sufficient to guarantee the existence of
semisimple elements in Zariski dense subgroups.

Margulis [90, 91] constructed his example in order to prove that there exist free
non-commutative groups acting on W1 properly discontinuous and by affin-linear
transformations, thereby contradicting a conjecture of Milnor [98].

We will now start with the description of Margulis5 example. Let B denote the
bilinear form on R3 given by B{x-[_^x^,x^} = x\ + x^ — rcj, W = [x G R3 : B(x^x) = 0}
the zero cone and W^~ = {x G W : x^ > 0} the positive part. Let S = {x € W^ :
\x\ = 1}. Let H be the connected component of the isometry group 0(2,1) of B.
(As a Lie group H is isomorphic to P5'Z/2(M).) Let G^ = H K (R3, +) the group of
affine-linear transformations on R3 whose linear part is in H.

The following is easy to verify: Let x+,x~ to different vectors in S. Then there
exists a unique vector x° such that B(x°,x0) = 1, B{x^,x°) = 0 = B{x~,x°) and
x° ,x~ ,x~^ form a positively oriented basis of the vector space IR3. Furthermore for
any A e]0,1[ there is an element g G H (depending on x^ ,x~ G S and A) defined as
follows:

g : ax° + bx~ + cx^~ 1-4- ax° + —x~ + \cx+

A
Conversely any non-trivial diagonalizable element g G H is given in such a way and
x~^~, x~~ and A are uniquely determined by g.

The result of Margulis is the following:
Let x^ ,x~ ,x^ ,x~ be four different points in S and let A, A G]0,1[ and v, v G M3 be

such that v, x~, x^ resp. ?, x~, x^~ forms a positively oriented basis ofR3. Let h^ h G H
be the elements corresponding to x~,x+,\ resp. £ -,i?+,A and g^ G GR = H K R3

given by g = (h, v), g = (h, v).
Then there exists a number N = N(g^) such that the elements ^7V, ̂ N generate

a (non-commutative) free discrete subgroup F C GR such that the action on R3 is
properly discontinuous and free.

Now an element g G GR is conjugate to an element in H if and only if g(w) ==- w for
some w G M3. Hence no element in F is conjugate to an element in H. In particular
no element in semisimple. Furthermore it is clear that F is Zariski dense in the
complexification G = SL^(C) x C3 of GR.

10.7. Meromorphic and plurisubharmonic functions

PROPOSITION 10.7.1. — Let G be a connected complex linear algebraic group with
G = G' and suppose that G contains an open subset n such that each element in fl
is semisimple. Let T be a Zariski dense subgroup.

Then any T-invariant plurisubharmonic or meromorphic function is constant and
there exist no T-invariant analytic hypersurface.
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Proof. — We may assume that L is closed (in the Hausdorff topology). Since G = G ' ,
it follows that H° is a normal algebraic subgroup for each Zariski dense subgroup H.
Therefore we may assume that F is discrete and furthermore it suffices (by induction
on dim^G)) to demonstrate that the functions resp. hypersurfaces are invariant under
a positive-dimensional subgroup. Now 0=0' implies that F admits a finitely gener-
ated subgroup Fo which is still Zariski dense. By the theorem of Selberg Fo admits
a subgroup of finite index Fi which is torsion-free. Thus Fi contains a semisimple
element of infinite order 7 which generates a subgroup I whose Zariski closure I is a
torus. G = G' implies that this torus is contained in a connected semisimple subgroup
S of G. Now known results on subgroups in semisimple groups [58] [12] imply that the
functions resp. hypersurfaces are invariant under J, which is positive-dimensional. D

For this result it is essential to require G = G' and not only G/G1 reductive.

LEMMA 10.7.2. — Let G = C* x C* and T ^ Z a (possibly Zariski dense) discrete
subgroup.

Then G admits L -invariant non-constant plurisubharmonic and meromorphic func-
tions.

Proof. — G/T ^ C 2 / A with A ^ Z3. Let V = (A)^ the real subvector space of C2

spanned by A and t : C2 —)• C2 /V ^ R a R-linear map. Then t2 yields a r-invariant
plurisubharmonic function on G.

Let L = V H iV and 7 C A \ L. Let H = (7)^. Then H ^ L, hence H + L = C2.
It follows that the U-orbits in G/T are closed and induce a fibration G/F -> G/HT
onto a one-dimensional torus. One-dimensional tori are projective and therefore admit
non-constant meromorphic functions. D
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CHAPTER 11

DENSITY PROPERTIES: OVERVIEW

Here we summarize the interdependence of various density properties for discrete
subgroups.

