A Survey on Fixed Divisors
Confluentes Mathematici, Tome 11 (2019) no. 1, pp. 29-52.

In this article, we compile the work done by various mathematicians on the topic of the fixed divisor of a polynomial. This article explains most of the results concisely and is intended to be an exhaustive survey. We present the results on fixed divisors in various algebraic settings as well as the applications of fixed divisors to various algebraic and number theoretic problems. The work is presented in an orderly fashion so as to start from the simplest case of , progressively leading up to the case of Dedekind domains. We also ask a few open questions according to their context, which may give impetus to the reader to work further in this direction. We describe various bounds for fixed divisors as well as the connection of fixed divisors with different notions in the ring of integer-valued polynomials. Finally, we suggest how the generalization of the ring of integer-valued polynomials in the case of the ring of n×n matrices over (or a Dedekind domain) could lead to the generalization of fixed divisors in that setting.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.54
Classification : 11Sxx, 11S05, 13F20
Mots clés : Fixed divisors, Generalized factorials, Generalized factorials in several variables, Common factor of indices, Factoring of prime ideals, Integer valued polynomials
Prasad, Devendra 1 ; Rajkumar, Krishnan 2 ; Reddy, A. Satyanarayana  1

1 Department of Mathematics, Shiv Nadar University, Dadri, India-201314
2 School of Computer & Systems Sciences, Jawaharlal Nehru University, India-110067
@article{CML_2019__11_1_29_0,
     author = {Prasad, Devendra and Rajkumar, Krishnan and Reddy, A. Satyanarayana },
     title = {A {Survey} on {Fixed} {Divisors}},
     journal = {Confluentes Mathematici},
     pages = {29--52},
     publisher = {Institut Camille Jordan},
     volume = {11},
     number = {1},
     year = {2019},
     doi = {10.5802/cml.54},
     mrnumber = {4002392},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/cml.54/}
}
TY  - JOUR
AU  - Prasad, Devendra
AU  - Rajkumar, Krishnan
AU  - Reddy, A. Satyanarayana 
TI  - A Survey on Fixed Divisors
JO  - Confluentes Mathematici
PY  - 2019
SP  - 29
EP  - 52
VL  - 11
IS  - 1
PB  - Institut Camille Jordan
UR  - http://www.numdam.org/articles/10.5802/cml.54/
DO  - 10.5802/cml.54
LA  - en
ID  - CML_2019__11_1_29_0
ER  - 
%0 Journal Article
%A Prasad, Devendra
%A Rajkumar, Krishnan
%A Reddy, A. Satyanarayana 
%T A Survey on Fixed Divisors
%J Confluentes Mathematici
%D 2019
%P 29-52
%V 11
%N 1
%I Institut Camille Jordan
%U http://www.numdam.org/articles/10.5802/cml.54/
%R 10.5802/cml.54
%G en
%F CML_2019__11_1_29_0
Prasad, Devendra; Rajkumar, Krishnan; Reddy, A. Satyanarayana . A Survey on Fixed Divisors. Confluentes Mathematici, Tome 11 (2019) no. 1, pp. 29-52. doi : 10.5802/cml.54. http://www.numdam.org/articles/10.5802/cml.54/

[1] Adam, David Simultaneous orderings in function fields, J. Number Theory, Volume 112 (2005) no. 2, pp. 287-297 | DOI | MR | Zbl

[2] Adam, David Pólya and Newtonian function fields, Manuscripta Math., Volume 126 (2008) no. 2, pp. 231-246 | DOI | MR | Zbl

[3] Adam, David; Cahen, Paul-Jean Newton and Schinzel sequences in quadratic fields, Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 15-20 | DOI | Zbl

[4] Adam, David; Cahen, Paul-Jean Newtonian and Schinzel quadratic fields, J. Pure Appl. Algebra, Volume 215 (2011) no. 8, pp. 1902-1918 | DOI | MR | Zbl

[5] Adam, David; Chabert, Jean-Luc; Fares, Youssef Subsets of with simultaneous orderings, Integers, Volume 10 (2010), pp. A37, 437-451 | DOI | MR | Zbl

