@incollection{AST_2010__331__179_0, author = {Coleman, Robert and Iovita, Adrian}, title = {Hidden structures on semistable curves}, booktitle = {Repr\'esentations $p$-adiques de groupes $p$-adiques III : m\'ethodes globales et g\'eom\'etriques}, series = {Ast\'erisque}, pages = {179--254}, publisher = {Soci\'et\'e math\'ematique de France}, number = {331}, year = {2010}, mrnumber = {2667889}, zbl = {1251.11047}, language = {en}, url = {http://www.numdam.org/item/AST_2010__331__179_0/} }
TY - CHAP AU - Coleman, Robert AU - Iovita, Adrian TI - Hidden structures on semistable curves BT - Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques AU - Collectif T3 - Astérisque PY - 2010 SP - 179 EP - 254 IS - 331 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2010__331__179_0/ LA - en ID - AST_2010__331__179_0 ER -
%0 Book Section %A Coleman, Robert %A Iovita, Adrian %T Hidden structures on semistable curves %B Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques %A Collectif %S Astérisque %D 2010 %P 179-254 %N 331 %I Société mathématique de France %U http://www.numdam.org/item/AST_2010__331__179_0/ %G en %F AST_2010__331__179_0
Coleman, Robert; Iovita, Adrian. Hidden structures on semistable curves, dans Représentations $p$-adiques de groupes $p$-adiques III : méthodes globales et géométriques, Astérisque, no. 331 (2010), pp. 179-254. http://www.numdam.org/item/AST_2010__331__179_0/
[1] Cohomologie rigide et cohomologie rigide à support propre. Première partie", http://www.maths.univ-rennes1.fr/~berthelo/.
- "[2] -isocrystals and de Rham cohomology. I", Invent. Math. 72 (1983), p. 159-199. | DOI | EuDML | MR | Zbl
& - "[3] Weights in rigid cohomology applications to unipotent -isocrystals", Ann. Sci. École Norm. Sup. 31 (1998), p. 683-715. | DOI | EuDML | Numdam | MR | Zbl
- "[4] Un théorème de transfert pour les disques singuliers réguliers", Astérisque 119-120 (1984), p. 5, 151-168. | Numdam | MR | Zbl
- "[5] Torsion points on curves and -adic abelian integrals", Ann. of Math. 121 (1985), p. 111-168. | DOI | MR | Zbl
- "[6] Minnesota notes", notes from a course on -adic integration, 1989.
- "[7] Reciprocity laws on curves", Compositio Math. 72 (1989), p. 205-235. | EuDML | Numdam | MR | Zbl
- "[8] A -adic Shimura isomorphism and -adic periods of modular forms", in -Adic Monodromy and the Birch and Swinnerton-Dyer Conjecture, 1991. | MR | Zbl
- "[9] The monodromy pairing", Asian J. Math. 4 (2000), p. 315-330. | DOI | MR | Zbl
- "[10] Stable maps of curves", Doc. Math. extra vol. (2003), p. 217-225. | EuDML | MR | Zbl
- "[11] Variation of Hodge-Tate-Sen weights".
- "[12] Invariants et dérivées de valeurs propres de frobenius", this volume. | Numdam | Zbl
- "[13] Construction des représentations -adiques semi-stables", Invent. Math. 140 (2000), p. 1-43. | DOI | MR | Zbl
& - "[14] Équations différentielles à points singuliers réguliers, Lecture Notes in Math., vol. 163, Springer, 1970. | MR | Zbl
-[15] Crystalline cohomology and -adic Galois-representations", in Algebraic analysis, geometry, and number theory (Baltimore, MB, 1988), Johns Hopkins Univ. Press, 1989, p. 25-80. | MR | Zbl
- "[16] -isocrystals on open varieties: results and conjectures", in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser, 1990, p. 219-248. | MR | Zbl
- "[17] Crystalline cohomology of semistable curve-the -theory", J. Algebraic Geom. 6 (1997), p. 1-18. | MR | Zbl
- "[18] Almost étale extensions", Astérisque 279 (2002), p. 185-270. | Numdam | MR | Zbl
- "[19] Représentations -adiques semi-stables", Astérisque 223 (1994), p. 113-184. | Numdam | MR | Zbl
- "[20] -adic -functions and -adic periods of modular forms", Invent. Math. 111 (1993), p. 407-447. | DOI | EuDML | MR | Zbl
& - "[21] The Cech filtration and monodromy in log crystalline cohomology", Trans. Amer. Math. Soc. 359 (2007), p. 2945-2972. | DOI | MR | Zbl
- "[22] Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961, Springer, 1967. | MR | Zbl
-[23] Semi-stable reduction and crystalline cohomology with logarithmic poles", Astérisque 223 (1994), p. 221-268. | Numdam | MR | Zbl
& - "[24] Derivatives of -adic -functions, Heegner cycles and monodromy modules attached to modular forms", Invent. Math. 154 (2003), p. 333-384. | DOI | MR | Zbl
& - "[25] Crystalline Dieudonné module theory via formal and rigid geometry", Publ. Math. I.H.É.S. 82 (1995), p. 5-96. | DOI | EuDML | Numdam | MR | Zbl
- "[26] Logarithmic structures of Fontaine-Illusie", in Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, 1989, p. 191- 224. | MR | Zbl
- "[27] Full faithfulness for overconvergent -isocrystals", in Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, p. 819-835. | MR | Zbl
- "[28] Log-cristaux et surconvergence", Ann. Inst. Fourier (Grenoble) 51 (2001), p. 1189-1207. | DOI | EuDML | Numdam | MR | Zbl
& - "[29] On monodromy invariants occurring in global arithmetic, and Fontaine's theory, Contemp. Math., vol. 165, 1991. | MR | Zbl
-[30] On -adic analogues of the conjectures of Birch and Swinnerton-Dyer", Invent. Math. 84 (1986), p. 1-48. | DOI | EuDML | MR | Zbl
, & - "[31] Formal cohomology. I", Ann. of Math. 88 (1968), p. 181-217. | DOI | MR | Zbl
& - "[32] -isocrystals and de Rham cohomology. II. Convergent isocrystals", Duke Math. J. 51 (1984), p. 765-850. | DOI | MR | Zbl
- "[33] Modular forms and -adic Hodge theory", Invent. Math. 129 (1997), p. 607-620. | DOI | MR | Zbl
- "[34] Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology", J. Math. Sci. Univ. Tokyo 9 (2002), p. 1-163. | MR | Zbl
- "[35] The relative case I", preprint, 2007.
- "[36] The relative case II", preprint, 2007.
- "[37] Coleman's -invariant and families of modular forms", this volume. | Numdam | Zbl
- "[38] Values of -adic -functions and a -adic Poisson kernel", Invent. Math. 101 (1990), p. 395-410. | DOI | EuDML | MR | Zbl
- "[39] -adic étale cohomology and crystalline cohomology in the semi-stable reduction case", Invent. Math. 137 (1999), p. 233-411. | DOI | MR | Zbl
- "