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STRONGLY INTERACTING BLOW UP BUBBLES
FOR THE MASS CRITICAL NONLINEAR
SCHRODINGER EQUATION

BY YvaAN MARTEL anD PieRRE RAPHAEL

ABSTRACT. — We consider the mass critical two dimensional nonlinear Schrédinger equation
idu + Au+ JulPu=0, t eR, x € R%. (NLS)

Let O denote the positive ground state solution of AQ — Q + Q3 = 0. We construct a new class
of multi-solitary wave solutions of (NLS) based on Q: given any integer K > 2, there exists a global
(for ¢t > 0) solution u(¢) that decomposes asymptotically into a sum of solitary waves centered at the
vertices of a K-sided regular polygon and concentrating at a logarithmic rate as t — +o0, so that the
solution blows up in infinite time with the rate

IVu()llz> ~ |logt| as t — +o0.

Using the pseudo-conformal symmetry of the (NLS) flow, this yields the first example of solution v(z)

of (NLS) blowing up in finite time with a rate strictly above the pseudo-conformal one, namely,

log |t]
t

Vo@llz2 ~

as t 1 0.

Such a solution concentrates K bubbles at a point xg € RZ, that is |v(r)|> — K||Q||228x0 ast 1 0.
These special behaviors are due to strong interactions between the waves, in contrast with previous
works on multi-solitary waves of (NLS) where interactions do not affect the global behavior of the
waves.

RESUME. — On considére I’équation de Schrodinger non linéaire critique pour la masse en dimen-
sion deux

idpu 4+ Au+ Ju>u =0, t R, x € R2. (SNL)

Soit Q la solution positive et état fondamental de ’équation AQ — Q + Q3 = 0. On construit une
nouvelle classe d’ondes solitaires multiples basées sur Q : étant donné un entier K > 2, il existe une
solution globale (pour ¢ > 0) u(¢) de (SNL) qui se décompose asymptotiquement en une somme
d’ondes solitaires centrées sur les sommets d’un polygone régulier et qui se concentrent & un taux
logarithmique quand ¢+ — 400, de sorte que la solution explose en temps infini

IVu(t)ll;2 ~ |logt| quand ¢ — +oo.

Comme conséquence de la symétrie pseudo-conforme du flot de (SNL), on obtient le premier exemple
d’une solution v(¢) de (SNL) qui explose en temps fini avec un taux strictement supérieur au taux

0012-9593/03/© 2018 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2364
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702 Y. MARTEL AND P. RAPHAEL

pseudo-conforme
log |t|

. quand 7 1 0.

[Vo@)llz2 ~‘

Cette solution concentre K bulles en un point xo € RZ, c’est-a-dire |v(7)|> — K||Q||228x0 quand
t 1 0. Ces comportements particuliers sont dus aux interactions fortes entre les ondes solitaires, par
opposition avec les résultats précédents sur les ondes solitaires multiples pour (SNL) ou les interactions
n’affectent pas le comportement global des ondes.

1. Introduction

1.1. General setting

We consider in this paper the mass critical two dimensional non linear Schrodinger equa-
tion (NLS)

(1.1) i0;u 4+ Au+ulPu=0, (x)eRxR2

It is well-known (see e.g., [7] and the references therein) that for any ug € H!(R?), there exists
a unique maximal solution u € C((=T,, T*), H'(R?)) of (1.1) with u(0) = uo. Moreover,
the following blow up criterion holds

(1.2) T* < +oo implies lTern IVu(t)||z2 = +oo.
t *
The mass (i.e., the L? norm) and the energy E of the solution are conserved by the flow, where

1 1
E(u) = - Vul? — - 4,
(u) 2/Rzlul 4/}Rzlul

From a variational argument, the unique (up to symmetry) ground state solution to
AQ—-Q+03=0, 0 H(R?), Q0 >0, Q isradially symmetric,

attains the best constant C in the following Gagliardo-Nirenberg inequality

(1.3) Vue H'®R?), [ull}s < Cllul7.lIVul3.
(see [4, 54, 25]). As a consequence, one has
Ly 1 ) [
(1.4) Yu e H (R%), E(u) > -|[Vull;, | 1- 5 |-
2 19172

Together with the conservation of mass and energy and the blow up criterion (1.2), this
implies the global existence of any solution with initial data |[ug|2 < ||Q|2. Actually it is
now known that in this case, the solution scatters i.e., behaves asymptotically in large time
as a solution of the linear equation, see [19, 12] and references therein.

We also know that ||u||;2 = || Q| 2 corresponds to the mass threshold for global existence
since the pseudo-conformal symmetry of the (NLS) equation
1 I x ; 1x12
(1.5) v(t,x) = —u (—, —) eIt
e[ \el e}
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BLOW UP FOR CRITICAL NONLINEAR SCHRODINGER EQUATION 703

applied to the solitary wave solution u(¢, x) = e’ Q(x) yields the existence of an explicit
single bubble blow up solution S(¢) with minimal mass

1 X —iﬁ ya 1
(16) 8¢ =50 (G ) el SOl =101 1950l 5 g

We refer to [7] for more properties of the pseudo-conformal transform. From [35], minimal
mass blow up solutions are classified in H'(R?):
lu@lz2 = 1Qllz2 and T* < 400 imply u = S up to the symmetries of the flow.

Recall also the following well-known general sufficient criterion for finite time blow up: for
initial data ug € ¥ = H' N L?(|x|?>dx), the virial identity

2
dr?
implies blow up in finite time provided E(ug) <0 (by (1.4), this implies necessarily
luollr2 > [121lL2)-

(1.7) /]RZ lx|2Ju(t, x)|?dx = 16E (ug)

1.2. Single bubble blow up dynamics
We focus now on the case of mass slightly above the threshold, that is
(1.8) 192 < lluollLz < QL2 + 0. 0 <o K 1.

