Duality theorems for Γ-extensions of algebraic number fields
Compositio Mathematica, Tome 55 (1985) no. 3, pp. 333-381.
@article{CM_1985__55_3_333_0,
     author = {Wingberg, Kay},
     title = {Duality theorems for $\Gamma $-extensions of algebraic number fields},
     journal = {Compositio Mathematica},
     pages = {333--381},
     publisher = {Martinus Nijhoff Publishers},
     volume = {55},
     number = {3},
     year = {1985},
     zbl = {0608.12012},
     language = {en},
     url = {http://www.numdam.org/item/CM_1985__55_3_333_0/}
}
TY  - JOUR
AU  - Wingberg, Kay
TI  - Duality theorems for $\Gamma $-extensions of algebraic number fields
JO  - Compositio Mathematica
PY  - 1985
SP  - 333
EP  - 381
VL  - 55
IS  - 3
PB  - Martinus Nijhoff Publishers
UR  - http://www.numdam.org/item/CM_1985__55_3_333_0/
LA  - en
ID  - CM_1985__55_3_333_0
ER  - 
%0 Journal Article
%A Wingberg, Kay
%T Duality theorems for $\Gamma $-extensions of algebraic number fields
%J Compositio Mathematica
%D 1985
%P 333-381
%V 55
%N 3
%I Martinus Nijhoff Publishers
%U http://www.numdam.org/item/CM_1985__55_3_333_0/
%G en
%F CM_1985__55_3_333_0
Wingberg, Kay. Duality theorems for $\Gamma $-extensions of algebraic number fields. Compositio Mathematica, Tome 55 (1985) no. 3, pp. 333-381. http://www.numdam.org/item/CM_1985__55_3_333_0/

[1] N. Bourbaki: Algebre commutative. Paris: Herman (1969).

[2] J. Coates: On K2 and some classical conjectures in algebraic number theory. Ann. of math. 95 (1972) 99-116. | MR | Zbl

[3] J. Coates: K - theory and Iwasawa's analogue of the Jacobian. Algebraic K-Theory, II (Seattle 1972). Springer Lecture notes in maths. 342 (1973) 502-520. | MR | Zbl

[4] J. Coates, S. Lichtenbaum, S. On l-adic zeta functions. Ann. of Math. 98 (1973) 498-550. | MR | Zbl

[5] R. Greenberg, On the Iwasawa invariants of totally real number fields. Amer. J. math. 98 (1976) 263-284. | MR | Zbl

[6] R. Greenberg, On the structure of certain Galois groups. Invent math. 47 (1978) 85-99. | MR | Zbl

[7] K. Grunberg, Cohomological topics in group theory. Springer Lecture notes in maths. 143 (1970). | MR | Zbl

[8] K. Haberland, Galois cohomology of algebraic number fields. Berlin: Deutscher Verlag der Wissenschaften (1978). | MR | Zbl

[9] K. Iwasawa, On Z l-extensions of algebraic number fields. Ann. of math. 98 (1973) 246-326. | MR | Zbl

[10] K. Iwasawa, On the μ-invariants of Z l-extensions. Number theory, algebraic geometry and commutative algebra (in honor of Y. Akizuki). Kinokuniya. Tokyo (1973) 1-11. | Zbl

[11] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields. Tôhoku Math. J. 33 (1981) 263-288. | MR | Zbl

[12] A.V. Jakovlev, The Galois group of the algebraic closure of a local field. Math. USSR - Izv. 2 (1968) 1231-1269. | MR | Zbl

[13] U. Jannsen, Über die Galoismodulstruktur und die absolute Galoisgruppe p-adischer Zahlkörper. Dissertation. Hamburg (1980). | Zbl

[14 U. Jannsen, Über Galoisgruppen lokaler Körper. Invent. math. 70 (1982) 53-69. | MR | Zbl

[15] U. Jannsen; K. Wingberg, Die p-Vervollständigung der multiplikativen Gruppe einer p-Erweiterung eines irregulären p-adischen Zahlkörpers. J. für reine angew. Math. 307/308, (1979) 399-410. | MR | Zbl

[16] Y. Kida, l-extensions of CM-fields and cyclotomic invariants. J. Number theory 12 (1980) 519-528. | MR | Zbl

[17] L. Kuz'Min, Some duality theorems for cyclotomic Γ-extensions over algebraic number fields of CM-type Math. USSR-Izv. 14 (1980) 441-498. | Zbl

[18] S. Lang. Cyclotomic fields. Graduate texts in maths. New York-Heidelberg- Berlin: Springer (1978). | MR | Zbl

[19] T. Nakayama, On modules of trivial cohomology over a finite group. Illinois J. Math. 1 (1957) 36-43. | MR | Zbl

[20] O. Neumann, On p-closed number fields and an analogue of Riemann's existence theorem. In: A. Pröhlich (ed.) "Algebraic number fields ". London: Acad. press (1977) 625-647. | MR | Zbl

[21] P. Schneider, Über gewisse Galoiscohomologiegruppen. Math. Zeitschrift 168 (1979) 181-205. | MR | Zbl

[22] P. Schneider, Die Galoiscohomologie p-adischer Darstellungen über Zahlkörpern. Dissertation. Regensburg (1980).

[23] J-P. Serre, Cohomologie galoisienne. Lecture notes in maths. 5 (1964). | MR | Zbl

[24] R.G. Swan, Induced representaions and projectives modules. Ann. of Math. 71 (1960) 552-579. | MR | Zbl

[25] K. Wingberg, Freie Produktzerlegungen von Galoisgruppen und Iwasawa-Invarianten für p-Erweiterungen von Q. J. für reine und angewandte Math. 341 (1983) 111-129. | MR | Zbl

[26] J.P. Wintenberger, Structure galoisienne de limites projectives d'unités loales. Compos. Math. 42 (1980) 89-104. | Numdam | MR | Zbl