[6] Anderson, David F. Elasticity of factorizations in integral domains: a survey, Factorization in integral domains (Iowa City, IA, 1996) (Lecture Notes in Pure and Appl. Math.), Volume 189, Dekker, New York, 1997, pp. 1-29 | MR | Zbl

[7] Anderson, David F.; Cahen, Paul-Jean; Chapman, Scott T.; Smith, William W. Some factorization properties of the ring of integer-valued polynomials, Zero-dimensional commutative rings (Knoxville, TN, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 171, Dekker, New York, 1995, pp. 125-142 | MR | Zbl

[8] Ayad, Mohamed; Bouchenna, Rachid; Kihel, Omar Indices in a number field, J. Théor. Nombres Bordeaux, Volume 29 (2017) no. 1, pp. 201-216 http://jtnb.cedram.org/item?id=JTNB_2017__29_1_201_0 | DOI | Numdam | MR | Zbl

[9] Ayad, Mohamed; Kihel, Omar Common divisors of values of polynomials and common factors of indices in a number field, Int. J. Number Theory, Volume 7 (2011) no. 5, pp. 1173-1194 | DOI | MR | Zbl

[10] Bandini, Andrea Functions f:/p n /p n induced by polynomials of [X], Ann. Mat. Pura Appl. (4), Volume 181 (2002) no. 1, pp. 95-104 | DOI | MR

[11] Bauer, Michael Über die außerwesentlichen Diskriminantenteiler einer Gattung, Math. Ann., Volume 64 (1907) no. 4, pp. 573-576 | DOI | MR | Zbl

[12] Bhargava, Manjul P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math., Volume 490 (1997), pp. 101-127 | DOI | MR | Zbl

[13] Bhargava, Manjul Generalized factorials and fixed divisors over subsets of a Dedekind domain, J. Number Theory, Volume 72 (1998) no. 1, pp. 67-75 | DOI | MR | Zbl

[14] Bhargava, Manjul The factorial function and generalizations, Amer. Math. Monthly, Volume 107 (2000) no. 9, pp. 783-799 | DOI | MR | Zbl

[15] Bose, Arnab Investigations on some exponential congruences, University of Lethbridge, Canada (2016) (Masters thesis)

[16] Bouniakowsky, V. Nouveaux théorèmes relatifs à la distinction des nombres premiers et à la décomposition des entiers en facteurs, Mém. Acad. Sc. St-Pétersbourg (6), Sci. Math. Phys., Volume 6 (1857), pp. 305-329

[17] Boynton, Jason Pullbacks of arithmetical rings, Comm. Algebra, Volume 35 (2007) no. 9, pp. 2671-2684 | DOI | MR | Zbl

[18] Boynton, Jason G.; Sather-Wagstaff, Sean Regular pullbacks, Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 145-169 | MR | Zbl

[19] Boynton, Jason Greene Atomicity and the fixed divisor in certain pullback constructions, Colloq. Math., Volume 129 (2012) no. 1, pp. 87-97 | DOI | MR | Zbl

[20] Byszewski, Jakub; Fraczyk, Mikołaj; Szumowicz, Anna Simultaneous p-orderings and minimizing volumes in number fields, J. Number Theory, Volume 173 (2017), pp. 478-511 | DOI | MR | Zbl

[21] Cahen, Paul-Jean Polynômes à valeurs entières, Canad. J. Math, Volume 24 (1972), pp. 747-754 | DOI | Zbl

[22] Cahen, Paul-Jean Polynomial closure, J. Number Theory, Volume 61 (1996) no. 2, pp. 226-247 | DOI | MR | Zbl

[23] Cahen, Paul-Jean Newtonian and Schinzel sequences in a domain, J. Pure Appl. Algebra, Volume 213 (2009) no. 11, pp. 2117-2133 | DOI | MR | Zbl

[24] Cahen, Paul-Jean; Chabert, Jean-Luc Elasticity for integral-valued polynomials, J. Pure Appl. Algebra, Volume 103 (1995) no. 3, pp. 303-311 | DOI | MR | Zbl