Let G be a simply connected complex Lie group and F a discrete subgroup. Fur-
thermore let R denote the radical of G, and let TT : G —> S = G / R denote the natural
projection. As a semisimple complex Lie group 5" carries the structure of an algebraic
group in a natural way. Let L denote the set of all holomorphic group homomorphisms
from G into some GI/7v(C) with n G N.

Then one has the following implications given in the diagram below, where =>
denotes an unconditional implication, and —)• a conditional one. Condition (*) means:
G = G' and the set of semisimple elements of G contains a Zariski open subset of G
(see also §10.1).
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Proofs, explanations and counterexamples for the converse directions

1. =^>: lemma 1.5.4
^—: this holds for solvable groups (cor. 3.6.3).
^: Every semisimple complex Lie group contains a non-cocompact lattice

(thm. 2.3.1).
2. =>: Combine cor. 3.6.3 with thm. 3.5.3 and thm. 3.4.1.

<^: The results in [156] (see also [145]) imply that every semisimple com-
plex Lie group contains a Zariski dense discrete subgroup which is a free group
with infinitely many generators. Since lattices are necessarily finitely generated
(thm. 1.8.1), these subgroups can not be of finite covolume.

3. =>: Follows from thm. 3.4.1.
<^: For n > 3 the commutative Lie group (C71^) contains a discrete sub-

group F which is not cocompact such that every meromorphic function on G/T
is constant ([120], p. 132, see also [29]).

4. -)-: thm. 3.15.4 combined with [58].
^ same counterexample as above.

5. =^ Combine prop. 3.7.2 with the fact that plurisubharmonic functions are con-
stant on a compact complex manifold due to the maximum principle.

<^ Consider the usual action of GL^(C) on C2 and let H denote the Zariski
closure of {A" : n G Z} where A = (^ ) . Let

G=Hx(C2,-^) and F = {A" : n C Z} ^ (Z2, +).

Then F is a discrete subgroup of G, not cocompact, but Zariski dense. Let
I = {g e G : f(g) = f{e) V/ C PSH^Gf}. Then I contains H , since H/(Hr\r)
is a compact complex one-dimensional torus. Evidently F C I holds, too. It
follows that the connected component 1° of I contains H and is normalized by F.
Since F is Zariski dense in G, it follows that 1° is normal in G. Thus 7° = I = G,
since G does not contain any proper normal connected Lie subgroup containing
H . Thus every plurisubharmonic function on G/F is constant.

6. =^: Obvious.
•^-'. Abelian varieties are counterexamples for the converse direction.

7. =>: Trivial.
<^: Abelian varieties.

8. ^: Trivial.
<—: For G = G' this is true due to prop. 1.9.1.
<^: The subgroup F = (27rz'Z,+) is Zariski dense in C, but exp(F) = {1} is

not Zariski dense in exp(C) = €^*\
9. -^: See ch. 10

<^ See counterexample to 11. below.
10. =^: Trivial.

MEMOIRES DE LA SMF 72/73



CHAPTER 11. DENSITY PROPERTIES: OVERVIEW 205

^: There are non-compact quotients (called Cousin groups) (C^+^F of
(Cd^ +) by a discrete subgroup F such that every holomorphic function on G
is constant. However, every non-compact such quotient carries non-constant
plurisubharmonic functions: Simply take a real linear map ^ : C^ ==^ R with
rckerC.

11. ->: prop. 3.7.2
<^ Let G = 5I/3(C) and let P be a maximal parabolic subgroup. Then

P = L ' S x V with L ^ C*, S ^ SL^C) and V ^ (C2, +). Using the methods
of [156] one can construct a Zariski dense discrete subgroup F C P such that
S D r is Zariski dense in S and F contains an element (A, 5, v) ^z L • S \x V with
|A| > 1. By prop. 3.7.2 every r-invariant plurisubharmonic function / on G is
5-invariant. An argumentation parallel to the reasoning as in 5. above yields
that every such / is invariant under H = S ix V. Now G / P and P / H Y are both
compact and on compact complex manifolds every plurisubharmonic function
is constant. Therefore PSH^G^ = R.
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simple, 169
simplefactor, 171

Transversal submanifold, 71
Twistor space, 75
Type, 174
Uniform subgroups, 7
Unimodular, 7
Vanishing

ofT^.,^), 144
of group cohomology, 21

Variety, see also manifold
Wang's theorem, 3
Weak complex multiplication, 178
Weakly Kahler, 66
Zariski dense subgroups

commutator group, 12
existence, 54
invariant functions

holomorphic, 39, 193
meromorphic, 200
plurisubharmonic, 39, 48, 200
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