We first recall in this context that a large class of finite time blow up solutions was constructed
in [6] (see also [22], [43]) as weak perturbation of the minimal mass solution S(¢). In partic-
ular, these solutions blow up with the pseudo-conformal blow up rate

1
t~T* T* —t°
Second, recall that the series of works [49, 37, 38, 52, 36, 40] provides a thorough study of the
stable blow up dynamics under condition (1.8), corresponding to the so called log-log blow
up regime

(1.9) IVu ()l 2

log | log(T* —1)|
1.1 \Y ARy e —

(1.10) O P L

Third, it is proved in [43] (see also [22]) that solutions constructed in [6] are unstable and

correspond in some sense to a threshold between the above log-log blow up and scattering.

Finally, recall that under (1.8), a universal gap on the blow up speed was proved in
[52]: given a finite time blow up solution satisfying (1.8), either it blows up in the log-log
regime (1.10), or it blows up faster than the pseudo-conformal rate

Va2 7o

(See also [1, 2].) However, the existence of solutions blowing up strictly faster than the
conformal speed is a long lasting open problem, which is equivalent, by the pseudo-
conformal symmetry (1.5), to the existence of global solutions blowing up in infinite
time.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



704 Y. MARTEL AND P. RAPHAEL

1.3. Multi bubbles blow up dynamics

For larger L? mass, it is conjectured (see e.g., [39]) that any finite time blow up solution
concentrates at the blow up time universal quanta of mass m; > 0 at a finite number of points

x; € R? | thatis
K

u(@))* = D mibe + [ ast T,
k=1
where u* € L2 is a (possibly zero) residual. The first example of multiple point blow up
solution is given in [34]: let K > 1 and let (xx),<k<x be K arbitrary distinct points of R?,
there exists a finite time blow up solution u(¢) of (1.1) with

K K
u(®) =Y St.—x0)| >0, [u@®P ~[0I7.) 8y as t 0.
k=1 k=1

H1
In particular, u(¢) blows up with the pseudo-conformal rate

1
IVu@)|z2 ~ m ast 1 0.

Other general constructions of multi bubble blow up are provided by [51, 16] in the context
of the log-log regime. Observe that these works deal with weak interactions in the sense that
the blow up dynamics of each bubble is not perturbed at the main order by the presence of
the other (distant) bubbles.

1.4. Main results

In this paper we construct the first example of infinite time blow up solution of (NLS),
related to the strong interactions of an arbitrary number K > 2 of bubbles. As a consequence,
using the pseudo-conformal transform, we also obtain the first example of solution blowing
up in finite time strictly faster than the conformal blow up rate. Such a solution concentrates
the K bubbles at one point at the blow up time.

THEOREM 1 (Infinite time blow up). — Let K > 2 be an integer. There exists a solution
u € C([0, +00), X) of (1.1) which decomposes asymptotically into a sum of K solitary waves

(1.11) TN

K
w0y Lo (S0) H 0 0= g

where the translation parameters xi (t) converge ast — o0 to the vertices of a K -sided regular
polygon, and where y(t) is some phase parameter. In particular,

(1.12) IVu(@)ll 2 = K2[|VO|2(1 + o(1)) logt as t — +oo.

CoOROLLARY 2 (Finite time collision). — Let u(t) € C([0, +00), X) be given by Theorem 1
and let v € C((—00,0), X) be the pseudo conformal transform of u(t) defined by (1.5). Then
v(t) blows up at T* = 0 with

log |t|

(L13)  [Vu@)llz2 = K2[VQ12(1 + o(1)) o> =~ K[Ql7280 as 1 1 0.

4¢ SERIE - TOME 51 —2018 - N° 3



BLOW UP FOR CRITICAL NONLINEAR SCHRODINGER EQUATION 705

Comments on the main results

1. Dynamics with multiple nonlinear objects. — Multiple bubble solutions with weak inter-
actions and asymptotically free Galilean motion have been constructed in various settings,
both in stable and unstable contexts, see in particular [34, 46, 27, 28, 21, 11, 50, 5, 16]. As a
typical example of weakly interacting dynamics, for the nonlinear Schrodinger equations

4
(1.14) iatu+Au+|u|p_1u=O, xeRd, l<p<l+m,
there exist multi solitary wave solutions satisfying for large ¢,

(1.15) <e . y>0,
< y

L 1 1
u(t) — Z e_’rk(t’x)a)k”*1 Q(wk2 (.— vkt))
k=1

H!
for any given set of parameters {v, wi }x with the decoupling condition vy # vy if k # k’
(see [28, 11]).

In [21], two different regimes with strong interactions related to the two body problem
of gravitation are exhibited for the Hartree model (hyperbolic and parabolic asymptotic
motions). We also refer to [46, 29] for works related to sharp interaction problems in the
setting of the subcritical (gKdV) equation. We thus see the present work as the first intrusion
into the study of strongly interacting non radial multi solitary wave motions for (NLS). Note
that the solution given by Theorem 1 is a minimal threshold dynamics and its behavior is
unstable by perturbation of the data. An important direction of further investigation is the
derivation of stable strongly interacting multiple bubbles blow up dynamics.

We observe from the proof of Corollary 2 that the K bubbles of the solution collide at
the same point at the blow up time providing the first example of collision at blow up for
(NLS). Note that the geometry of the trajectories of the blow up points (straight lines from
the origin to the egde of the K-sided regular polygon) is an essential feature of these solutions.
A related one dimensional mechanism is involved in the derivation of degenerate blow up
curves in the context of “type I” blow up for the wave equation, see [44]. For the nonlinear
heat equation in one dimension, solutions for which two points of maximum collide at blow
up are constructed in [17]. There are also analogies of the present work with the construction
of stationary solutions with mass concentrated along specific nonlinear grids, see [47]. In the
context of two dimensional incompressible fluid mechanics, special solutions to the vortex
point system are studied as a simplified model for dynamics of interacting and possibly
colliding vortex, see for example [45] for an overview of these problems.

