Nous montrons des raffinements -adique et “caractères par caractères” de la formule d’indice de Sinnott pour un corps abélien totalement réel. De tels raffinements ont aussi été obtenus par Kuz’min avec des méthodes différentes (voir les commentaires en introduction). Nous donnons des applications à la théorie d’Iwasawa des unités semi- locales et cyclotomiques.
We show -adic and “character by character” refinements of Sinnott’s index formula for a totally real abelian number field. Such refinements have also been obtained by Kuz’min by different methods (but see comments in the introduction). Applications are given to Iwasawa theory of semi-local units and cyclotomic units.
Mot clés : groupes de classes, fonctions $L\,p$-adiques, théorie d’Iwasawa
Keywords: class groups, $p$-adic $L$ functions, Iwasawa’s theory
@article{AIF_2001__51_4_903_0, author = {Belliard, Jean-Robert and Nguyen Quang Do, Thong}, title = {Formules de classes pour les corps ab\'eliens r\'eels}, journal = {Annales de l'Institut Fourier}, pages = {903--937}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {4}, year = {2001}, doi = {10.5802/aif.1840}, mrnumber = {1849210}, zbl = {1007.11063}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1840/} }
TY - JOUR AU - Belliard, Jean-Robert AU - Nguyen Quang Do, Thong TI - Formules de classes pour les corps abéliens réels JO - Annales de l'Institut Fourier PY - 2001 SP - 903 EP - 937 VL - 51 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1840/ DO - 10.5802/aif.1840 LA - fr ID - AIF_2001__51_4_903_0 ER -
%0 Journal Article %A Belliard, Jean-Robert %A Nguyen Quang Do, Thong %T Formules de classes pour les corps abéliens réels %J Annales de l'Institut Fourier %D 2001 %P 903-937 %V 51 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1840/ %R 10.5802/aif.1840 %G fr %F AIF_2001__51_4_903_0
Belliard, Jean-Robert; Nguyen Quang Do, Thong. Formules de classes pour les corps abéliens réels. Annales de l'Institut Fourier, Tome 51 (2001) no. 4, pp. 903-937. doi : 10.5802/aif.1840. http://www.numdam.org/articles/10.5802/aif.1840/
[BB] Equivariant Tamagawa numbers, Fitting ideals and Iwasawa theory (2000) (A paraître dans Compositio Math.) | MR | Zbl
[Be] Sur la structure galoisienne des unités circulaires dans les -extensions, J. of Number Theory, Volume 69 (1998), pp. 16-49 | DOI | MR | Zbl
[Coa] -adic -functions and Iwasawa's theory, Proc. Sympos., Univ. Durham, Durham (1975) (Algebraic number fields: $L$ L -functions and Galois properties) (1977), pp. 269-353 | Zbl
[Cor] Fitting ideals of class groups in a -extension, Acta Arithm., Volume 87 (1998) no. 1, pp. 79-88 | MR | Zbl
[FG] Regulators and Iwasawa modules. With an appendix by W. Sinnott, Invent. Math., Volume 62 (1981) no. 3, pp. 443-457 | MR | Zbl
[Gi1] Unités cyclotomiques, unités semi-locales et -extensions, Ann. Inst. Fourier, Grenoble, Volume 29 (1979) no. 1, pp. 49-79 | DOI | Numdam | MR | Zbl
[Gi2] Unités cyclotomiques, unités semi-locales et -extensions II, Ann. Inst. Fourier, Grenoble, Volume 29 (1979) no. 4, pp. 1-15 | DOI | Numdam | MR | Zbl
[Gi3] Remarques sur les unités cyclotomiques et elliptiques, J. of Number Theory, Volume 11 (1979), pp. 21-48 | DOI | MR | Zbl
[GJ] Sur la capitulation dans une -extension, J. Reine Angew. Math., Volume 362 (1985), pp. 213-217 | DOI | MR | Zbl
