Two mixed finite element methods for the simply supported plate problem
RAIRO. Analyse numérique, Tome 17 (1983) no. 4, pp. 337-384.
@article{M2AN_1983__17_4_337_0,
     author = {Bramble, James H. and Falk, Richard S.},
     title = {Two mixed finite element methods for the simply supported plate problem},
     journal = {RAIRO. Analyse num\'erique},
     pages = {337--384},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {17},
     number = {4},
     year = {1983},
     mrnumber = {713765},
     zbl = {0536.73063},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1983__17_4_337_0/}
}
TY  - JOUR
AU  - Bramble, James H.
AU  - Falk, Richard S.
TI  - Two mixed finite element methods for the simply supported plate problem
JO  - RAIRO. Analyse numérique
PY  - 1983
SP  - 337
EP  - 384
VL  - 17
IS  - 4
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://www.numdam.org/item/M2AN_1983__17_4_337_0/
LA  - en
ID  - M2AN_1983__17_4_337_0
ER  - 
%0 Journal Article
%A Bramble, James H.
%A Falk, Richard S.
%T Two mixed finite element methods for the simply supported plate problem
%J RAIRO. Analyse numérique
%D 1983
%P 337-384
%V 17
%N 4
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://www.numdam.org/item/M2AN_1983__17_4_337_0/
%G en
%F M2AN_1983__17_4_337_0
Bramble, James H.; Falk, Richard S. Two mixed finite element methods for the simply supported plate problem. RAIRO. Analyse numérique, Tome 17 (1983) no. 4, pp. 337-384. http://www.numdam.org/item/M2AN_1983__17_4_337_0/

[1] O. Axelsson, Solution of linear systems of equations : iterative methods, Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer-Verlag, 1971. | MR | Zbl

[2] I. Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (Editor), Academic Press, New York, 1972. | MR | Zbl

[3] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), pp. 179-192. | EuDML | MR | Zbl

[4] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), pp. 525-549. | MR | Zbl

[5] J. H. Bramble and L. E. Payne, Some Uniqueness Theorems in the Theory of Elasticity, Arch. for Rat. Mech. and Anal., 9 (1962), pp. 319-328. | MR | Zbl

[6] J. H. Bramble and L. R. Scott, Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), pp. 947-954. | MR | Zbl

[7] J. H. Bramble, The lagrange multiplier method for Dirichlet's problem, Math. Comp. 37 (1981), pp. 1-11. | MR | Zbl

[8] P. G. Ciarlet and P. A. Raviart, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. | MR | Zbl

[9] P. G. Ciarlet and R. Glowinski, Dual iterative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp. 277-295. | MR | Zbl

[10] R. S. Falk, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp. 556-567. | MR | Zbl

[11] R. Glowinski and O. Pironneau, Numerical Methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. | MR | Zbl

[12] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. | MR | Zbl

[13] M. Schechter, On On L p estimates and regularity II, Math. Scand. 13 (1963), pp. 47-69. | MR | Zbl

[14] R. Weinstock, Calculus of Variations, McGraw-Hill, New York, 1952. | Zbl