Unités cyclotomiques, unités semi-locales et -extensions. II
Annales de l'Institut Fourier, Tome 29 (1979) no. 4, pp. 1-15.

Soient K un corps abélien réel, un nombre premier, premier à [K:Q] et Y n le quotient du groupe des unités semi-locales de K(1 n ) par celui des unités cyclotomiques : on donne la structure galoisienne de la limite projective des Y n , généralisant un théorème d’Iwasawa, et on applique ceci à la comparaison de conjecture classique sur la limite projective des groupes de classes.

Let K an abelian number field, a prime number, prime to [K:Q], Y n the quotient of the group of semi-local units in K(1 n ) by the group of cyclotomic units. By giving the Galois structure of lim Y n , we generalise a theorem of Iwasawa and use this result for comparing classical conjectures about projective limits of class groups.

@article{AIF_1979__29_4_1_0,
     author = {Gillard, Roland},
     title = {Unit\'es cyclotomiques, unit\'es semi-locales et ${\mathbb {Z}}_\ell $-extensions. {II}},
     journal = {Annales de l'Institut Fourier},
     pages = {1--15},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {29},
     number = {4},
     year = {1979},
     doi = {10.5802/aif.763},
     mrnumber = {81e:12005b},
     zbl = {0403.12006},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.763/}
}
TY  - JOUR
AU  - Gillard, Roland
TI  - Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II
JO  - Annales de l'Institut Fourier
PY  - 1979
SP  - 1
EP  - 15
VL  - 29
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.763/
DO  - 10.5802/aif.763
LA  - fr
ID  - AIF_1979__29_4_1_0
ER  - 
%0 Journal Article
%A Gillard, Roland
%T Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II
%J Annales de l'Institut Fourier
%D 1979
%P 1-15
%V 29
%N 4
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.763/
%R 10.5802/aif.763
%G fr
%F AIF_1979__29_4_1_0
Gillard, Roland. Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II. Annales de l'Institut Fourier, Tome 29 (1979) no. 4, pp. 1-15. doi : 10.5802/aif.763. http://www.numdam.org/articles/10.5802/aif.763/

[1] N. Bourbaki, Éléments de mathématique, Algèbre commutative, Chap. 7, Hermann, Paris, 1965. | Zbl

[2] J. Coates, p-adic L-functions and Iwasawa's theory, Durham conference on Algebraic Number Theory, edited by A. Fröhlich, Academic Press, Londres, 1977. | MR | Zbl

[3] J. Coates et S. Lichtenbaum, On l-adic zeta functions, Ann. of Math., 98 (1973), 498-550. | MR | Zbl

[4] J. Coates et A. Wiles, On p-adic L-functions and elliptic units, J. Austral. Math. Soc., series A 26 (1978), 1-25. | MR | Zbl

[5] R. Coleman, Some modules attached to Lubin-Tate groups, à paraître.

[6] B. Ferrero, Iwasawa invariants of abelian number fields, Math. Ann., 234 (1978), 9-24. | MR | Zbl

[7] B. Ferrero et L. Washington, The Iwasawa invariant µp vanishes for abelian number fields, Ann. of Math., à paraître. | Zbl

[8] R. Gillard, Unités cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier, t. 29, fasc. 1 (1979), 49-79. | Numdam | MR | Zbl

[9] R. Gillard, Remarques sur les unités cyclotomiques et les unités elliptiques, J. of Numbers Theory, 11, 1 (1979), 21-48. | MR | Zbl

[10] R. Greenberg, On p-adic L-functions and cyclotomic fields, Nagoya Math. J., 56 (1974), 61-77. | MR | Zbl

[11] R. Greenberg, On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139-158. | MR | Zbl

[12] R. Greenberg, On 2-adic L-functions and cyclotomic invariants, Math. Zeit., 159 (1978), 37-45. | MR | Zbl

[13] K. Iwasawa, On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, vol. 16, n° 1, (1964), 42-82. | MR | Zbl

[14] K. Iwasawa, On Zl-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326. | MR | Zbl

[15] K. Iwasawa, Lectures on p-adic L-functions, Ann. Math. Studies, 74, Princeton Univ. Press, 1972. | MR | Zbl

[16] S. Lang, Cyclotomic fields, Springer Verlag, 1978. | MR | Zbl

Cité par Sources :