2. Minimal mass solutions. — The proof of Theorem 1 follows the now standard strategy of
constructing minimal dynamics by approximate solutions and compactness, initiated in [34]
and extended in various ways and contexts by [27, 21, 11, 53]. We combine in a blow up
context the approach developed for multibubble flows in [27, 21] and a specific strategy
to construct minimal blow up solutions for (NLS) type equations introduced in [53, 20].
A key ingredient of the proof is the precise tuning of the interactions between the waves. In
particular, we observe that the K bubbles in (1.11) have the same phase, which is crucial in our
analysis. The dynamics of two symmetric bubbles with opposite phase (y; = y,+m)isrelated
to the dynamics of a single bubble on a half-plane with Dirichlet boundary condition and it

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



706 Y. MARTEL AND P. RAPHAEL

is known in this context that minimal mass blow up at a boundary point (which corresponds
to the collision case) does not exist, see [2].

Note that we restrict ourselves to space dimension 2 for simplicity, but similar results hold
for the mass critical (NLS) equation in any space dimension with same proof.

For the mass subcritical (1 < p < 1 + %) and supercritical (1 + % <p<l+ /%2)
nonlinear Schrodinger Equations (1.14), we expect, by using a similar approach, the existence
of bounded strongly interacting multi solitary waves, with logarithmic relative distances, i.e.,
non free Galilean motion. Interestingly enough, the existence of such solutions is ruled out
in the mass critical case by the virial law (1.7). The scaling instability direction of the critical
case is excited by the interactions which lead to the infinite time concentration displayed in
Theorem 1.

Conversely, solutions such as u(¢) in Theorem 1 cannot exist in the sub and supercritical
cases. In the subcritical case, it is well-known that all H! solutions are bounded in H! ([7]).
In the supercritical case, any solution in ¥ that is global for ¢ > 0 satisfies

. <
lim inf[|Vu(@)] 2 < 1.

Indeed in this case, the Virial identity ;—; [ 1x?ul?> = 4d(p—1)E(uo)—(£(p—1)-2) [ |Vul?
integrated twice in time provides the global bound fot fOS ||Vu(s’)||izds/ds <2

Note that the construction of Theorem 1 is performed near ¢ = +o0 (by translation
invariance, it is then obvious to obtain a solution on the time interval [0, +00)). An inter-

esting question is to understand the behavior of such solutions for r < 0.

3. Zero energy global solutions. — From the proof of Theorem 1, the solution u has zero
energy. In [40], it is proved that any zero energy solution satisfying (1.8) blows up in finite
time with the log-log regime. Thus, in the neighborhood of Q, ¢'* Q is the only global zero
energy solution. For the critical (gKdV) equation, a similar result holds though in a stronger
topology (see [30]). Note that the existence of global in time zero energy solutions is strongly
related to Liouville type theorems and to blow up profile, see [48, 37]. For (NLS), the only
known examples of global in positive time zero energy solutions so far were the time periodic
solutions e’ P where P is any solution to the stationary equation AP — P + P3 = 0.
Therefore, the existence of such a non trivial global (for positive time) zero energy solution
u(t) is surprising. For other works related to minimal mass solutions and their key role in
the dynamics of the flow, we refer to [15, 53, 3, 43, 14, 30, 31].

4. Blow up speed for (NLS). — The question of determining all possible blow up rates for solu-
tions of nonlinear dispersive equations is in general intricate. For the (NLS) Equation (1.14)
in the mass supercritical-energy subcritical range, a universal sharp upper bound on the blow
up rate has been derived in [43] for radial data, but no such bound exists for the mass critical
problem. For (NLS) with a double power non linearity of the form |u|?~'u + |u|?>u where
1 < p < 3, the minimal mass solution has a surprising blow up rate different from the
conformal rate, see [26]. For the mass critical (gKdV) equation, solutions arbitrarily close to
the solitary wave with arbitrarily fast blow up speed have been constructed in [32]. Recall that
constructions of blow up solutions with various blow up rate are also available in the energy
critical and super-critical context, see [24, 23, 41, 13, 10, 18]. However, such general construc-
tions seem by now out of reach for the mass critical (NLS) problem. In this context, the

4¢ SERIE - TOME 51 — 2018 = N° 3



BLOW UP FOR CRITICAL NONLINEAR SCHRODINGER EQUATION 707

derivation of the anomalous blow up speed (1.13), in spite of its rigidity, is an interesting new
fact. We will see in the proof how such a blow up rate is related to strong coupling between
the solitary waves.

1.5. Notation

Let ¥ = H' N L?(|x|?dx). The L? scalar product of two complex valued functions
f.g € L?>(R?) is denoted by

(f.g) = Re ( /R . f(x)g(x)dx).

In this paper, K is an integer with K > 2. For brevity, ), denotes Zle. Fork =1,...,K,
ex denotes the unit vector of R? corresponding to the complex number e’ G We define

the constant ¥ = «(K) by

;27

(1.16) e =|1-eF| = @=2c0521/K))? > 0.

Recall that we denote by Q(x) := Q(|x|) the unique radial positive ground state of (1.1):

!

(1.17) Q”+T—Q+Q3=0, 0'(0) =0, Jim Q@) =0.

It is well-known and easily checked by ODE arguments that for some constant cg > 0,

(1.18) forall r > 1, )Q(r) — ch%e*r + ‘Q’(r) + ch%e*’ < r3e
We set
(1.19) Ig = [ Q3(x)e*dx, x = (x1,x2).

