Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation
[Bulles d'explosion en interaction forte pour l'équation de Schrödinger non linéaire critique pour la masse]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 701-737.

On considère l'équation de Schrödinger non linéaire critique pour la masse en dimension deux

itu+Δu+|u|2u=0,t,x2.( SNL )
Soit Q la solution positive et état fondamental de l'équation ΔQ-Q+Q3=0. On construit une nouvelle classe d'ondes solitaires multiples basées sur Q : étant donné un entier K2, il existe une solution globale (pour t>0) u(t) de (SNL) qui se décompose asymptotiquement en une somme d'ondes solitaires centrées sur les sommets d'un polygone régulier et qui se concentrent à un taux logarithmique quand t+, de sorte que la solution explose en temps infini
u(t)L2|logt|quandt+.
Comme conséquence de la symétrie pseudo-conforme du flot de (SNL), on obtient le premier exemple d'une solution v(t) de (SNL) qui explose en temps fini avec un taux strictement supérieur au taux pseudo-conforme
v(t)L2log|t|tquandt0.
Cette solution concentre K bulles en un point x02, c'est-à-dire |v(t)|2KQL22δx0 quand t0. Ces comportements particuliers sont dus aux interactions fortes entre les ondes solitaires, par opposition avec les résultats précédents sur les ondes solitaires multiples pour (SNL) où les interactions n'affectent pas le comportement global des ondes.

We consider the mass critical two dimensional nonlinear Schrödinger equation

itu+Δu+|u|2u=0,t,x2.( NLS )
Let Q denote the positive ground state solution of ΔQ-Q+Q3=0. We construct a new class of multi-solitary wave solutions of (NLS) based on Q: given any integer K2, there exists a global (for t>0) solution u(t) that decomposes asymptotically into a sum of solitary waves centered at the vertices of a K-sided regular polygon and concentrating at a logarithmic rate as t+, so that the solution blows up in infinite time with the rate
u(t)L2|logt|ast+.
Using the pseudo-conformal symmetry of the (NLS) flow, this yields the first example of solution v(t) of (NLS) blowing up in finite time with a rate strictly above the pseudo-conformal one, namely,
v(t)L2log|t|tast0.
Such a solution concentrates K bubbles at a point x02, that is |v(t)|2KQL22δx0 as t0. These special behaviors are due to strong interactions between the waves, in contrast with previous works on multi-solitary waves of (NLS) where interactions do not affect the global behavior of the waves.

Publié le :
DOI : 10.24033/asens.2364
Classification : 35Q55; 35B44, 37K40.
Keywords: Nonlinear Schrödinger equation, critical nonlinearity, blow up, multi-solitons
Mot clés : Équation de Schrödinger non linéaire, non-linéarité critique, explosion, multi-solitons.
@article{ASENS_2018__51_3_701_0,
     author = {Martel, Yvan and Rapha\"el, Pierre},
     title = {Strongly interacting blow up bubbles  for the mass critical nonlinear {Schr\"odinger} equation},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {701--737},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {3},
     year = {2018},
     doi = {10.24033/asens.2364},
     mrnumber = {3831035},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2364/}
}
TY  - JOUR
AU  - Martel, Yvan
AU  - Raphaël, Pierre
TI  - Strongly interacting blow up bubbles  for the mass critical nonlinear Schrödinger equation
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 701
EP  - 737
VL  - 51
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2364/
DO  - 10.24033/asens.2364
LA  - en
ID  - ASENS_2018__51_3_701_0
ER  - 
%0 Journal Article
%A Martel, Yvan
%A Raphaël, Pierre
%T Strongly interacting blow up bubbles  for the mass critical nonlinear Schrödinger equation
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 701-737
%V 51
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2364/
%R 10.24033/asens.2364
%G en
%F ASENS_2018__51_3_701_0
Martel, Yvan; Raphaël, Pierre. Strongly interacting blow up bubbles  for the mass critical nonlinear Schrödinger equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 701-737. doi : 10.24033/asens.2364. http://www.numdam.org/articles/10.24033/asens.2364/

Antonini, C. Lower bounds for the L2 minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations, Volume 15 (2002), pp. 749-768 (ISSN: 0893-4983) | DOI | MR | Zbl

Banica, V. Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 3 (2004), pp. 139-170 (ISSN: 0391-173X) | Numdam | MR | Zbl

Banica, V.; Carles, R.; Duyckaerts, T. Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation, Comm. Partial Differential Equations, Volume 36 (2011), pp. 487-531 (ISSN: 0360-5302) | DOI | MR | Zbl

Berestycki, H.; Lions, P.-L. Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-345 (ISSN: 0003-9527) | DOI | MR | Zbl

Boulenger, T. Minimal mass blow up for NLS on a manifold (2012)