[25] Cahen, Paul-Jean; Chabert, Jean-Luc Integer-valued polynomials, Mathematical Surveys and Monographs, 48, American Mathematical Society, Providence, RI, 1997, xx+322 pages | MR | Zbl

[26] Cahen, Paul-Jean; Chabert, Jean-Luc What you should know about integer-valued polynomials, Amer. Math. Monthly, Volume 123 (2016) no. 4, pp. 311-337 | DOI | MR | Zbl

[27] Cahen, Paul-Jean; Chabert, Jean-Luc Test sets for polynomials: n-universal subsets and Newton sequences, J. Algebra, Volume 502 (2018), pp. 277-314 | DOI | MR | Zbl

[28] Carlitz, Leonard On abelian fields, Trans. Amer. Math. Soc., Volume 35 (1933) no. 1, pp. 122-136 | DOI | MR | Zbl

[29] Carlitz, Leonard A note on common index divisors, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 688-692 | DOI | MR | Zbl

[30] Chabert, Jean-Luc On the polynomial closure in a valued field, J. Number Theory, Volume 130 (2010) no. 2, pp. 458-468 | DOI | MR | Zbl

[31] Chabert, Jean-Luc Integer-valued polynomials: looking for regular bases (a survey), Commutative algebra, Springer, New York, 2014, pp. 83-111 | MR | Zbl

[32] Chabert, Jean-Luc; Cahen, Paul-Jean Old problems and new questions around integer-valued polynomials and factorial sequences, Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 89-108 | DOI | MR | Zbl

[33] Chabert, Jean-Luc; Chapman, Scott T.; Smith, William W. The Skolem property in rings of integer-valued polynomials, Proc. Amer. Math. Soc., Volume 126 (1998) no. 11, pp. 3151-3159 | DOI | MR | Zbl

[34] Chabert, Jean-Luc; Evrard, Sabine On the ideal generated by the values of a polynomial, Arithmetical properties of commutative rings and monoids (Lect. Notes Pure Appl. Math.), Volume 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 213-225 | DOI | MR | Zbl

[35] Chapman, Scott T.; McClain, Barbara A. Irreducible polynomials and full elasticity in rings of integer-valued polynomials, J. Algebra, Volume 293 (2005) no. 2, pp. 595-610 | DOI | MR | Zbl

[36] Chapman, Scott T.; Ponomarenko, Vadim On image sets of integer-valued polynomials, J. Algebra, Volume 348 (2011), pp. 350-353 | DOI | MR | Zbl

[37] Chapman, Scott T.; Ponomarenko, Vadim; Smith, William W. Robert Gilmer’s contributions to the theory of integer-valued polynomials, Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 109-122 | DOI | MR | Zbl

[38] Chen, Zhibo On polynomial functions from Z n to Z m , Discrete Math., Volume 137 (1995) no. 1-3, pp. 137-145 | DOI | MR | Zbl

[39] Choi, Geumlan; Zaharescu, Alexandru A class of exponential congruences in several variables, J. Korean Math. Soc., Volume 41 (2004) no. 4, pp. 717-735 | DOI | MR | Zbl

[40] Crabbe, Andrew M. Generalized factorial functions and binomial coefficients, Undergraduate Honors Thesis, Trinity University, USA, 2001

[41] Dickson, Leonard Eugene History of the theory of numbers. Vol. I: Divisibility and primality, Chelsea Publishing Co., New York, 1966, xii+486 pages | MR | Zbl

[42] Dummit, D. S.; Kisilevsky, H. Indices in cyclic cubic fields, Number theory and algebra, Academic Press, New York, 1977, pp. 29-42 | MR | Zbl

[43] Engstrom, Howard Theodore On the common index divisors of an algebraic field, Trans. Amer. Math. Soc., Volume 32 (1930) no. 2, pp. 223-237 | DOI | MR

[44] Evrard, Sabine Bhargava’s factorials in several variables, J. Algebra, Volume 372 (2012), pp. 134-148 | DOI | MR | Zbl