We denote by ¥ the set of smooth functions f such that
(1.20) forall p € N, there exists ¢ € N, s.t. forall x e R2 | fP(x)| < |x|Ze .

Let A be the generator of L2-scaling in two dimensions:

Af =f+x-Vf
The linearization of (1.1) around Q involves the following Schrodinger operators:
Ly :=—-A+1-302 L_:=-A+1-0%
Denote by p € ¥ the unique radial solution H! to
(1.21) Lip= %Q
which satisfies on R?
(1.22) lpO)] + Vo] S (1 + 1x*) Q(x).

We recall the generalized null space relations (see [55])

2
L_-Q =0 Li(AQ)=-20Q, L_(]x]*Q)=—4A0, LW:%Q’

Ly(VQ) =0, L-(xQ)=-2VQ,

(1.23)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



708 Y. MARTEL AND P. RAPHAEL

which can be checked easily from direct computations using the equation AQ + Q3 = Q
and the definitions of L4+ and L_.

We also recall the following standard coercivity property under orthogonality conditions
(see e.g., [37, 38, 53, 55, 9)): there exists i > 0 such that, for alln € H1,

(1.24) (L4 Ren, Ren) + (L_Imn, Imn) > ufn)3;

- i ({n. 00> + (. 1x2Q)? + (. xQ)I> + (1.ip)?> + |(n.iV Q) ?) .

1.6. Outline of the paper

The main goal of Sect. 2 is to construct a symmetric K-bubble approximate solution
to (NLS) and to extract the formal evolution system of the geometrical parameters of the
bubbles. The key observation is that this system contains forcing terms due to the nonlinear
interactions of the waves, and has a special solution corresponding at the main order to the
regime of Theorem 1 (see Sect. 2.2). In Sect. 3, we prove uniform estimates on particular
backwards solutions of (NLS) related to the special regime of Theorem 1. We proceed in
two main steps. First, we control the residue term by energy arguments in the context of
multi-bubbles. Second, a careful adjustment of the final data yields a uniform control of
the geometrical parameters. In Sect. 4, we finish the proof of Theorem 1 by a compactness
argument on a suitable sequence of backwards solutions of (NLS) satisfying the uniform
estimates of Sect. 3.

Acknowledgements
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2. Approximate solution

In this section, we first construct a symmetric K-bubble approximate solution to (NLS)
and extract the evolution system of the geometrical parameters of the bubbles. This system
contains forcing terms due to the nonlinear interactions of the waves. Second, we write
explicitly a particular formal solution of this system that will serve as a guideline for the
construction of the special solution u(¢) of Theorem 1. Third, we state a standard modulation
lemma around the approximate solution. Recall that the integer K > 2 is fixed.

4¢ SERIE - TOME 51 —2018 = N° 3



BLOW UP FOR CRITICAL NONLINEAR SCHRODINGER EQUATION 709

2.1. Approximate solution and nonlinear forcing

Consider a time dependent C 1 function p of the form
p= . z,7.8.b) € (0, +00)* x R?,

with |b| 4+ |B] < 1 and z > 1. We renormalize the flow by considering

eiv()

2.1 u(t,x) = 0)

v(s,y), dt =2A*(s)ds, y=

X
A(s)’
so that

iy

A
(2.2) i0;u 4+ Au + |ul?u = 3—3 |:ii) + Av—v + |[v]*v —iXAv +( —)'/)v:|

(v denotes derivation with respect to s). We introduce the following p-modulated ground
state solitary waves, for any k € {1, ..., K},

(2.3) Pi(s,y) = e TkEY=2 N 0 ) (v — 2z (),
for

b
2.4 Br = Ber, zx =zex, Ti(s,y) =/3k'y—z|J’|2’

and where we have fixed

Seol

2<Q§~’>0 for K =2
25  Qu=0+ap, a(z)=—caz2e ™, ¢4 =

Seol

2QQ>O for K > 3.

2(p, Q)

Note that the introduction of such modulated Q, corresponds to the intrinsic instability of
the pseudo-conformal blow up regime (a = 0 leads to b(s) = s~!). Similar exact Q, (at
any order of a) were introduced in [42]. The explicit above choice of a(z) corresponds to
direct integration of the nonlinear interactions at the main order, as explained in Sect. 2.2.
We also refer to (3.27) in the proof of Lemma 7 where this choice of a(z) leads to an
almost conservation of the mass for the approximate solution P defined below. Note that the
different formula for ¢, depending on the value of K corresponds to the fact that for K > 3,
each given soliton has exactly two closest neighbor solitons.

Let

(2.6) P(s,y) = P(y; (2(5), b(5), B())) = ) Pi(s. y)-
k

Then, P is an approximate solution of the rescaled equation in the following sense.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



710 Y. MARTEL AND P. RAPHAEL

LemMma 3 (Leading order approximate flow). — Let the vectors of modulation equations be

b+ 4 —iAV

e — 2Bk + Az —iVV

@7 =B =B~ Bezo [ MV =] -y
B _%ﬁk‘l‘%(ék_zlgk‘i‘%zk) —yV

b+ b2 —2b(b+ %) —a b2y

Then the error to the renormalized flow (2.2) at P,

. A
(2.8) Ep=iP+ AP-P+ |P|2P—iIAP+ (1—yp)P

decomposes as

(2.9) Ep =) [T Wy —z0). Wi =i -MQq +izd (2)p + G + Vo,
k

where

(2.10) IGilizee S 2727, | Wg, e < laf,

and

2.11)