Bourgain, J.; Wang, W. Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 25 (1997), pp. 197-215 (ISSN: 0391-173X) | Numdam | MR | Zbl

Cazenave, T., Courant Lecture Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2003, 323 pages (ISBN: 0-8218-3399-5) | DOI | MR | Zbl

Chang, S.-M.; Gustafson, S.; Nakanishi, K.; Tsai, T.-P. Spectra of linearized operators for NLS solitary waves, SIAM J. Math. Anal., Volume 39 (2007/08), pp. 1070-1111 (ISSN: 0036-1410) | DOI | MR | Zbl

Côte, R.; Martel, Y.; Merle, F. Construction of multi-soliton solutions for the L2-supercritical generalized Korteweg-de Vries and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011), pp. 273-302 | DOI | MR | Zbl

Collot, C. Type II blow up manifold for the energy super critical wave equation (preprint arXiv:1407.4525, to appear in Mem. Amer. Math. Soc ) | MR

Cazenave, T.; Weissler, F. B. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs , Nonlinear Anal., Volume 14 (1990), pp. 807-836 (ISSN: 0362-546X) | DOI | MR | Zbl

Donninger, R.; Huang, M.; Krieger, J.; Schlag, W. Exotic blowup solutions for the u5 focusing wave equation in 3 , Michigan Math. J., Volume 63 (2014), pp. 451-501 (ISSN: 0026-2285) | DOI | MR | Zbl

Duyckaerts, T.; Kenig, C. E.; Merle, F. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations, Commun. Pure Appl. Anal., Volume 14 (2015), pp. 1275-1326 (ISSN: 1534-0392) | DOI | MR

Duyckaerts, T.; Merle, F. Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., Volume 18 (2009), pp. 1787-1840 (ISSN: 1016-443X) | DOI | MR | Zbl

Dodson, B. Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., Volume 285 (2015), pp. 1589-1618 (ISSN: 0001-8708) | DOI | MR

Fan, C. Log-log blow up solutions blow up at exactly m points (preprint arXiv:1510.00961 ) | Numdam | MR

Herrero, M. A.; Velázquez, J. J. L. Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, Volume 5 (1992), pp. 973-997 (ISSN: 0893-4983) | DOI | MR | Zbl

Jendrej, J. Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal., Volume 272 (2017), pp. 866-917 (ISSN: 0022-1236) | DOI | MR

Krieger, J.; Lenzmann, E.; Raphaël, P. Nondispersive solutions to the L2-critical half-wave equation, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 61-129 (ISSN: 0003-9527) | DOI | MR | Zbl

Krieger, J.; Martel, Y.; Raphaël, P. Two-soliton solutions to the three-dimensional gravitational Hartree equation, Comm. Pure Appl. Math., Volume 62 (2009), pp. 1501-1550 (ISSN: 0010-3640) | DOI | MR | Zbl

Krieger, J.; Schlag, W. Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc., Volume 11 (2009), pp. 1-125 | DOI | MR | Zbl

Krieger, J.; Schlag, W. Full range of blow up exponents for the quintic wave equation in three dimensions, J. Math. Pures Appl., Volume 101 (2014), pp. 873-900 (ISSN: 0021-7824) | DOI | MR | Zbl

Krieger, J.; Schlag, W.; Tataru, D. Renormalization and blow up for charge one equivariant critical wave maps, Invent. math., Volume 171 (2008), pp. 543-615 (ISSN: 0020-9910) | DOI | MR | Zbl

Killip, R.; Tao, T.; Visan, M. The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), Volume 11 (2009), pp. 1203-1258 (ISSN: 1435-9855) | DOI | MR | Zbl

Kwong, M. K. Uniqueness of positive solutions of Δu-u+up=0 in 𝐑n , Arch. Rational Mech. Anal., Volume 105 (1989), pp. 243-266 (ISSN: 0003-9527) | DOI | MR | Zbl

Le Coz, S.; Martel, Y.; Raphaël, P. Minimal mass blow up solutions for a double power nonlinear Schrödinger equation, Rev. Mat. Iberoam., Volume 32 (2016), pp. 795-833 (ISSN: 0213-2230) | DOI | MR

Martel, Y. Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math., Volume 127 (2005), pp. 1103-1140 http://muse.jhu.edu/journals/american_journal_of_mathematics/v127/127.5martel.pdf (ISSN: 0002-9327) | DOI | MR | Zbl

Merle, F. Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys., Volume 129 (1990), pp. 223-240 http://projecteuclid.org/euclid.cmp/1104180743 (ISSN: 0010-3616) | DOI | MR | Zbl

Merle, F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., Volume 9 (1993), pp. 427-454 | MR | Zbl

