On considère l'équation de Schrödinger non linéaire critique pour la masse en dimension deux
We consider the mass critical two dimensional nonlinear Schrödinger equation
DOI : 10.24033/asens.2364
Keywords: Nonlinear Schrödinger equation, critical nonlinearity, blow up, multi-solitons
Mot clés : Équation de Schrödinger non linéaire, non-linéarité critique, explosion, multi-solitons.
@article{ASENS_2018__51_3_701_0, author = {Martel, Yvan and Rapha\"el, Pierre}, title = {Strongly interacting blow up bubbles for the mass critical nonlinear {Schr\"odinger} equation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {701--737}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {3}, year = {2018}, doi = {10.24033/asens.2364}, mrnumber = {3831035}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2364/} }
TY - JOUR AU - Martel, Yvan AU - Raphaël, Pierre TI - Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 701 EP - 737 VL - 51 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2364/ DO - 10.24033/asens.2364 LA - en ID - ASENS_2018__51_3_701_0 ER -
%0 Journal Article %A Martel, Yvan %A Raphaël, Pierre %T Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 701-737 %V 51 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2364/ %R 10.24033/asens.2364 %G en %F ASENS_2018__51_3_701_0
Martel, Yvan; Raphaël, Pierre. Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 701-737. doi : 10.24033/asens.2364. http://www.numdam.org/articles/10.24033/asens.2364/
Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations, Volume 15 (2002), pp. 749-768 (ISSN: 0893-4983) | DOI | MR | Zbl
Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 3 (2004), pp. 139-170 (ISSN: 0391-173X) | Numdam | MR | Zbl
Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation, Comm. Partial Differential Equations, Volume 36 (2011), pp. 487-531 (ISSN: 0360-5302) | DOI | MR | Zbl
Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-345 (ISSN: 0003-9527) | DOI | MR | Zbl
Minimal mass blow up for NLS on a manifold (2012)
Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 25 (1997), pp. 197-215 (ISSN: 0391-173X) | Numdam | MR | Zbl
, Courant Lecture Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2003, 323 pages (ISBN: 0-8218-3399-5) | DOI | MR | Zbl
Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., Volume 39 (2007/08), pp. 1070-1111 (ISSN: 0036-1410) | DOI | MR | Zbl
Construction of multi-soliton solutions for the -supercritical generalized Korteweg-de Vries and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011), pp. 273-302 | DOI | MR | Zbl
Type II blow up manifold for the energy super critical wave equation (preprint arXiv:1407.4525, to appear in Mem. Amer. Math. Soc ) | MR
The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal., Volume 14 (1990), pp. 807-836 (ISSN: 0362-546X) | DOI | MR | Zbl
Exotic blowup solutions for the focusing wave equation in , Michigan Math. J., Volume 63 (2014), pp. 451-501 (ISSN: 0026-2285) | DOI | MR | Zbl
Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations, Commun. Pure Appl. Anal., Volume 14 (2015), pp. 1275-1326 (ISSN: 1534-0392) | DOI | MR
Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., Volume 18 (2009), pp. 1787-1840 (ISSN: 1016-443X) | DOI | MR | Zbl
Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., Volume 285 (2015), pp. 1589-1618 (ISSN: 0001-8708) | DOI | MR
Log-log blow up solutions blow up at exactly points (preprint arXiv:1510.00961 ) | Numdam | MR
Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, Volume 5 (1992), pp. 973-997 (ISSN: 0893-4983) | DOI | MR | Zbl
Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal., Volume 272 (2017), pp. 866-917 (ISSN: 0022-1236) | DOI | MR
Nondispersive solutions to the -critical half-wave equation, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 61-129 (ISSN: 0003-9527) | DOI | MR | Zbl
Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math., Volume 62 (2009), pp. 1501-1550 (ISSN: 0010-3640) | DOI | MR | Zbl
Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc., Volume 11 (2009), pp. 1-125 | DOI | MR | Zbl
Full range of blow up exponents for the quintic wave equation in three dimensions, J. Math. Pures Appl., Volume 101 (2014), pp. 873-900 (ISSN: 0021-7824) | DOI | MR | Zbl
Renormalization and blow up for charge one equivariant critical wave maps, Invent. math., Volume 171 (2008), pp. 543-615 (ISSN: 0020-9910) | DOI | MR | Zbl
The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), Volume 11 (2009), pp. 1203-1258 (ISSN: 1435-9855) | DOI | MR | Zbl
