We study the collision of two solitons for the nonlinear Schrödinger equation , as , in the case where one soliton is small with respect to the other. We show that in general, the two soliton structure is not preserved after the collision: while the large soliton survives, the small one splits into two outgoing waves that for sufficiently long times can be controlled by the cubic NLS: .
@article{AIHPC_2011__28_3_357_0, author = {Perelman, Galina}, title = {Two soliton collision for nonlinear {Schr\"odinger} equations in dimension 1}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {357--384}, publisher = {Elsevier}, volume = {28}, number = {3}, year = {2011}, doi = {10.1016/j.anihpc.2011.02.002}, mrnumber = {2795711}, zbl = {1217.35176}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.02.002/} }
TY - JOUR AU - Perelman, Galina TI - Two soliton collision for nonlinear Schrödinger equations in dimension 1 JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 357 EP - 384 VL - 28 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2011.02.002/ DO - 10.1016/j.anihpc.2011.02.002 LA - en ID - AIHPC_2011__28_3_357_0 ER -
%0 Journal Article %A Perelman, Galina %T Two soliton collision for nonlinear Schrödinger equations in dimension 1 %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 357-384 %V 28 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2011.02.002/ %R 10.1016/j.anihpc.2011.02.002 %G en %F AIHPC_2011__28_3_357_0
Perelman, Galina. Two soliton collision for nonlinear Schrödinger equations in dimension 1. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 3, pp. 357-384. doi : 10.1016/j.anihpc.2011.02.002. http://www.numdam.org/articles/10.1016/j.anihpc.2011.02.002/
[1] Semilinear Schrödinger Equations, Courant Lect. Notes Math. vol. 10 (2003) | MR | Zbl
,[2] Scattering for the nonlinear Schrödinger equation: states close to a soliton, St. Petersburg Math. J. 4 no. 6 (1993), 1111-1143 | MR | Zbl
, ,[3] Fast soliton scattering by delta impurities, Comm. Math. Phys. 274 no. 1 (2007), 187-216 | MR | Zbl
, , ,[4] Soliton splitting by external delta potentials, J. Nonlinear Sci. 17 no. 4 (2007), 349-367 | MR | Zbl
, , ,[5] Long time behavior for the focusing nonlinear Schrödinger equation with real spectral singularities, Comm. Math. Phys. 180 no. 2 (1996), 325-341 | MR | Zbl
,[6] Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension, J. Amer. Math. Soc. 19 no. 4 (2006), 815-920 | MR | Zbl
, ,[7] Stability in of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J. 133 no. 3 (2006), 405-466 | Zbl
, , ,[8] Stability of two soliton collision for nonintegrable gKdV, Comm. Math. Phys. 286 no. 1 (2009), 39-79 | MR | Zbl
, ,[9] Y. Martel, F. Merle, Stability of two soliton collision for quartic gKdV, Annals of Math., in press. | MR
[10] A remark on soliton–potential interactions for nonlinear Schrödinger equations, Math. Res. Lett. 16 no. 3 (2009), 477-486 | MR | Zbl
,[11] The eigenvalue problem for the focusing nonlinear Schrödinger equation: new solvable cases, Phys. D 146 no. 1–4 (2000), 150-164 | MR | Zbl
, ,[12] Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math. 39 no. 1 (1986), 51-68 | MR | Zbl
,Cité par Sources :