[45] Evrard, Sabine; Fares, Youssef; Johnson, Keith Integer-valued polynomials on lower triangular integer matrices, Monatsh. Math., Volume 170 (2013) no. 2, pp. 147-160 | DOI | MR | Zbl

[46] Evrard, Sabine; Johnson, Keith The ring of integer-valued polynomials on 2×2 matrices and its integral closure, J. Algebra, Volume 441 (2015), pp. 660-677 | DOI | MR | Zbl

[47] Frisch, Sophie Substitution and closure of sets under integer-valued polynomials, J. Number Theory, Volume 56 (1996) no. 2, pp. 396-403 | DOI | MR | Zbl

[48] Frisch, Sophie Polynomial separation of points in algebras, Arithmetical properties of commutative rings and monoids (Lect. Notes Pure Appl. Math.), Volume 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 253-259 | DOI | MR | Zbl

[49] Frisch, Sophie Integer-valued polynomials on algebras: a survey, Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 27-32 | DOI | Zbl

[50] Frisch, Sophie A construction of integer-valued polynomials with prescribed sets of lengths of factorizations, Monatsh. Math., Volume 171 (2013) no. 3-4, pp. 341-350 | DOI | MR | Zbl

[51] Frisch, Sophie Integer-valued polynomials on algebras, J. Algebra, Volume 373 (2013), pp. 414-425 | DOI | MR | Zbl

[52] Frisch, Sophie Corrigendum to “Integer-valued polynomials on algebras” [J. Algebra 373 (2013) 414–425], J. Algebra, Volume 412 (2014), 282 pages | DOI | MR | Zbl

[53] Gilmer, Robert Sets that determine integer-valued polynomials, J. Number Theory, Volume 33 (1989) no. 1, pp. 95-100 | DOI | MR | Zbl

[54] Gilmer, Robert The ideal of polynomials vanishing on a commutative ring, Proc. Amer. Math. Soc., Volume 127 (1999) no. 5, pp. 1265-1267 | DOI | MR | Zbl

[55] Gilmer, Robert; Smith, William W. On the polynomial equivalence of subsets E and f(E) of , Arch. Math. (Basel), Volume 73 (1999) no. 5, pp. 355-365 | DOI | MR | Zbl

[56] Gunji, Hiroshi; McQuillan, Donald L. On polynomials with integer coefficients, J. Number Theory, Volume 1 (1969), pp. 486-493 | DOI | MR | Zbl

[57] Gunji, Hiroshi; McQuillan, Donald L. On a class of ideals in an algebraic number field, J. Number Theory, Volume 2 (1970), pp. 207-222 | DOI | MR | Zbl

[58] Guy, Richard K. Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York, 1994, xvi+285 pages | DOI | MR | Zbl

[59] Hall, Marshall Indices in cubic fields, Bull. Amer. Math. Soc., Volume 43 (1937) no. 2, pp. 104-108 | DOI | MR | Zbl

[60] Hancock, Harris Foundations of the theory of algebraic numbers. Vol. II: The general theory, Dover Publications, Inc., New York, 1964, xxvi+654 pages | MR

[61] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages | DOI | MR | Zbl

[62] Heidaryan, Bahar; Longo, Matteo; Peruginelli, Giulio Galois structure on integral-valued polynomials, J. Number Theory, Volume 171 (2017), pp. 198-212 | DOI | MR | Zbl

[63] Heidaryan, Bahar; Rajaei, Ali Biquadratic Pólya fields with only one quadratic Pólya subfield, J. Number Theory, Volume 143 (2014), pp. 279-285 | DOI | MR | Zbl

[64] Hensel, K. Ueber den grössten gemeinsamen Theiler aller Zahlen, welche durch eine ganze Function von n Veränderlichen darstellbar sind, J. Reine Angew. Math., Volume 116 (1896), pp. 350-356 | DOI | MR | Zbl

[65] Járási, István Remarks on P-orderings and simultaneous orderings (Preprint)

[66] Latham, J. On sequences of algebraic integers, J. London Math. Soc. (2), Volume 6 (1973), pp. 555-560 | DOI | MR | Zbl

