A kinetic model for coagulation–fragmentation
Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 809-836.

The aim of this paper is to show an existence theorem for a kinetic model of coagulation–fragmentation with initial data satisfying the natural physical bounds, and assumptions of finite number of particles and finite L p -norm. We use the notion of renormalized solutions introduced by DiPerna and Lions (1989) [3], because of the lack of a priori estimates. The proof is based on weak-compactness methods in L 1 , allowed by L p -norms propagation.

@article{AIHPC_2010__27_3_809_0,
     author = {Broizat, Damien},
     title = {A kinetic model for coagulation{\textendash}fragmentation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {809--836},
     publisher = {Elsevier},
     volume = {27},
     number = {3},
     year = {2010},
     doi = {10.1016/j.anihpc.2009.11.014},
     mrnumber = {2629881},
     zbl = {1190.82050},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2009.11.014/}
}
TY  - JOUR
AU  - Broizat, Damien
TI  - A kinetic model for coagulation–fragmentation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2010
SP  - 809
EP  - 836
VL  - 27
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2009.11.014/
DO  - 10.1016/j.anihpc.2009.11.014
LA  - en
ID  - AIHPC_2010__27_3_809_0
ER  - 
%0 Journal Article
%A Broizat, Damien
%T A kinetic model for coagulation–fragmentation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2010
%P 809-836
%V 27
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2009.11.014/
%R 10.1016/j.anihpc.2009.11.014
%G en
%F AIHPC_2010__27_3_809_0
Broizat, Damien. A kinetic model for coagulation–fragmentation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 809-836. doi : 10.1016/j.anihpc.2009.11.014. http://www.numdam.org/articles/10.1016/j.anihpc.2009.11.014/

[1] D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernoulli 5 no. 1 (1999), 3-48 | MR | Zbl

[2] H. Amann, C. Walker, Local and global strong solutions to continuous coagulation–fragmentation equations with diffusion, J. Differential Equations 218 no. 1 (2005), 159-186 | MR | Zbl

[3] R.J. Diperna, P.L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321-366 | MR | Zbl

[4] R.J. Diperna, P.L. Lions, Y. Meyer, L p regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 271-287 | EuDML | Numdam | MR | Zbl

[5] P.B. Dubovski, I.W. Stewart, Existence, uniqueness and mass conservation for the coagulation–fragmentation equation., Math. Methods Appl. Sci. 19 no. 7 (1996), 571-591 | MR | Zbl

[6] P.B. Dubovski, Solubility of the transport equation in the kinetics of coagulation and fragmentation., Izv. Math. 65 no. 1 (2001), 1-22 | MR

[7] M. Escobedo, P. Laurençot, S. Mischler, On a kinetic equation for coalescing particles, Comm. Math. Phys. 246 no. 2 (2004), 237-267 | MR | Zbl

[8] M. Escobedo, S. Mischler, M. Rodriguez-Ricard, On self-similarity and stationary problem for fragmentation and coagulation models., Ann. Inst. H. Poincaré Anal. Non Linéaire 22 no. 1 (2005), 99-125 | EuDML | Numdam | MR | Zbl

[9] N. Fournier, P. Laurençot, Existence of self-similar solutions to Smoluchowski's coagulation equation., Comm. Math. Phys. 256 no. 3 (2005), 589-609 | MR | Zbl

[10] P. Gérard, Solutions globales du problème de Cauchy pour l'équation de Boltzmann, Séminaire Bourbaki 699 (1987–1988), 257-281 | EuDML | Numdam | MR

[11] P.E. Jabin, J. Soler, A kinetic description of particle fragmentation, Math. Models Methods Appl. Sci. 16 no. 6 (2006), 933-948 | MR | Zbl

[12] P.E. Jabin, C. Klingenberg, Existence to solutions of a kinetic aerosol model, Nonlinear Partial Differential Equations and Related Analysis, Contemp. Math. vol. 371, Amer. Math. Soc., Providence, RI (2005), 181-192 | MR | Zbl

[13] W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation, Math. Methods Appl. Sci. 27 no. 6 (2004), 703-721 | MR | Zbl

[14] P. Laurençot, Self-similar solutions to a coagulation equation with multiplicative kernel, Phys. D 222 no. 1–2 (2006), 80-87 | MR | Zbl

[15] P. Laurençot, S. Mischler, Global existence for the discrete diffusive coagulation–fragmentation equations in L 1 , Rev. Mat. Iberoamericana 18 no. 3 (2002), 731-745 | EuDML | MR | Zbl

[16] P. Laurençot, S. Mischler, From the discrete to the continuous coagulation–fragmentation equations, Proc. Roy. Soc. Edinburgh. Sect. A 132 no. 5 (2002), 1219-1248 | MR | Zbl

[17] P. Laurençot, S. Mischler, The continuous coagulation–fragmentation equations with diffusion, Arch. Rational. Mech. Anal. 162 (2002), 45-99 | MR | Zbl

[18] P. Laurençot, S. Mischler, Convergence to equilibrium for the continuous coagulation–fragmentation equation., Bull. Sci. Math. 127 no. 3 (2003), 179-190 | MR | Zbl

[19] S. Mischler, M. Rodriguez-Ricard, Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Math. Acad. Sci. Paris 336 no. 5 (2003), 407-412 | MR

[20] H. Müller, Zur allgemeinen Theorie der raschen Koagulation, Kolloidchemische Beihefte 27 (1928), 223-250

[21] M. Smoluchowski, Drei Vorträge über Diffusion. Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik Zeitschr. 17 (1916), 557-599

[22] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift f. physik. Chemie 92 (1917), 129-168

[23] I.W. Stewart, A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels, Math. Methods Appl. Sci. 11 no. 5 (1989), 627-648 | MR | Zbl

[24] I.W. Stewart, A uniqueness theorem for the coagulation–fragmentation equation, Math. Proc. Cambridge Philos. Soc. 107 no. 3 (1990), 573-578 | MR | Zbl

Cité par Sources :