1

(Gi-iQa) + Kcalp. Q)bz3 ™| < (IB22% + [bIPz* + ||z + [blz)z 2 e™F 4 23¢ 727,

Proof of Lemma 3. — Step 1: Equation for Py. Let
- 2y A .
Ep, =1 Px + APr — Pr + | Pr|” Pk —IXAPk + (1 —yp)Px.
Let y;, = y — zi. By direct computations
i P = [T (i2a'(2)p = (Bi - v2) Qa + (k- B Qa
; b »
2 3a20a = 3 Gh - y2) Qa —iCi - Y 00)) | 020).
i 2 b2 2
AP, = [T (804 — Bk Qa = 17z P Qu — 1604
+b(Bi - 2) Qa + 20 (Br -V Qo) = by - V0a)) |20,
. . b
APe = [T (AQa + (B v2) Qu = i51v5, P Qu + (2, -V a)

b
(k- B Qa —i5 (k- ¥2) Qa + (i - VW) ().
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BLOW UP FOR CRITICAL NONLINEAR SCHRODINGER EQUATION 711
Thus,
) i A
Epe = [T (=i + 5IN00 — (2 — 281 + T21) -V 04
A A
) A .
— =1+ 1B - X(,Bk ~zk) — (B - 2k)) Qa
A b . A
— (Bk — X/gk + E(Zk — 2Bk + sz)) Yz Qa

1 A
+ B+ b2 =25+ D)Iyz, [ Qu +i2d' @) + AQu = Qa +10aQa) | 720):

By AQ—Q+ Q3 = 0and the definition of p, Ly p = —Ap+p—302p = %|y|?0 (see (1.21)),
we have

a

AQq— Qs+ |Qa|2Qa = _Z|y|2Qa + ¥Yo,,

where
2
a

(2.12) Vo, = 1041?Qa — 0° —3a0Q%p + lelzp-
We have thus obtained the P equation
(2.13) Ep, = [e"Fk (nzz ‘MQq +izd (2)p + qJQa)](y — 20,

where m{ and M are defined in 2.7).

Step 2: Equation for P. From step 1 and the definition of Ep in (2.8), it follows that
Ep=Y_ Ep +[PPP=D " |PPr.
k k

Observe that
PPP—> PP =Y PcPiPr—) |Pl’P =) Fr.
3 jke,l 3 3
with

Fe=2\PPY P+ PEY Pi+Pr Y. PiPi= TGy — ).

j#k j#k Jk, Ik, j#1
where we have set
(2.14) Gr =260 + Gy + 6,
and
GP () = [e7 021 D [ 0a](y — (zj — z6)).
j#k
Gy =[e2Te 0] > ([ 0a](v = —z) [ 0a] (v = (21 — 2))) -
ik, Ik, j#1
Therefore,
215 Ep = [eTeW](y —zx) where W =g -MQ, +izd'(2)p+ Gy + Yo,

k
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Step 3: Nonlinear interaction estimates. In order to estimate the various terms in (2.15),
we will use the following interaction estimates: let w, @ € R?, |w| > 1, |@] > 1,letq > 0,
then:

2.16) [+ 11902000 - ordy < ol Ee
@.17) [+ 119070900 - )00 - By £ 4 7
@.18) \ [ @000 -wiy —cololol el £ ot

with cg and I are given by (1.18)(1.19).
Proof of (2.16). — From (1.18), observe that
219 QMO —0) S U+ Iy)72(1 + |y —w))"2e PleTloltbl < =2 ¢lol,
Thus,
[+ 000 -0y S ol e [+ 151902 0)dy < o Fe .
Proof of (2.17). — From (2.19),
[+ 11902000 - 0106 -@dy £ [+ 11902101 - w10 - @)ay

3

et [ y1n 0t pay < e Hole i
Proof of (2.18). — First, using (1.18),
[ . o'mew-wdyse el [ o -wpy sl
ly1>3 ol
Second, for |y| < %|w|, we use (1.18) to write
00 =) —coly —w[ e S |y —w| 20l < o 2ol

In particular,

[ omon-adr-co [
yI<zlol

yI<zle

_3 _
Slo72e7l

| Q3()ly — | Ze P ldy

Still for |y| < %|a)|, the expansion

ly—ol =lof* -2y -0+ |y

implies
3
[y =0l — o3| S o2y
and
DA =1,,2
‘|y—w|—|w|+y-—‘w|w| 2.
o]
Thus,

e~ y—ol _ mlelty gy

<o 2 (e—\y—wl + e—lw\+y.‘%‘> < oYy [Pe @l
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Therefore,

1 L lolty@ _3 _
‘Iy —o| ZeT ol T2 7O G| < w72 (1 4 [y [R)el@le,

and so

1y w N R P L@
[, @00 ol e lay —op bl [ 0%y
yI<ilw

lyl<3|ol
< Jof -3 / (1 + [yP)edy < o] 3ol
Also, we see that

1 Lo -1 _ — —
ot [ e By Sloltel [ ey getel,
ly1> 7wl ly

3
[> 7ol

Since for all w # 0 (see (1.19)),
lo= [ QW Eay,
we have proved (2.18).

Step 4: Estimates of Gy and Wp,. We are now in position to prove (2.10) and (2.11).
The estimate on Wg,, in (2.10) follows directly from its Definition (2.12). To estimate G as
in (2.10), we first note that from (1.18), (1.22) and the definition of a(z) in (2.5), we have, for
some g > 0,

1al S Iy 2™+ 1a@)Iy1%e ™ S (14 [y) 2™ 4+ 22em 7 (1 + fypre™,
Moreover, for j # k, from the definition of « in (1.16),
|zj —zx| = z|ex —€;| = kz.
From this, it follows easily that for j # k,
Qa1 Qa(y = (2 =) S 272677,
which in light of the explicit Formula (2.14) yields the control of Gy in (2.10).
We now turn to the proof of (2.11) which requires a more careful analysis of the interac-

tion terms. We first compute the main order of the contribution of Gfl) to (G1,iQ).
Forj =2,...,K,