[67] Leriche, Amandine Pólya fields and Pólya numbers, Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 21-26 | DOI | Zbl

[68] Leriche, Amandine Pólya fields, Pólya groups and Pólya extensions: a question of capitulation, J. Théor. Nombres Bordeaux, Volume 23 (2011) no. 1, pp. 235-249 http://jtnb.cedram.org/item?id=JTNB_2011__23_1_235_0 | DOI | Numdam | MR | Zbl

[69] Leriche, Amandine Cubic, quartic and sextic Pólya fields, J. Number Theory, Volume 133 (2013) no. 1, pp. 59-71 | DOI | MR | Zbl

[70] Leriche, Amandine About the embedding of a number field in a Pólya field, J. Number Theory, Volume 145 (2014), pp. 210-229 | DOI | MR | Zbl

[71] Loper, K. Alan; Werner, Nicholas J. Generalized rings of integer-valued polynomials, J. Number Theory, Volume 132 (2012) no. 11, pp. 2481-2490 | DOI | MR | Zbl

[72] MacCluer, Charles R. Common divisors of values of polynomials, J. Number Theory, Volume 3 (1971), pp. 33-34 | DOI | MR | Zbl

[73] Marcus, Daniel A. Number fields, Springer-Verlag, New York-Heidelberg, 1977, viii+279 pages (Universitext) | MR | Zbl

[74] McQuillan, Donald L. On a theorem of R. Gilmer, J. Number Theory, Volume 39 (1991) no. 3, pp. 245-250 | DOI | MR | Zbl

[75] Mulay, Shashikant B. On integer-valued polynomials, Zero-dimensional commutative rings (Knoxville, TN, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 171, Dekker, New York, 1995, pp. 331-345 | MR | Zbl

[76] Mulay, Shashikant B. Integer-valued polynomials in several variables, Comm. Algebra, Volume 27 (1999) no. 5, pp. 2409-2423 | DOI | MR | Zbl

[77] Mulay, Shashikant B. Polynomial-mappings and M-equivalence, J. Algebra, Volume 302 (2006) no. 2, pp. 862-880 | DOI | MR | Zbl

[78] Murty, M. Ram; Murty, V. Kumar On a problem of Ruderman, Amer. Math. Monthly, Volume 118 (2011) no. 7, pp. 644-650 | DOI | MR | Zbl

[79] Nagell, Trygve Über zahlentheoretische Polynome, Norsk. Mat. Tidsskr, Volume 1 (1919), pp. 14-23

[80] Nagell, Trygve Quelques résultats sur les diviseurs fixes de l’index des nombres entiers d’un corps algébrique, Ark. Mat., Volume 6 (1966), pp. 269-289 | DOI | MR | Zbl

[81] Narkiewicz, Władysław Polynomial mappings, Lecture Notes in Mathematics, 1600, Springer-Verlag, Berlin, 1995, viii+130 pages | DOI | MR | Zbl

[82] Nart, Enric On the index of a number field, Trans. Amer. Math. Soc., Volume 289 (1985) no. 1, pp. 171-183 | DOI | MR | Zbl

[83] Ostrowski, Alexander Über ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math., Volume 149 (1919), pp. 117-124 | DOI | MR | Zbl

[84] Peruginelli, Giulio Integer-valued polynomials over matrices and divided differences, Monatsh. Math., Volume 173 (2014) no. 4, pp. 559-571 | DOI | MR | Zbl

[85] Peruginelli, Giulio Integral-valued polynomials over sets of algebraic integers of bounded degree, J. Number Theory, Volume 137 (2014), pp. 241-255 | DOI | MR | Zbl

[86] Peruginelli, Giulio Primary decomposition of the ideal of polynomials whose fixed divisor is divisible by a prime power, J. Algebra, Volume 398 (2014), pp. 227-242 | DOI | MR | Zbl

[87] Peruginelli, Giulio Factorization of integer-valued polynomials with square-free denominator, Comm. Algebra, Volume 43 (2015) no. 1, pp. 197-211 | DOI | MR | Zbl