Miot, E., Seminaire: Equations aux Dérivées Partielles. 2009–2010 (Sémin. Équ. Dériv. Partielles), École Polytech., Palaiseau, 2012 | MR | Zbl

Mizumachi, T. Weak interaction between solitary waves of the generalized KdV equations, SIAM J. Math. Anal., Volume 35 (2003), pp. 1042-1080 (ISSN: 0036-1410) | DOI | MR | Zbl

Martel, Y.; Merle, F. Multi solitary waves for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 23 (2006), pp. 849-864 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Martel, Y.; Merle, F. Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. math., Volume 183 (2011), pp. 563-648 (ISSN: 0020-9910) | DOI | MR | Zbl

Martel, Y.; Merle, F.; Raphaël, P. Blow up for the critical generalized Korteweg de Vries equation. I: Dynamics near the soliton, Acta Math., Volume 212 (2014), pp. 59-140 (ISSN: 0001-5962) | DOI | MR | Zbl

Martel, Y.; Merle, F.; Raphaël, P. Blow up for the critical generalized Korteweg de Vries equation III: exotic regimes, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 14 (2015), pp. 575-631 (ISSN: 0391-173X) | MR

Martel, Y.; Merle, F.; Raphaël, P. Blow up for the critical generalized Korteweg de Vries equation. II: Minimal mass dynamics, J. of Math. Eur. Soc., Volume 17 (2015), pp. 1855-1925 | DOI

Martel, Y.; Merle, F.; Tsai, T.-P. Stability in H1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006), pp. 405-466 | DOI | MR | Zbl

Musso, M.; Pacard, F.; Wei, J. Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation, J. Eur. Math. Soc., Volume 14 (2012), pp. 1923-1953 | DOI | MR | Zbl

Merle, F.; Raphaël, P. Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal., Volume 13 (2003), pp. 591-642 (ISSN: 1016-443X) | DOI | MR | Zbl

Merle, F.; Raphaël, P. On universality of blow-up profile for L2 critical nonlinear Schrödinger equation, Invent. math., Volume 156 (2004), pp. 565-672 (ISSN: 0020-9910) | DOI | MR | Zbl

Merle, F.; Raphaël, P. Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys., Volume 253 (2005), pp. 675-704 (ISSN: 0010-3616) | DOI | MR | Zbl

Merle, F.; Raphaël, P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math., Volume 161 (2005), pp. 157-222 (ISSN: 0003-486X) | DOI | MR | Zbl

Merle, F.; Raphaël, P. On a sharp lower bound on the blow-up rate for the L2 critical nonlinear Schrödinger equation, J. Amer. Math. Soc., Volume 19 (2006), pp. 37-90 (ISSN: 0894-0347) | DOI | MR | Zbl

Merle, F.; Raphaël, P.; Rodnianski, I. Type II blow up for the energy supercritical NLS, Camb. J. Math., Volume 3 (2015), pp. 439-617 (ISSN: 2168-0930) | DOI | MR

Merle, F.; Raphaël, P.; Szeftel, J. The instability of Bourgain-Wang solutions for the L2 critical NLS, Amer. J. Math., Volume 135 (2013), pp. 967-1017 | DOI | MR | Zbl

Merle, F.; Raphaël, P.; Szeftel, J. On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation, Duke Math. J., Volume 163 (2014), pp. 369-431 (ISSN: 0012-7094) | DOI | MR | Zbl

Merle, F.; Zaag, H. On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations, Comm. Math. Phys., Volume 333 (2015), pp. 1529-1562 | DOI | MR | Zbl

Nawa, H. Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., Volume 52 (1999), pp. 193-270 (ISSN: 0010-3640) | DOI | MR | Zbl

Perelman, G. On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, Volume 2 (2001), pp. 605-673 | DOI | MR | Zbl

Perelman, G. Two soliton collision for nonlinear Schrödinger equations in dimension 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 28 (2011), pp. 357-384 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Planchon, F.; Raphaël, P. Existence and stability of the log-log blow-up dynamics for the L2-critical nonlinear Schrödinger equation in a domain, Ann. Henri Poincaré, Volume 8 (2007), pp. 1177-1219 (ISSN: 1424-0637) | DOI | MR | Zbl

Raphaël, P. Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., Volume 331 (2005), pp. 577-609 (ISSN: 0025-5831) | DOI | MR | Zbl

Raphaël, P.; Szeftel, J. Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., Volume 24 (2011), pp. 471-546 (ISSN: 0894-0347) | DOI | MR | Zbl

Weinstein, M. I. Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., Volume 87 (1982/83), pp. 567-576 http://projecteuclid.org/euclid.cmp/1103922134 (ISSN: 0010-3616) | DOI | MR | Zbl

Weinstein, M. I. Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985), pp. 472-491 (ISSN: 0036-1410) | DOI | MR | Zbl

Cité par Sources :