The existence of solutions undergoing multiple spatial transitions between isolated periodic solutions is studied for a class of systems of semilinear elliptic partial differential equations. A key tool is a new result on the possible behavior of the set of single transition solutions.
Mots-clés : Second order semilinear elliptic systems, Heteroclinic solutions, Multitransition solutions, Minimization, Renormalized functional
@article{AIHPC_2016__33_1_199_0, author = {Montecchiari, Piero and Rabinowitz, Paul H.}, title = {On the existence of multi-transition solutions for a class of elliptic systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {199--219}, publisher = {Elsevier}, volume = {33}, number = {1}, year = {2016}, doi = {10.1016/j.anihpc.2014.10.001}, mrnumber = {3436431}, zbl = {1332.35113}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.001/} }
TY - JOUR AU - Montecchiari, Piero AU - Rabinowitz, Paul H. TI - On the existence of multi-transition solutions for a class of elliptic systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2016 SP - 199 EP - 219 VL - 33 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.001/ DO - 10.1016/j.anihpc.2014.10.001 LA - en ID - AIHPC_2016__33_1_199_0 ER -
%0 Journal Article %A Montecchiari, Piero %A Rabinowitz, Paul H. %T On the existence of multi-transition solutions for a class of elliptic systems %J Annales de l'I.H.P. Analyse non linéaire %D 2016 %P 199-219 %V 33 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.001/ %R 10.1016/j.anihpc.2014.10.001 %G en %F AIHPC_2016__33_1_199_0
Montecchiari, Piero; Rabinowitz, Paul H. On the existence of multi-transition solutions for a class of elliptic systems. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 199-219. doi : 10.1016/j.anihpc.2014.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2014.10.001/
[1] On a class of reversible elliptic systems, Netw. Heterog. Media, Volume 7 (2012), pp. 927–939 | DOI | MR | Zbl
[2] Multibump solutions to possibly degenerate equilibria for almost periodic Lagrangian systems, Z. Angew. Math. Phys., Volume 50 (1999) no. 6, pp. 860–891 | DOI | MR | Zbl
[3] The discrete Frenkel–Kontorova model and its extensions: I. Exact results for the ground states, Physica D, Volume 8 (1983), pp. 381–422 | DOI | MR | Zbl
[4] Existence of homoclinic motions, Vestn. Mosk. Univ. Ser. 1 Mat. Mekh. (1983), pp. 98–103 (in Russian) | MR | Zbl
[5] Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Am. Math. Soc., Volume 4 (1991), pp. 693–727 | DOI | MR | Zbl
[6] Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, Volume 21 (1982), pp. 457–467 | DOI | MR | Zbl
[7] Variational construction of connecting orbits, Ann. Inst. Fourier (Grenoble), Volume 43 (1993), pp. 1349–1386 | DOI | Numdam | MR | Zbl
[8] Heteroclinic chains for a reversible Hamiltonian system, Nonlinear Anal., Volume 28 (1997), pp. 871–887 | DOI | MR | Zbl
[9] Multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Rend. Mat. Accad. Lincei (9), Volume 4 (1994), pp. 265–271 | MR | Zbl
[10] A global condition for periodic Duffing-like equations, Trans. Am. Math. Soc., Volume 351 (1999) no. 9, pp. 371–3724 | DOI | MR | Zbl
[11] Heteroclinics for a reversible Hamiltonian system, Ergod. Theory Dyn. Syst., Volume 14 (1994), pp. 817–829 | DOI | MR | Zbl
[12] Connecting orbits for a reversible Hamiltonian system, Ergod. Theory Dyn. Syst., Volume 20 (2000) no. 06, pp. 1767–1784 | DOI | MR | Zbl
[13] A note on a class of reversible Hamiltonian systems, Adv. Nonlinear Stud., Volume 9 (2009), pp. 815–823 | DOI | MR | Zbl
[14] Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., Volume 209 (1992), pp. 27–42 | DOI | MR | Zbl
[15] Looking for the Bernoulli shift, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993), pp. 561–590 | DOI | Numdam | MR | Zbl
[16] Minimal solutions of a variational problems on a torus, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 3 (1986), pp. 229–272 | DOI | Numdam | MR | Zbl