[88] Peruginelli, Giulio; Werner, Nicholas J. Integral closure of rings of integer-valued polynomials on algebras, Commutative algebra, Springer, New York, 2014, pp. 293-305 | MR | Zbl

[89] Peruginelli, Giulio; Werner, Nicholas J. Properly integral polynomials over the ring of integer-valued polynomials on a matrix ring, J. Algebra, Volume 460 (2016), pp. 320-339 | DOI | MR | Zbl

[90] Pólya, Georg Über ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math., Volume 149 (1919), pp. 97-116 | DOI | MR | Zbl

[91] Rajkumar, Krishnan; Reddy, A Satyanarayana; Semwal, Devendra Prasad Fixed Divisor of a Multivariate Polynomial and Generalized Factorials in Several Variables, J. Korean Math. Soc., Volume 55 (2018) no. 6, pp. 1305-1320 | DOI | MR | Zbl

[92] Rogers, Mark W.; Wickham, Cameron Polynomials inducing the zero function on local rings, Int. Electron. J. Algebra, Volume 22 (2017), pp. 170-186 | DOI | MR | Zbl

[93] Ruderman, Harry; Gale, David; Glassey, C. Roger; Tsintsifas, G.; Shelupsky, David; Brooks, Robert Problems and Solutions: Elementary Problems: E2468-E2473, Amer. Math. Monthly, Volume 81 (1974) no. 4, pp. 405-406 | DOI | MR

[94] Ruderman, Harry; Pomerance, Carl Problems and Solutions: Solutions of Elementary Problems: E2468, Amer. Math. Monthly, Volume 84 (1977) no. 1, pp. 59-60 | DOI | MR

[95] Ruderman, Harry; Velez, W. Y. Problems and Solutions: Solutions of Elementary Problems: E2468, Amer. Math. Monthly, Volume 83 (1976) no. 4, pp. 288-289 | DOI | MR

[96] Rundle, Robert John Generalization of Ruderman’s Problem to Imaginary Quadratic Fields, Queen’s University, Canada (2012) (Ph. D. Thesis) | MR

[97] Schinzel, Andrzej On primitive prime factors of a n -b n , Proc. Cambridge Philos. Soc., Volume 58 (1962), pp. 555-562 | MR | Zbl

[98] Schinzel, Andrzej Selecta. Vol. II, Heritage of European Mathematics, European Mathematical Society (EMS), Zürich, 2007, p. i-x and 859–1393 | MR | Zbl

[99] Schinzel, Andrzej On fixed divisors of forms in many variables. II, Analytic and probabilistic methods in number theory, TEV, Vilnius, 2012, pp. 207-221 | MR | Zbl

[100] Schinzel, Andrzej On fixed divisors of forms in many variables, I, Math. Scand., Volume 114 (2014) no. 2, pp. 161-184 | DOI | MR | Zbl

[101] Singmaster, David A maximal generalization of Fermat’s theorem, Math. Mag., Volume 39 (1966), pp. 103-107 | DOI | MR | Zbl

[102] Singmaster, David On polynomial functions ( mod m), J. Number Theory, Volume 6 (1974), pp. 345-352 | DOI | MR | Zbl

[103] Śliwa, Jan On the nonessential discriminant divisor of an algebraic number field, Acta Arith., Volume 42 (1982/83) no. 1, pp. 57-72 | DOI | MR | Zbl

[104] Spearman, Blair K.; Williams, Kenneth S. Cubic fields with index 2, Monatsh. Math., Volume 134 (2002) no. 4, pp. 331-336 | DOI | MR | Zbl

[105] Spearman, Blair K.; Williams, Kenneth S. The index of a cyclic quartic field, Monatsh. Math., Volume 140 (2003) no. 1, pp. 19-70 | DOI | MR | Zbl

[106] Sun, Qi; Zhang, Ming Zhi Pairs where 2 a -2 b divides n a -n b for all n, Proc. Amer. Math. Soc., Volume 93 (1985) no. 2, pp. 218-220 | DOI | MR | Zbl

[107] Taous, Mohammed On the Pólya group of some imaginary biquadratic fields, Non-associative and non-commutative algebra and operator theory (Springer Proc. Math. Stat.), Volume 160, Springer, Cham, 2016, pp. 175-182 | DOI | MR | Zbl