Uniqueness of positive solutions of in , Arch. Rational Mech. Anal., Volume 105 (1989), pp. 243-266 (ISSN: 0003-9527) | DOI | MR | Zbl
Minimal mass blow up solutions for a double power nonlinear Schrödinger equation, Rev. Mat. Iberoam., Volume 32 (2016), pp. 795-833 (ISSN: 0213-2230) | DOI | MR
Asymptotic -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., Volume 127 (2005), pp. 1103-1140 http://muse.jhu.edu/journals/american_journal_of_mathematics/v127/127.5martel.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
Construction of solutions with exactly blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., Volume 129 (1990), pp. 223-240 http://projecteuclid.org/euclid.cmp/1104180743 (ISSN: 0010-3616) | DOI | MR | Zbl
Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., Volume 9 (1993), pp. 427-454 | MR | Zbl
, Seminaire: Equations aux Dérivées Partielles. 2009–2010 (Sémin. Équ. Dériv. Partielles), École Polytech., Palaiseau, 2012 | MR | Zbl
Weak interaction between solitary waves of the generalized KdV equations, SIAM J. Math. Anal., Volume 35 (2003), pp. 1042-1080 (ISSN: 0036-1410) | DOI | MR | Zbl
Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 23 (2006), pp. 849-864 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl
Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. math., Volume 183 (2011), pp. 563-648 (ISSN: 0020-9910) | DOI | MR | Zbl
Blow up for the critical generalized Korteweg de Vries equation. I: Dynamics near the soliton, Acta Math., Volume 212 (2014), pp. 59-140 (ISSN: 0001-5962) | DOI | MR | Zbl
Blow up for the critical generalized Korteweg de Vries equation III: exotic regimes, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 14 (2015), pp. 575-631 (ISSN: 0391-173X) | MR
Blow up for the critical generalized Korteweg de Vries equation. II: Minimal mass dynamics, J. of Math. Eur. Soc., Volume 17 (2015), pp. 1855-1925 | DOI
Stability in of the sum of solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006), pp. 405-466 | DOI | MR | Zbl
Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation, J. Eur. Math. Soc., Volume 14 (2012), pp. 1923-1953 | DOI | MR | Zbl
Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., Volume 13 (2003), pp. 591-642 (ISSN: 1016-443X) | DOI | MR | Zbl
On universality of blow-up profile for critical nonlinear Schrödinger equation, Invent. math., Volume 156 (2004), pp. 565-672 (ISSN: 0020-9910) | DOI | MR | Zbl
Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., Volume 253 (2005), pp. 675-704 (ISSN: 0010-3616) | DOI | MR | Zbl
The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., Volume 161 (2005), pp. 157-222 (ISSN: 0003-486X) | DOI | MR | Zbl
On a sharp lower bound on the blow-up rate for the critical nonlinear Schrödinger equation, J. Amer. Math. Soc., Volume 19 (2006), pp. 37-90 (ISSN: 0894-0347) | DOI | MR | Zbl
Type II blow up for the energy supercritical NLS, Camb. J. Math., Volume 3 (2015), pp. 439-617 (ISSN: 2168-0930) | DOI | MR
The instability of Bourgain-Wang solutions for the critical NLS, Amer. J. Math., Volume 135 (2013), pp. 967-1017 | DOI | MR | Zbl
On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation, Duke Math. J., Volume 163 (2014), pp. 369-431 (ISSN: 0012-7094) | DOI | MR | Zbl
On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., Volume 333 (2015), pp. 1529-1562 | DOI | MR | Zbl
Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., Volume 52 (1999), pp. 193-270 (ISSN: 0010-3640) | DOI | MR | Zbl
On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, Volume 2 (2001), pp. 605-673 | DOI | MR | Zbl
Two soliton collision for nonlinear Schrödinger equations in dimension 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011), pp. 357-384 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl
Existence and stability of the log-log blow-up dynamics for the -critical nonlinear Schrödinger equation in a domain, Ann. Henri Poincaré, Volume 8 (2007), pp. 1177-1219 (ISSN: 1424-0637) | DOI | MR | Zbl
Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., Volume 331 (2005), pp. 577-609 (ISSN: 0025-5831) | DOI | MR | Zbl
Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., Volume 24 (2011), pp. 471-546 (ISSN: 0894-0347) | DOI | MR | Zbl
Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., Volume 87 (1982/83), pp. 567-576 http://projecteuclid.org/euclid.cmp/1103922134 (ISSN: 0010-3616) | DOI | MR | Zbl
Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985), pp. 472-491 (ISSN: 0036-1410) | DOI | MR | Zbl
Cité par Sources :