A mixed-Lagrange multiplier finite element method for the polyharmonic equation
ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 4, pp. 519-557.
@article{M2AN_1985__19_4_519_0,
     author = {Bramble, James H. and Falk, Richard S.},
     title = {A {mixed-Lagrange} multiplier finite element method for the polyharmonic equation},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {519--557},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {19},
     number = {4},
     year = {1985},
     mrnumber = {826223},
     zbl = {0591.65073},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1985__19_4_519_0/}
}
TY  - JOUR
AU  - Bramble, James H.
AU  - Falk, Richard S.
TI  - A mixed-Lagrange multiplier finite element method for the polyharmonic equation
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1985
SP  - 519
EP  - 557
VL  - 19
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://www.numdam.org/item/M2AN_1985__19_4_519_0/
LA  - en
ID  - M2AN_1985__19_4_519_0
ER  - 
%0 Journal Article
%A Bramble, James H.
%A Falk, Richard S.
%T A mixed-Lagrange multiplier finite element method for the polyharmonic equation
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1985
%P 519-557
%V 19
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%U http://www.numdam.org/item/M2AN_1985__19_4_519_0/
%G en
%F M2AN_1985__19_4_519_0
Bramble, James H.; Falk, Richard S. A mixed-Lagrange multiplier finite element method for the polyharmonic equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 19 (1985) no. 4, pp. 519-557. http://www.numdam.org/item/M2AN_1985__19_4_519_0/

[1] O. Axelsson, Solution of linear Systems of équations : itérative methods. Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer Verlag, 1977. | MR | Zbl

[2] I. Babuska, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), pp. 179-192. | MR | Zbl

[3] I. Babuska and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. | MR | Zbl

[4] J. H. Bramble, The Lagrange multiplier method for Dirichlet's Problem, Math.Comp., 37 (1981), pp. 1-11 | MR | Zbl

[5] J. H. Bramble and R. S. Falk, TWO mixed finite element methods for the simply supported plate problem, R.A.I.R.O., Analyse numérique, 17 (1983), pp. 337-384. | Numdam | MR | Zbl

[6] J . H . Bramble and J. E. Osborn, Rate of convergence estimates for non-selfadjoint eigenvalue approximations. Math. Comp.. 27 (1973). pp. 525-549 | MR | Zbl

[7] J. H. Bramble and J. E. Pasciak, A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem, EEE Transactions on Magnetics, Vol Mag-18, (1982), pp. 357-361.

[8] J. H. Bramble and L. R. Scott, Simultaneous approximation in scales of Banach spaces, Math. Comp., 32 (1978), pp.947-954. | MR | Zbl

[9] P. G. Ciarlet and P.A. Raviart, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. | MR | Zbl

[10] P. G. Ciarlet and R. Glowinski, Dual itérative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp.277-295. | MR | Zbl

[11] R. S., Falk, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp.556-567. | MR | Zbl

[12] R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. | MR | Zbl

[13] J. L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications, Vol 1, Dunod, Paris, 1968. | MR | Zbl

[14] M. Schechter, On L p estimates andregularity II, Math. Scand., 13 (1963), pp. 47- | MR | Zbl