Space-time approximations of the FitzHugh-Nagumo system of coupled semi-linear parabolic PDEs are examined. The schemes under consideration are discontinuous in time but conforming in space and of arbitrary order. Stability estimates are presented in the natural energy norms and at arbitrary times, under minimal regularity assumptions. Space-time error estimates of arbitrary order are derived, provided that the natural parabolic regularity is present. Various physical parameters appearing in the model are tracked and numerical examples are presented.
Mots clés : error estimates, discontinuous time-stepping Galerkin schemes, FitzHugh-Nagumo equations, reaction-diffusion, parameter dependent, coarse time-stepping
@article{M2AN_2013__47_1_281_0, author = {Chrysafinos, Konstantinos and Filopoulos, Sotirios P. and Papathanasiou, Theodosios K.}, title = {Error estimates for a {FitzHugh-Nagumo} parameter-dependent reaction-diffusion system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {281--304}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012028}, mrnumber = {2997502}, zbl = {1272.65072}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2012028/} }
TY - JOUR AU - Chrysafinos, Konstantinos AU - Filopoulos, Sotirios P. AU - Papathanasiou, Theodosios K. TI - Error estimates for a FitzHugh-Nagumo parameter-dependent reaction-diffusion system JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 281 EP - 304 VL - 47 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2012028/ DO - 10.1051/m2an/2012028 LA - en ID - M2AN_2013__47_1_281_0 ER -
%0 Journal Article %A Chrysafinos, Konstantinos %A Filopoulos, Sotirios P. %A Papathanasiou, Theodosios K. %T Error estimates for a FitzHugh-Nagumo parameter-dependent reaction-diffusion system %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 281-304 %V 47 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2012028/ %R 10.1051/m2an/2012028 %G en %F M2AN_2013__47_1_281_0
Chrysafinos, Konstantinos; Filopoulos, Sotirios P.; Papathanasiou, Theodosios K. Error estimates for a FitzHugh-Nagumo parameter-dependent reaction-diffusion system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 281-304. doi : 10.1051/m2an/2012028. http://www.numdam.org/articles/10.1051/m2an/2012028/
[1] Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73 (2004) 613-635. | MR | Zbl
and ,[2] Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM : M2AN 38 (2004) 261-289. | Numdam | MR | Zbl
and ,[3] Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comput. 67 (1998) 457-477. | MR | Zbl
, and ,[4] An ADI method for hysteric reaction-diffusion systems. SIAM J. Numer. Anal. 34 (1997) 1185-1206. | MR | Zbl
and ,[5] Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349-366. | MR | Zbl
and ,[6] Lagrangian and moving mesh methods for the convection diffusion equation. ESAIM : M2AN 42 (2008) 27-56. | Numdam | MR | Zbl
and ,[7] Discontinous Galerkin approximations of the Stokes and Navier-Stokes problem. Math. Comput. 79 (2010) 2135-2167. | MR | Zbl
and ,[8] The finite element method for elliptic problems. SIAM Classics Appl. Math. (2002). | MR | Zbl
,[9] Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36 (1981) 455-473. | MR | Zbl
, and ,[10] S, Descombes and M. Ribot, Convergence of the Peaceman-Rachford approximation for reaction-diffusion systems. Numer. Math. 95 (2003) 503-525. | MR | Zbl
[11] Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | MR | Zbl
and ,[12] Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L∞(L2) and L∞(L∞). SIAM J. Numer. Anal. 32 (1995) 706-740. | MR | Zbl
and ,[13] Adaptive finite element methods for parabolic problems IV : Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | MR | Zbl
and ,[14] Time discretization of parabolic problems by the discontinuous Galerkin method. ESAIM : M2AN 29 (1985) 611-643. | Numdam | MR | Zbl
, and ,[15] The discontinuous Galerkin method for semilinear parabolic equations. ESAIM : M2AN 27 (1993) 35-54. | Numdam | MR | Zbl
and ,[16] Estimating the error of numerical solutions of systems of reaction-diffusion equations. Mem. Amer. Math. Soc. 146 (2000) viii+109. | MR | Zbl
, and ,[17] Partial Differential Equations. AMS, Providence, RI (1998). | Zbl
,[18] Mathematical aspects of reacting and diffusing systems. Lect. Notes Biomath. 28 (1978). | MR | Zbl
,[19] Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445-466.
,[20] Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28 (2006) 942-962. | MR | Zbl
, , , and ,[21] A reaction-diffusion system of λ − ω type. Part II : Numerical analysis. Eur. J. Appl. Math. 16 (2005) 621-646. | Zbl
and ,[22] Finite element approximation of spatially extended predator interactions with the Holling type II functional response. Numer. Math. 107 (2008) 641-667. | MR | Zbl
and ,[23] Finite Element Methods for Navier-Stokes. Springer-Verlag, New York (1986). | MR
and ,[24] Fully discrete finite element approximation of the forced Fisher equation. J. Math. Anal. Appl. 313 (2006) 419-440. | MR | Zbl
, and ,[25] Dimension splitting for evolution equations. Numer. Math. 108 (2008) 557-570. | MR | Zbl
and ,[26] Some mathematical models from neurobiology. Amer. Math. Monthly 82 (1975) 881-895. | MR | Zbl
,[27] Numerical solution for time-dependent advection-diffusion-reaction equations. Springer-Verlag, Berlin (2003). | MR | Zbl
and ,[28] Existence and regularity for the FitzHugh-Nagumo equations with inhomogeneous boundary conditions. Nonlinear Anal. Theory Methods Appl. 14 (1990) 201-216. | MR | Zbl
,[29] Error estimates for the semidiscrete Galerkin approximations of the FitzHugh-Nagumo equations. Appl. Math. Comput. 50 (1992) 93-114. | MR | Zbl
,[30] Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912-928. | MR | Zbl
,[31] Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge (1987). | MR | Zbl
,[32] On a finite element method for solving the neutron transport equation, in Mathematical aspects of finite elements in partial differential equations, edited by C. de Boor. Academic Press, New York (1974) 89-123. | MR | Zbl
and ,[33] A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I : Problems without control constraints. SIAM J. Control. Optim. 47 (2008) 1150-1177. | MR | Zbl
and ,[34] Numerical solution for optimal control problems of the reaction diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149-178. | MR | Zbl
, and ,[35] An active pulse transmission line simulating nerve axon. Proc. IRE 50 (1962) 2061-2070.
, and ,[36] Partial Differential Equations in Biology. Courant Institute of Mathematical Sciences, New York (1975). | MR | Zbl
,[37] Boundary value problems for the FitzHugh-Nagumo equations. J. Differ. Equ. 30 (1978) 119-147. | Zbl
,[38] Infinite Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68 (1997). | MR | Zbl
,[39] “Coarse” stability and bifurcation analysis using time-steppers : a reaction-diffusion example. Proc. Natl. Acad. Sci. USA 97 (2000) 9840-9843. | Zbl
, and ,[40] Galerkin finite element methods for parabolic problems. Spinger-Verlag, Berlin (1997). | Zbl
,[41] Compactness properties of CG and DG schemes. SIAM J. Numer. Anal. 47 (2010) 4680-4710. | MR | Zbl
,[42] Nonlinear functional analysis and its applications, in II/B Nonlinear monotone operators. Springer-Verlag, New York (1990). | MR | Zbl
,Cité par Sources :