@article{M2AN_1985__19_4_611_0, author = {Eriksson, Kenneth and Johnson, Claes and Thom\'ee, Vidar}, title = {Time discretization of parabolic problems by the discontinuous {Galerkin} method}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {611--643}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {19}, number = {4}, year = {1985}, mrnumber = {826227}, zbl = {0589.65070}, language = {en}, url = {http://www.numdam.org/item/M2AN_1985__19_4_611_0/} }
TY - JOUR AU - Eriksson, Kenneth AU - Johnson, Claes AU - Thomée, Vidar TI - Time discretization of parabolic problems by the discontinuous Galerkin method JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1985 SP - 611 EP - 643 VL - 19 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://www.numdam.org/item/M2AN_1985__19_4_611_0/ LA - en ID - M2AN_1985__19_4_611_0 ER -
%0 Journal Article %A Eriksson, Kenneth %A Johnson, Claes %A Thomée, Vidar %T Time discretization of parabolic problems by the discontinuous Galerkin method %J ESAIM: Modélisation mathématique et analyse numérique %D 1985 %P 611-643 %V 19 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://www.numdam.org/item/M2AN_1985__19_4_611_0/ %G en %F M2AN_1985__19_4_611_0
Eriksson, Kenneth; Johnson, Claes; Thomée, Vidar. Time discretization of parabolic problems by the discontinuous Galerkin method. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 4, pp. 611-643. http://www.numdam.org/item/M2AN_1985__19_4_611_0/
[1] Single step Galerkin approximations for parabolic problems. Math. comp. 31, 818-847 (1977). | MR | Zbl
, and ,[2] Discontinuous Galerkin methods for ordinary differential equations. Math. Comp. 36, 455-473 (1981). | MR | Zbl
, and ,[3] Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15, 912-928 (1978). | MR | Zbl
,[4] On error estimates for numerical methods for stiff o.d.e's. Preprint, Department of Mathematics, University of Michigan, 1984.
,[5] On the smoothing property of the Galerkin method for parabolic equations SIAM J. Numer. Anal. 19, 93-113 (1981). | MR | Zbl
and ,[6] Galerkin Methods for Parabolic Problems, Springer Lecture Notes in Mathematics, No. 1054, 1984. | MR | Zbl
,