We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.
Mots clés : nonlinear parabolic equations, local Lipschitz condition, continuous and discontinuous Galerkin methods, a priori error analysis, monotone operators
@article{M2AN_2004__38_2_261_0, author = {Akrivis, Georgios and Makridakis, Charalambos}, title = {Galerkin time-stepping methods for nonlinear parabolic equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {261--289}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/m2an:2004013}, mrnumber = {2069147}, zbl = {1085.65094}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2004013/} }
TY - JOUR AU - Akrivis, Georgios AU - Makridakis, Charalambos TI - Galerkin time-stepping methods for nonlinear parabolic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 261 EP - 289 VL - 38 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2004013/ DO - 10.1051/m2an:2004013 LA - en ID - M2AN_2004__38_2_261_0 ER -
%0 Journal Article %A Akrivis, Georgios %A Makridakis, Charalambos %T Galerkin time-stepping methods for nonlinear parabolic equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 261-289 %V 38 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2004013/ %R 10.1051/m2an:2004013 %G en %F M2AN_2004__38_2_261_0
Akrivis, Georgios; Makridakis, Charalambos. Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 261-289. doi : 10.1051/m2an:2004013. http://www.numdam.org/articles/10.1051/m2an:2004013/
[1] Linearly implicit methods for nonlinear parabolic equations. Math. Comp. 73 (2004) 613-635. | Zbl
and ,[2] Convergence of a time discrete Galerkin method for semilinear parabolic equations. Preprint (2002).
and ,[3] Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457-477. | Zbl
, and ,[4] Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82 (1999) 521-541. | Zbl
, and ,[5] Continuous finite elements in space and time for the heat equation. Math. Comp. 52 (1989) 255-274. | Zbl
and ,[6] Efficient higher order single step methods for parabolic problems: Part I, Math. Comp. 35 (1980) 655-677. | Zbl
and ,[7] Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | Zbl
and ,[8] Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | Zbl
and ,[9] Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315-1325. | Zbl
, and ,[10] The discontinuous Galerkin method for semilinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35-54. | Numdam | Zbl
and ,[11] Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912-928. | Zbl
,[12] A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67 (1998) 479-499. | Zbl
and ,[13] A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779-1807. | Zbl
and ,[14] Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comp. (to appear). | MR | Zbl
and ,[15] On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal. 34 (1997) 389-401. | Zbl
and ,[16] A posteriori error estimates for a class of dissipative schemes for nonlinear evolution equations. Preprint (2002).
and ,[17] Interior maximum-norm estimates for finite element methods: Part II. Math. Comp. 64 (1995) 907-928. | Zbl
and ,[18] Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). | MR | Zbl
,Cité par Sources :