@article{AIHPC_2005__22_1_99_0, author = {Escobedo, M. and Mischler, S. and Rodriguez Ricard, M.}, title = {On self-similarity and stationary problem for fragmentation and coagulation models}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {99--125}, publisher = {Elsevier}, volume = {22}, number = {1}, year = {2005}, doi = {10.1016/j.anihpc.2004.06.001}, mrnumber = {2114413}, zbl = {1130.35025}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.06.001/} }
TY - JOUR AU - Escobedo, M. AU - Mischler, S. AU - Rodriguez Ricard, M. TI - On self-similarity and stationary problem for fragmentation and coagulation models JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 99 EP - 125 VL - 22 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.06.001/ DO - 10.1016/j.anihpc.2004.06.001 LA - en ID - AIHPC_2005__22_1_99_0 ER -
%0 Journal Article %A Escobedo, M. %A Mischler, S. %A Rodriguez Ricard, M. %T On self-similarity and stationary problem for fragmentation and coagulation models %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 99-125 %V 22 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.06.001/ %R 10.1016/j.anihpc.2004.06.001 %G en %F AIHPC_2005__22_1_99_0
Escobedo, M.; Mischler, S.; Rodriguez Ricard, M. On self-similarity and stationary problem for fragmentation and coagulation models. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 1, pp. 99-125. doi : 10.1016/j.anihpc.2004.06.001. http://www.numdam.org/articles/10.1016/j.anihpc.2004.06.001/
[1] Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of the mean-field theory for probabilists, Bernoulli 5 (1999) 3-48. | MR | Zbl
,[2] Ordinary Differential Equations. An Introduction to Nonlinear Analysis, Translated from the German by Gerhard Metzen, de Gruyter Studies in Mathematics, vol. 13, Walter de Gruyter, Berlin, 1990. | MR | Zbl
,[3] Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss, J. Math. Anal. Appl. 293 (2) (2004) 693-720. | MR | Zbl
, ,[4] Systèmes différentiels, cours de l'Ecole Nationale des Ponts et Chaussées, 1982.
,[5] N. Ben Abdallah, M. Escobedo, S. Mischler, Convergence to the equilibrium for the Pauli equation without detailed balance condition, in preparation. | MR
[6] On small masses in self-similar fragmentations, Stochastic Process. Appl. 109 (1) (2004) 13-22. | MR | Zbl
,[7] The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc. (JEMS) 5 (4) (2003) 395-416. | MR | Zbl
,[8] Eternal solutions to Smoluchowski's coagulation equation with additive kernel and their probabilistic interpretations, Ann. Appl. Probab. 12 (2) (2002) 547-564. | MR | Zbl
,[9] Self-similar fragmentations, Ann. Inst. H. Poincaré Probab. Statist. 38 (3) (2002) 319-340. | Numdam | MR | Zbl
,[10] Homogeneous fragmentation processes, Probab. Theory Related Fields 121 (3) (2001) 301-318. | MR | Zbl
,[11] An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 13, The Clarendon Press, Oxford University Press, New York, 1998. | MR | Zbl
, ,[12] On the dynamic scaling behavior of solutions to the discrete Smoluchowski equations, Proc. Edinburgh Math. Soc. 39 (2) (1996) 547-559. | MR | Zbl
,[13] Smoluchowski's coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (4) (2000) 549-579. | Numdam | MR | Zbl
, ,[14] Scale-invariant regimes in one-dimensional models of growing and coalescing droplets, Phys. Rev. A 44 (1991) 6241-6251.
, , ,[15] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 707-741. | MR | Zbl
, ,[16] Cluster size distribution in irreversible aggregation at large times, J. Phys. A 18 (1985) 2779-2793. | MR
, ,[17] Scaling solutions of Smoluchowski's coagulation equation, J. Statist. Phys. 50 (1988) 295-329. | MR | Zbl
, ,[18] A general mathematical survey of the coagulation equation, in: Topics in Current Aerosol Research (part 2), International Reviews in Aerosol Physics and Chemistry, Pergamon Press, Oxford, 1972, pp. 203-376.
,[19] Trend to equilibrium for the coagulation-fragmentation equation, Math. Methods Appl. Sci. 19 (1996) 761-772. | MR | Zbl
, ,[20] Functional Analysis, Theory and Applications, Holt, Rinehart and Winston, 1965. | MR | Zbl
,[21] Stochastic particle approximations for Smoluchowski's coagulation equation, Ann. Appl. Probab. 11 (2001) 1137-1165. | MR | Zbl
, ,[22] Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations 195 (1) (2003) 143-174. | MR | Zbl
, , , ,[23] Gelation in coagulation and fragmentation models, Comm. Math. Phys. 231 (2002) 157-188. | MR | Zbl
, , ,[24] Large time behavior of the solutions of a convection diffusion equation, J. Funct. Anal. 100 (1991) 119-161. | MR | Zbl
, ,[25] On small particles in coagulation-fragmentation equations, J. Statist. Phys. 111 (5-6) (2003) 1299-1329. | MR | Zbl
, ,[26] N. Fournier, S. Mischler, Trend to the equilibrium for the coagulation equation with strong fragmentation but with balance condition, in: Proceedings: Mathematical, Physical and Engineering Sciences, in press. | Zbl
[27] N. Fournier, S. Mischler, On a Boltzmann equation for elastic, inelastic and coalescing collisions, preprint, 2003, submitted for publication.
[28] On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys. 246 (3) (2004) 503-541. | MR | Zbl
, , ,[29] Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl. 106 (2) (2003) 245-277. | MR | Zbl
,[30] Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel, J. Statist. Phys. 75 (1994) 389-407. | MR | Zbl
, ,[31] Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function, J. Phys. A 28 (1995) 2025-2039. | MR | Zbl
,[32] Ph. Laurençot, Convergence to self-similar solutions for coagulation equation, preprint, 2003.
[33] From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A 132 (5) (2002) 1219-1248. | MR | Zbl
, ,[34] The continuous coagulation-fragmentation equations with diffusion, Arch. Rational Mech. Anal. 162 (2002) 45-99. | MR | Zbl
, ,[35] Convergence to equilibrium for the continuous coagulation-fragmentation equation, Bull. Sci. Math. 127 (2003) 179-190. | MR | Zbl
, ,[36] On coalescence equations and related models, in: , , (Eds.), Modelling and Computational Methods for Kinetic Equations, Series Modelling and Simulation in Science, Engineering and Technology (MSSET), Birkhäuser, 2004, submitted for publication. | MR | Zbl
, ,[37] Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A 16 (1983) 2861-2873. | MR
,[38] Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Reports 383 (2-3) (2003) 95-212.
,[39] G. Menon, R.L. Pego, Approach to self-similarity in Smoluchowski's coagulation equation, preprint, 2003.
[40] G. Menon, R.L. Pego, Dynamical scaling in Smoluchowski's coagulation equation: uniform convergence, preprint, 2003.
[41] S. Mischler, C. Mouhot, M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations, in preparation.
[42] Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Acad. Sci. Paris Sér. I Math. 336 (2003) 407-412. | MR | Zbl
, ,[43] On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (4) (1999) 467-501. | Numdam | MR | Zbl
, ,[44] Steady-state size distribution for self-similar collision cascade, Icarus 123 (1996) 450-455.
, , ,Cité par Sources :