[17] On minimal laminations of the torus, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 6 (1989), pp. 95–138 | DOI | Numdam | MR | Zbl
[18] Extensions of Moser–Bangert Theory: Locally Minimal Solutions, Prog. Nonlinear Differ. Equ. Appl., vol. 81, Birkhäuser, Boston, 2011 | MR | Zbl
[19] Many solutions of elliptic problems on of irrational slope, Commun. Partial Differ. Equ., Volume 30 (2005), pp. 1773–1804 | DOI | MR | Zbl
[20] Slope-changing solutions of elliptic problems on , Nonlinear Anal., Volume 68 (2008), pp. 3923–3947 | DOI | MR | Zbl
[21] Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 103–128 | DOI | Numdam | MR | Zbl
[22] A generalization of Aubry–Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009), pp. 1309–1344 | DOI | Numdam | MR | Zbl
[23] Plane-like minimizers in periodic media: jet flows and Ginzburg–Landau-type functionals, J. Reine Angew. Math., Volume 574 (2004), pp. 147–185 | MR | Zbl
[24] Stationary layered solutions in for a class of non autonomous Allen–Cahn equations, Calc. Var. Partial Differ. Equ., Volume 11 (2000), pp. 177–202 | DOI | MR | Zbl
[25] Existence of infinitely many stationary layered solutions in for a class of periodic Allen–Cahn equations, Commun. Partial Differ. Equ., Volume 27 (2002), pp. 1537–1574 | DOI | MR | Zbl
[26] Entire solutions in for a class of Allen–Cahn equations, ESAIM Control Optim. Calc. Var., Volume 11 (2005), pp. 633–672 | DOI | Numdam | MR | Zbl
[27] Multiplicity of entire solutions for a class of almost periodic Allen–Cahn type equations, Adv. Nonlinear Stud., Volume 5 (2005), pp. 515–549 | DOI | MR | Zbl
[28] On a phase transition model, Calc. Var. Partial Differ. Equ., Volume 47 (2013), pp. 1–23 | DOI | MR | Zbl
[29] Multiplicity results for interfaces of Ginzburg–Landau Allen–Cahn equations in periodic media, Adv. Math., Volume 215 (2007), pp. 379–426 | DOI | MR | Zbl
[30] Bump solutions for the mesoscopic Allen–Cahn equation in periodic media, Calc. Var. Partial Differ. Equ., Volume 40 (2011), pp. 37–49 | DOI | MR | Zbl
[31] Stationary layered solutions in for an Allen–Cahn system with multiple well potential, Calc. Var. Partial Differ. Equ., Volume 5 (1997), pp. 359–390 | DOI | MR | Zbl
[32] Stationary layered solutions for a system of Allen–Cahn type equations, Indiana Univ. Math. J., Volume 62 (2013), pp. 1535–1564 | DOI | MR | Zbl
[33] Multiplicity of layered solutions for Allen–Cahn systems with symmetric double well potential, September 2013 | arXiv | MR | Zbl
[34] Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities, Eur. J. Appl. Math., Volume 17 (2006), pp. 525–556 | DOI | MR | Zbl
[35] On the connection problem for potentials with several global minima, Indiana Univ. Math. J., Volume 57 (2008), pp. 1871–1906 | DOI | MR | Zbl
[36] Entire solutions to equivariant elliptic systems with variational structure, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 567–597 | DOI | MR | Zbl
[37] On an elliptic system with symmetric potential possessing two global minima, Bull. Greek Math. Soc. (2014) (in press) | MR
[38] On three-phase boundary motion and the singular limit of a vector-valued Ginzburg–Landau equation, Arch. Ration. Mech. Anal., Volume 124 (1993), pp. 355–379 | DOI | MR | Zbl
[39] Symmetric quadruple phase transitions, Indiana Univ. Math. J., Volume 57 (2008), pp. 781–836 | MR | Zbl
[40] Asymmetric heteroclinic double layers, ESAIM Control Optim. Calc. Var., Volume 8 (2002), pp. 965–1005 | DOI | Numdam | MR | Zbl
[41] Vector-valued local minimizers of non-convex variational problems, Rocky Mt. J. Math., Volume 21 (1991), pp. 799–807 | DOI | MR | Zbl
[42] A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math., Volume 13 (1960), pp. 457–468 | DOI | MR | Zbl
[43] Homoclinic type solutions for a semilinear elliptic PDE on , Commun. Pure Appl. Math., Volume 45 (1992), pp. 1217–1269 | MR | Zbl
[44] Topological Analysis, Princeton University Press, Princeton, 1964 | DOI | MR | Zbl
Cité par Sources :