(e Q2]M[e™ Qu](y = (2 = 21)).iQu)
= [ 021 Qaly — 2(ej —e) sin(Ty(y — 2(¢j —e1)) — T1(»))dy.
First, by the decay of p (see (1.22)), (2.16) and the definition of a(z) in (2.5), we have
/ 103(9)Qaly — z(ej —e1)) = Q*(NO(y — z(¢j —e1))| dy < lalz3e™F < 2277,
Next, note that, since I; = g, - y — 2|y[?,

|sin(T; (v — z(e; —e1)) = T1 (1) — (T (y — z(e; —e1)) = [1()]
ST = 2@ —e))? + I S IBPU P +22) + 6Py |* + 2%,
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and
b
‘(Fj(y —z(ej —en) —T(y) + Z|Z(ej —e)?| S 1Byl + 2) + 1bI(Iy > + |y]2).
Thus, using (2.16),
b
[ 020100 =2 — e[ sin(Ty 5~ 266 —e0) = 110N + (e 0P|y

S (1B172% + [b]2* + |BIz + |blz)z " 2e 2.

Therefore, we have proved

. . b
(™ Q210 [e™ Qulr = 2(es —e0)i0a) + =06 el [ 220900 - =(e —el))‘

SUBPZ> + |b1Pz* + |Blz + |blz)z 727 + 2372,

For j =2and j = K, we have |z(e; —e1))| = kz, and so using (2.18),

4 . b 3 3
([ QZ][e™ Qa](y = 2(ej —€1)).iQa) + Jeolok>27e ™

S (BP22 + bIPz* + |Blz + blz)z2e ™% + 2272,
For K >4and j =3,..., K—1,wehave |e; —e;| > «/, for some «’ > «. Thus the following
bound follows from similar computations
([T 02]0)[e™ Qv = 2(e; —e1)). 1Qa)

S (BIP2> + 1bIP2* + |Blz + 1blz2)z 2 e ™7 4 236722,
Note that (2G§D + 6?), iQ4) = (G%D, iQ4). We finally bound the contribution of Gfm.
Forj #1,1 #1and!l # j,

([T Qa] ) [ Q] (v = (25 = 2)) [T Qa] (v = (21 = 2))- 1 Qa)
= [ 020Quly = ¢y =20 Quly — (21 = )
xsin(lj (y — (z; — z)) + Ti(y — (21 — z&)) — 2T (y))dy.

By (2.17), the bound on |a| and |T;| < |B|(ly| + 2) + |b|(|y|* + z?), this term is bounded
by (1Bz + [b|z2)e3x2.

Gathering these estimates, using the definition of the constant ¢, in (2.5) which takes
into account the two different cases K = 2 and K > 2 (for K = 2, the soliton P; has
nonlinear interaction with only one other soliton, while for K > 3, it has exactly two closest

neighboring solitons, P, and Pg), we obtain finally
1

(G 1Qa) + kcalp. Q)bz3 ™| < (1BIP22 + |b22* + |Blz + |blz)z"2e ™ + 2722,

which completes the proof of (2.11). O
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2.2. Formal resolution of the modulation system with forcing

From Lemma 3, we derive a simplified modulation system with forcing term and we
determine one of its approximate solution that is relevant for the regime of Theorem 1.
Moreover, we justify the special choice of function a(z) in (2.5). Formally, i.e., assuming that
P is a solution of (1.1) up to error terms of lower order than the ones in (2.9) (making this
rigorous will be the object of the bootstrap estimates in Sect. 4), we have the following bounds
(m¢ is defined in (2.7))

(2.20) 9| < z72e e

Indeed, (2.20) is obtained from (2.9)—(2.10) by projecting £p onto directions related to the
generalized null space (1.23) (see Lemma 7 for rigorous computations). To simplify the

discussion, we drop the equation of y, which is not coupled with any other equation and has

. . . . ~g - 1
no influence on the regime. Next, we see that using the first line of m¢, i.e., |0+ % | S z7ze™™E,

we can replace % by —b in all the other estimates. Similarly, we insert the estimate on Z from
the second line into the estimate for 8. We obtain the following simplified system

A . .
@2.21) b+ 51+ 12 =28 —bz| + 1B + BBl + b +b* —a| < zTreke,

It is easy to check the following estimates

LEMMA 4. — Let (Zapp, Aapp(8), Bapp, bapp(5)) be such that

_3
happ(5) =10g71(5), zapp(s)etemn®) = K42,
2.22) 3
|Bapp(5)] S 57" log™2 (5), bapp(s) = s 1 log ™' (s).
Then,
(2.23)
2 Aapp . B B _%
Zapp(s) ~ ; log(S), |bapp + Aappl =0, |Zapp - 2,3app - bappZapp| SS 10g (S),
2 og” 2y 3 . o
|a(zapp) + 52 log ™' (s)| < 572 log™2(s), |Bapp + b2y — a(Zapp)| S 572 log ™2 (s).

The above estimates mean that (2.22) is a reasonable guess for the first order asymptotics
as s — —oo of some particular solutions of (2.21) (we refer to Sect. 3.4 for a rigorous
integration of (2.21)). Note that we do not actually determine the main order of B(s); to
do this, more interaction computations would be necessary. However, since |B + bB| <
P , formally, we obtain |B| < s 2log ?(s), which justifies a bootstrap on B(s) of
the form |B(s)| <« s~ log 2(s). Note also that there exist solutions of (2.22) with different
asymptotics, corresponding to (NLS) solutions like v(¢) of Corollary 2.

To complete this formal discussion, we justify the choice of ¢(z) in (2.5) in the regime given
by (2.22). Indeed, projecting ¥; onto the direction i Q,, from (2.11), we obtain at the leading
order

(2.24)  |2a'(2) — keabz3e™ | < (|BP22 + b2z + |Blz + |b|2)z " Ze ™7 + z3e7 27,
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In the regime suggested by (2.22), since |8| < |b|z, we have bz ~ Z and thus, simplifying Z,
we obtain
la’(z) — Kcaz%e_“| < z7remk?,

which justifies the definition (2.5) by integrating in z.