[108] Taous, Mohammed; Zekhnini, Abdelkader Pólya groups of the imaginary bicyclic biquadratic number fields, J. Number Theory, Volume 177 (2017), pp. 307-327 | DOI | MR | Zbl

[109] Turk, Jan The fixed divisor of a polynomial, Amer. Math. Monthly, Volume 93 (1986) no. 4, pp. 282-286 | DOI | MR | Zbl

[110] Vâjâitu, Marian Estimations of the ideal generated by the values of a polynomial over a Dedekind ring, University of Bucharest, Romania (1994) (Ph. D. Thesis)

[111] Vâjâitu, Marian The ideal generated by the values of a polynomial over a Dedekind ring, Rev. Roumaine Math. Pures Appl., Volume 42 (1997) no. 1-2, pp. 155-161 | MR | Zbl

[112] Vâjâitu, Marian An inequality involving the degree of an algebraic set, Rev. Roumaine Math. Pures Appl., Volume 43 (1998) no. 3-4, pp. 451-455 | MR | Zbl

[113] Vâjâitu, Marian; Zaharescu, Alexandru A finiteness theorem for a class of exponential congruences, Proc. Amer. Math. Soc., Volume 127 (1999) no. 8, pp. 2225-2232 | DOI | MR | Zbl

[114] Valenza, Robert J. Elasticity of factorization in number fields, J. Number Theory, Volume 36 (1990) no. 2, pp. 212-218 | DOI | MR | Zbl

[115] Volkov, Vladislav V.; Petrov, Fedor V. On the interpolation of integer-valued polynomials, J. Number Theory, Volume 133 (2013) no. 12, pp. 4224-4232 | DOI | MR | Zbl

[116] von Żyliński, E. Zur Theorie der außerwesentlichen Diskriminantenteiler algebraischer Körper, Math. Ann., Volume 73 (1913) no. 2, pp. 273-274 | DOI | MR | Zbl

[117] Wantuła, Bolesław Browkin’s problem for quadratic fields, Zeszyty Nauk. Politech. Ślask. Mat.-Fiz., Volume 24 (1974), pp. 173-178 | MR | Zbl

[118] Wasén, Rolf On sequences of algebraic integers in pure extensions of prime degree, Colloq. Math., Volume 30 (1974), pp. 89-104 | DOI | MR | Zbl

[119] Werner, Nicholas J. Integer-valued polynomials over quaternion rings, J. Algebra, Volume 324 (2010) no. 7, pp. 1754-1769 | DOI | MR | Zbl

[120] Werner, Nicholas J. Integer-valued polynomials over matrix rings, Comm. Algebra, Volume 40 (2012) no. 12, pp. 4717-4726 | DOI | MR | Zbl

[121] Werner, Nicholas J. On least common multiples of polynomials in /n[x], Comm. Algebra, Volume 40 (2012) no. 6, pp. 2066-2080 | DOI | MR | Zbl

[122] Werner, Nicholas J. Polynomials that kill each element of a finite ring, J. Algebra Appl., Volume 13 (2014) no. 3, 1350111, 12 pages | DOI | MR | Zbl

[123] Werner, Nicholas J. Integer-valued polynomials on algebras: a survey of recent results and open questions, Rings, polynomials, and modules, Springer, Cham, 2017, pp. 353-375 | DOI | MR | Zbl

[124] Wood, Melanie P-orderings: a metric viewpoint and the non-existence of simultaneous orderings, J. Number Theory, Volume 99 (2003) no. 1, pp. 36-56 | DOI | MR | Zbl

[125] Zantema, Hans Integer valued polynomials over a number field, Manuscripta Math., Volume 40 (1982) no. 2-3, pp. 155-203 | DOI | MR | Zbl

[126] Zekhnini, Abdelkader Imaginary biquadratic Pólya fields of the form (d,-2), Gulf J. Math., Volume 4 (2016) no. 4, pp. 182-188 | MR | Zbl

Cité par Sources :