@article{BSMF_1956__84__307_0, author = {Atiyah, Michael F.}, title = {On the {Krull-Schmidt} theorem with application to sheaves}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {307--317}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {84}, year = {1956}, doi = {10.24033/bsmf.1475}, mrnumber = {19,172b}, zbl = {0072.18101}, language = {en}, url = {http://www.numdam.org/articles/10.24033/bsmf.1475/} }
TY - JOUR AU - Atiyah, Michael F. TI - On the Krull-Schmidt theorem with application to sheaves JO - Bulletin de la Société Mathématique de France PY - 1956 SP - 307 EP - 317 VL - 84 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/bsmf.1475/ DO - 10.24033/bsmf.1475 LA - en ID - BSMF_1956__84__307_0 ER -
%0 Journal Article %A Atiyah, Michael F. %T On the Krull-Schmidt theorem with application to sheaves %J Bulletin de la Société Mathématique de France %D 1956 %P 307-317 %V 84 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/bsmf.1475/ %R 10.24033/bsmf.1475 %G en %F BSMF_1956__84__307_0
Atiyah, Michael F. On the Krull-Schmidt theorem with application to sheaves. Bulletin de la Société Mathématique de France, Tome 84 (1956), pp. 307-317. doi : 10.24033/bsmf.1475. http://www.numdam.org/articles/10.24033/bsmf.1475/
[1] Exact categories and duality (Trans. Amer. math., Soc., vol. 80, 1955, p. 1-34). | MR | Zbl
,[2] Idéaux de fonctions analytiques de n variables complexes (Ann. sc. Éc. Norm. Sup., t. 61, 1944, p. 149-198). | Numdam | MR | Zbl
,[3] Homological algebra (Princeton math. Ser., no 19, 1956). | MR | Zbl
, and ,[4] Un théorème de finitude concernant les variétés analytiques compactes (C. R. Acad. Sc., t. 237, 1953, p. 128-130). | MR | Zbl
and ,[5] General theory of natural equivalences (Trans. Amer. math. Soc., vol. 58, 1945, p. 231-294). | MR | Zbl
and ,[6] Theory of Rings (Amer. math. Soc., Math. Surveys, 1942). | Zbl
,[7] Sur la cohomologie des variétés algébriques. (J. Math. pures et appl., t. 35, 1956). | Zbl
,[8] Faisceaux algébriques cohérents (Ann. Math., vol. 61, 1955, p. 197-278). | MR | Zbl
, ,Cité par Sources :