2.3. Modulation of the approximate solution

We state a standard modulation result around P. We restrict ourselves to the case of
solutions invariant by the rotation preserving P. Denote by tx the rotation of center 0 and
angle 27” in R2. Since Q and p are radial, by definition of P and B, zj in (2.3) and (2.4),
we have for k € {l,...,K — 1}, Pr(y) = Pry1(txy) and Pg(y) = Pi(zxy). In
particular, it follows that P(zxy) = P(y), i.e., P is invariant by the rotation tx. Note also
that Equation (1.1) is invariant by rotation. In particular, if a solution of (1.1) is invariant by
the rotation tx at some time, then it is invariant by rotation at any time. In this context, the
following modulation result relies on a standard argument based on the Implicit Function
Theorem (see e.g., Lemma 2 in [38]) and we omit its proof.

LEMMA 5 (Modulation around P). — Let I be some time interval. Let u € C(I, H'(R?))
be a solution of (1.1) invariant by the rotation tx and such that

<$

(2.25) sup
rel o

eTTOLOu(. (1)) = > 0(. —ekZ(1)
k

for some i(t) >0, 7(t) € R%, 2(t) > 871, where § > 0 is small enough. Then, there exists a
C! function

p=Az,%B.b): I — (0,007 xR,
such that, for P(t,y) = P(y;z(t),b(t), B(t)) as defined in (2.6), the solution u(t) decomposes
onl as
iy(r)

e X
(2.26) u(t,x) = 0 P+e)t,y), y= m
where for all t € I,
(2.27) b+ BO]+ lle@ g + 127" <6,

and, setting e(t, y) = [eTin (1. y — z1),
(2.28) (m(@),y?Q) = [(m (1), y0) = (m(),ip) = |(m(1),iVO)| = (m(1),i AQ) = 0.
Moreover, ¢ is also invariant by the rotation tg.

Note that the choice of the special orthogonality conditions (2.28) is related to the
generalized null space of the linearized equation around Q, (1.23) and to the coercivity

property (1.24). See the proof of Lemma 7 for a technical justification of these choices (see
also [53]).
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3. Backwards uniform estimates

In this section, we prove uniform estimates on particular backwards solutions. The key
point is to carefully adjust their final data to obtain uniform estimates corresponding to the
special regime of Theorem | and Lemma 4.

Let (A", 2" b'") € (0,400)? x R to be chosen with 1" « 1, zI"* > 1, |bi"| « 1.
Let u(¢) for t < 0 be the solution of (1.1) with data (see (2.6))

X

_ 1 in
(3.1) u(0.x) = 7P <x_

(we arbitrarily fix y?" = Bi* = 0). Note that u(0) satisfies (2.25) and, by continuity of the
solution of (1.1) in H'!, it exists and satisfies (2.25) on some maximal time interval (1™°9, 0],
where t™°¢ ¢ [—00,0). Note also that by invariance by rotation of Equation (1.1), u(¢) is
invariant by the rotation tx. On (1™°9, 0], we consider (p, €) the decomposition of u defined
from Lemma 5. For s > 1, we normalize the rescaled time s as follows, for ¢ € (™°¢, 0],

0 dr
¢ AX(0)

) where  P(y) = P(y: (z'", 5™, 0))

(3.2) s =s(t) = 5" —

Observe from (3.1) that
A(Sin) — Ain, b(Sin) — bin, Z(Sin) — Zin,

(3.3) . . ,
y(s'") =0, B(s'™) =0, e(s'™) = 0.

ProposITION 6 (Uniform backwards estimates). — There exists so > 10 such that for all
s'" > g, there exists a choice of parameters (A'", z'" | b'™) with

1
(i)2 (Zin)—%e%zi” _Sin

KCq

< s log™2 (s,

(3.4)

1
Kgin

wr =gt o= (S2) Emhes
K

such that the solution u of (1.1) corresponding to (3.1) exists and satisfies (2.25) on the rescaled
interval of time [sg, '™, the rescaled time s being defined in (3.2). Moreover, the decomposition
of u given by Lemma 5 on [sg, s'"]

iy(s) X

P ,Y), = —
o BrOe.

AGs)”
satisfies the following uniform estimates, for all s € [sg, "],

u(s,x) =

2(5) ~ = log(s)| < log(log(s)). 3 ~log™ ()] £ log 3 )

(3.5
|b(s) — s og ()| + IBG)| + lle@) g1 S 571 log 2(s). la(s)| < s 2log ! (s).
The key point in Proposition 6 is that s and the constants in (3.5) are independent of s*"
as s'" — 4-00. Observe that estimates (3.5) match the discussion of Sect. 2.2.

The rest of this section is devoted to the proof of Proposition 6. The proof relies on a
bootstrap argument, integration of the differential system of geometrical parameters and
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energy estimates. We estimate ¢ by standard energy arguments in the framework of multi-
bubble solutions. The particular regime of the geometrical parameters does not create any
further difficulty. On the contrary, the special behavior b(s) ~ s~ log™!(s) simplifies this
part of the proof (see step 2 of the proof of Proposition 8). We control the geometrical
parameters of the bubbles in the bootstrap regime adjusting the final data (A", zi" bi").

3.1. Bootstrap bounds

The proof of Proposition 6 follows from bootstrapping the following estimates, chosen in
view of the formal computations in Sect. 2.2,

1
2 2 3 [
_ z 4e2° —§
KCq

1
557 log ! (9) < b(s) = 257 log ™ (s),

< slog™3 (s),

(3.6)

1B(s)| < s log 3 (), [le(s)]l g1 < 5~ log™3 (s).