[Gra1] Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier, Volume 27 (1977) no. 1, pp. 1-66 | DOI | Numdam | MR | Zbl
[Gra2] Canonical divisibilities of values of -adic -functions, Journées Arithmétiques d'Exeter (1980) | Zbl
[Gree] On the Iwasawa invariants of totally real number fields, Amer. J. Math., Volume 98 (1976), pp. 263-284 | DOI | MR | Zbl
[Grei1] Class groups of abelian fields and the Main Conjecture, Ann. Inst. Fourier, Volume 42 (1992) no. 3, pp. 449-499 | DOI | Numdam | MR | Zbl
[Grei2] The structure of some minus class groups, and Chinburg's third conjecture for abelian fields, Math. Zeit., Volume 229 (1998), pp. 107-136 | DOI | MR | Zbl
[I] On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, Volume 16 (1964) no. 1, pp. 42-82 | DOI | MR | Zbl
[J] Classes logarithmiques des corps de nombres, J. Théor. Nombres, Bordeaux, Volume 6 (1994) no. 2, pp. 301-325 | DOI | Numdam | MR | Zbl
[K1] The Tate module of algebraic number fields, Math. USSR-Izv, Volume 6 (1972), pp. 263-321 | DOI | MR | Zbl
[K2] On formulas for the class number of real abelian fields, Math. USSR-Izv, Volume 60 (1996) no. 4, pp. 695-761 | MR | Zbl
[KNF] Twisted -units, -adic class number formulas, and the Lichtenbaum conjectures, Duke Math. J., Volume 84 (1996), pp. 679-717 | DOI | MR | Zbl
[KS] Computing Iwasawa modules of real quadratic number fields, Special issue in honour of Frans Oort (Compositio Math.), Volume 97 (1995), pp. 135-155 | Numdam | Zbl
[La] Introduction to Cyclotomic Fields I and II, GTM, 121, Springer-Verlag, New-York, 1990 | MR | Zbl
[Le1] The ring of integers of an abelian number field, J. reine angew. Math., Volume 404 (1990), pp. 162-170 | DOI | MR | Zbl
[Le2] Relative Galois module structure of integers of local abelian fields, Acta Arithm., Volume 85 (1998) no. 3, pp. 235-248 | MR | Zbl
[MW] Class fields of abelian extensions of , Invent. Math., Volume 76 (1984) no. 2, pp. 179-330 | DOI | MR | Zbl
[O1] On the cyclotomic unit group and the ideal class group of a real abelian number field I, J. of Number Theory, Volume 64 (1997), pp. 211-222 | DOI | MR | Zbl
[O2] On the cyclotomic unit group and the ideal class group of a real abelian number field II, J. of Number Theory, Volume 64 (1997), pp. 223-232 | DOI | MR | Zbl
[Si1] On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math., Volume 108 (1978) no. 1, pp. 107-134 | DOI | MR | Zbl
[Si2] On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., Volume 62 (1981), pp. 181-234 | DOI | MR | Zbl
[So1] On a construction of p-units in abelian fields, Invent. Math., Volume 109 (1992), pp. 329-350 | DOI | MR | Zbl
[So2] Galois relations for cyclotomic numbers and p-units, J. Number Theory, Volume 78 (1994), pp. 1-26 | MR | Zbl
[T] Semi-local units modulo cyclotomic units, J. Number Theory, Volume 46 (1999), pp. 158-178 | MR | Zbl
[V] Etude du quotient des unités semi-locales par les unités cyclotomiques dans les -extensions des corps de nombres abéliens réels (1981) (thèse, Orsay) | MR | Zbl
[Wa] Introduction to Cyclotomic Fields, GTM, 83, Springer-Verlag, 1982 | MR | Zbl
[Wil] The Iwasawa conjecture for totally real fields, Ann. of Math., Volume 131 (1990), pp. 493-540 | DOI | MR | Zbl
[Win] Duality theorems for -extensions of algebraic number fields, Compositio Math., Volume 55 (1985), pp. 333-381 | Numdam | MR | Zbl
Cité par Sources :