Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs
Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 103-128.

Variational gluing arguments are employed to construct new families of solutions for a class of semilinear elliptic PDEs. The main tools are the use of invariant regions for an associated heat flow and variational arguments. The latter provide a characterization of critical values of an associated functional. Among the novelties of the paper are the construction of “hybrid” solutions by gluing minima and mountain pass solutions and an analysis of the asymptotics of the gluing process.

@article{AIHPC_2014__31_1_103_0,
     author = {Bolotin, Sergey and Rabinowitz, Paul H.},
     title = {Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic {PDEs}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {103--128},
     publisher = {Elsevier},
     volume = {31},
     number = {1},
     year = {2014},
     doi = {10.1016/j.anihpc.2013.02.003},
     mrnumber = {3165281},
     zbl = {1290.35049},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.02.003/}
}
TY  - JOUR
AU  - Bolotin, Sergey
AU  - Rabinowitz, Paul H.
TI  - Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2014
SP  - 103
EP  - 128
VL  - 31
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2013.02.003/
DO  - 10.1016/j.anihpc.2013.02.003
LA  - en
ID  - AIHPC_2014__31_1_103_0
ER  - 
%0 Journal Article
%A Bolotin, Sergey
%A Rabinowitz, Paul H.
%T Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs
%J Annales de l'I.H.P. Analyse non linéaire
%D 2014
%P 103-128
%V 31
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2013.02.003/
%R 10.1016/j.anihpc.2013.02.003
%G en
%F AIHPC_2014__31_1_103_0
Bolotin, Sergey; Rabinowitz, Paul H. Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs. Annales de l'I.H.P. Analyse non linéaire, Tome 31 (2014) no. 1, pp. 103-128. doi : 10.1016/j.anihpc.2013.02.003. http://www.numdam.org/articles/10.1016/j.anihpc.2013.02.003/

[1] F. Alessio, L. Jeanjean, P. Montecchiari, Stationary layered solutions in 2 for a class of non autonomous Allen–Cahn equations, Calc. Var. Partial Differential Equations 11 (2000), 177-202 | MR | Zbl

[2] S. Angenent, The shadowing lemma for elliptic PDE, Dynamics of Infinite-Dimensional Systems, Lisbon, 1986, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci. vol. 37, Springer, Berlin (1987), 7-22 | MR

[3] S. Aubry, P.Y. Le Daeron, The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states, Physica D 8 (1983), 381-422 | MR | Zbl

[4] U. Bessi, Many solutions of elliptic problems on n of irrational slope, Communications in Partial Differential Equations 30 (2005), 1773-1804 | MR | Zbl

[5] V. Bangert, On minimal laminations of the torus, AIHP Analyse Nonlinéaire 6 (1989), 95-138 | EuDML | Numdam | MR | Zbl

[6] S. Bolotin, Libration motions of natural dynamical systems, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1978), 72-77 | MR | Zbl

[7] S. Bolotin, P.H. Rabinowitz, A note on heteroclinic solutions of mountain pass type for a class of nonlinear elliptic PDE's, Progress in Nonlinear Differential Equations and Their Applications vol. 66, Birkhäuser, Basel (2006), 105-114 | MR | Zbl

[8] S. Bolotin, P.H. Rabinowitz, A note on hybrid heteroclinic solutions for a class of semilinear elliptic PDEs, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22 (2011), 151-160 | MR | Zbl

[9] K.-C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, Progress in Nonlinear Differential Equations and Their Applications vol. 6, Birkhäuser Inc., Boston, MA (1993) | MR

[10] V. Coti Zelati, I. Ekeland, E. Sèrè, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 288 (1990), 133-160 | EuDML | MR | Zbl

[11] V. Coti Zelati, P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693-727 | MR | Zbl

[12] V. Coti Zelati, P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on n , Comm. Pure Appl. Math. 45 (1992), 1217-1269 | MR | Zbl

[13] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften vol. 224, Springer-Verlag, Berlin (1983) | MR | Zbl

[14] G.A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. Math. 33 (1932), 719-739 | MR | Zbl

[15] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications vol. 54, Cambridge University Press (1995) | MR | Zbl

[16] R. De La Llave, E. Valdinoci, A generalization of Aubry–Mather theory to partial differential equations and pseudo-differential equations, AIHP Analyse Nonlinéaire 26 (2009), 1309-1344 | EuDML | Numdam | MR | Zbl

[17] J.N. Mather, Dynamics of area preserving maps, Proceedings of the International Congress of Mathematicians, vols. 1, 2, Berkeley, 1986, Amer. Math. Soc., Providence, RI (1987), 1190-1194 | MR

[18] J.N. Mather, Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc. 4 (1991), 207-263 | MR | Zbl

[19] M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924), 25-60 | JFM | MR

[20] J. Moser, Minimal solutions of variational problems on a torus, AIHP Analyse Nonlinéaire 3 (1986), 229-272 | EuDML | Numdam | MR | Zbl

[21] P.H. Rabinowitz, Minimax Methods in Critical Points Theory with Applications to Differential Equations, CBMS Regional Conference Series in Math. vol. 65, Amer. Math. Soc. (1984) | MR

[22] P.H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, AIHP Analyse Nonlinéaire 6 (1989), 331-346 | EuDML | Numdam | MR | Zbl

[23] P.H. Rabinowitz, E. Stredulinsky, Mixed states for an Allen–Cahn type equation, Comm. Pure Appl. Math. 56 (2003), 1078-1134 | MR | Zbl

[24] P.H. Rabinowitz, E. Stredulinsky, Mixed states for an Allen–Cahn type equation. II, Calc. Var. Partial Differential Equations 21 (2004), 157-207 | MR | Zbl

[25] P.H. Rabinowitz, E. Stredulinsky, Extensions of Moser–Bangert Theory. Locally Minimal Solutions, Progress in Nonlinear Differential Equations and Their Applications vol. 81, Birkhäuser/Springer, New York (2011) | MR | Zbl

[26] E. Sèrè, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), 27-42 | EuDML | MR | Zbl

[27] E. Sèrè, Looking for the Bernoulli shift, AIHP Analyse Nonlinéaire 10 (1993), 561-590 | EuDML | Numdam | MR | Zbl

Cité par Sources :