Note that the estimate on z in (3.6) immediately implies that, for s large

37 e <5 Plog 3 (s). |z(s) - %bg(S) < log(log(s)),  la(s)] S 57 log™ (s).

For so > 10 to be chosen large enough (independent of s'"), and all s’ > s, we define

(3.8) s* = inf{z € [so,s"]; (3.6) holds on [z, s*"]}.

3.2. Control of the modulation equations
We claim the following bounds on the modulation system /¢ and on the error £p given

by (2.7), (2.8)—~(2.9) in the bootstrap regime (3.6).

LemMA 7 (Pointwise control of the modulation equations and the error).

The following estimates hold on [s*, s'"].

(3.9) g (s)] S 57> log 2 (s).

(3.10) [(m(5), Q)] < 572 log 2 (s),

(3.11) 1z —bz| <s M og M (s), Bl + b —al| < s72log 2 (s).

Moreover, for all s € [s*, 5", for all y € R?,

(3.12) |Ep(s, )| + |V ER(s. )| S 577 log () Y 02 (y — 2k (s)).
k

Recall that e(s, y) = [e'T1ny](s, y — 21).

We see from (3.10) and (3.6) that Q is a special direction for n;. In step 4 of the proof
of Lemma 7, it is controlled directly, thanks to the special choice of @ in (2.5) and L?
norm conservation. Alternatively, one could impose the additional orthogonality condition
(n1, Q) = 0 to (2.28) by modulating the parameter a, at the cost of some other technical
difficulties.
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Proof of Lemma 7. — The proofs of the first two estimates are to be combined. Since
e(s'™) = 0, we can define

§* = infls € [%,5™]; [(m1(2), 0)] = C**r2log (x) holds on [s, s},
for some constant C** > 1 to be chosen large enough. We work on the interval [s**, s'].

Step 1: Equation of ¢ and change of variable. Let v = P + ¢ in (2.1).
It follows from (2.2), (2.8) that ¢ satisfies the following equation

A
(3.13) ié+ Ae—e+ (|P+e*(P +¢) — [P|°P) — iXAe +(1—yp)e+ Ep=0.

Since the orthogonality conditions (2.28) in Lemma 5 are written for 7;, we change the
space variable to match the one of the bubble P;. Recall that n; is defined such that
e(s,y) = [¢'T1n1](s. y — z1). Define similarly Py and Cp, such that

P(s,y) = [¢'T'P1](s.y —z1),  Ep(s,y) = [T Ep ]G5,y — 21).

We rewrite the equation of ¢ into the following equation for 7, (see also step 1 of the proof
of Lemma 3)

GA4) i+ An =1+ (Py 4 01 2@y + 1) — [P PPy) + w0 - My + Ep, = 0.

Step 2: General null space like computation. A standard observation is that Equa-
tion (3.14) above contains the first order differential system of the parameters p = (A,z,y, B, b)
through the term Ep, (see the definition of Lemma 3) and the orthogonality condi-
tions (2.28). To derive this system, it is enough to project the Equation (3.14) on each
direction chosen as orthogonality condition for 7;. We claim a preliminary general compu-
tation that will be used in the next step for this derivation. Let A(y) and B(y) be two
real-valued functions in . We claim the following estimate on [s**, s'"]

(3.15)

d >a N : - — —1|7a
%<n1,A+i3)—[(m,iL—A—LJrB)—(ml'MQ,ZA—B)]‘SS 2log 2(s) + s~ |m¢.

We compute from (3.14),
%(UI,A"FiB) = (n.A+iB) = (in,iA— B)
= (=Am +m—QQ%n + 07,),id - B)
— (1 + m PPy +n1) = [Py P =20 — 0%7y.iAd — B)
— (Mm% -Mny,iA— B) — (Ep,.iA — B).
First, since A and B are real-valued, we have
(=Am +m —(2Q%n + O7y).id— B) = (n,iL-A— Ly B).
Second, note that

[Py + n1i>(P1 + m) — [P1[*P1 —20%n — 0?7,
=2(IP1> — 0®)m1 + (PF — OH)7, + 2P1|m|* + Ping + 2Py m > + 1> m,
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and recall the expression of Py

K
Pi=Q+ap+ Y kO Coa)TiON g (y — (5 — 1)),
k=2

Therefore, using A, B € ¥, (3.6)-(3.7) and |zx — zj| > «z, for k # j, we have, for some
q>0,
[((IP1> = O)imi.id = B)| + (P} — 0*)7,iA — B)]|
S (al + 277 mll2 S s7° log?(s).
Next,
<572 log 3 (s),

. _ _2
ImPni,id = B) S (el 4] + |BI) S llelljn S 57> log™2 ().

|(2P1[m|* + Pint + 2Py >, iA — B)| < llell7»

Third, we have, using (3.6)—(3.7), integration by parts,
|8 - My, id = B)| S | - My, 4 = B)| + | (G — i) - Mna. id - B)
< 57V og 2 (s)?] + s> log 3 (s).
Finally, we claim the following estimate, which is enough to complete the proof of (3.15).
(3.16) ’(81:] iA— B) — (m9-MQ.iA— B)’ < 572 log 2(s) + s~ 9.
Indeed, recall the expression of Ep, (from (2.8)—(2.9))

K
Epy = W1 + Y el CHO=CEm2DTIO g (y — (2 — z)).
k=2

K
=m? MQq +izd' (2)p+ Gy + Vg, + Z ! TkO=CE=2)"T1ON g, (y — (24 — 21)).
k=2

First, since O, = O + ap, by (3.6)-(3.7),
(g - M(Qa — 0).i4 = B)| S lalling] S s 2log™ (5) S,

Second, from (3.6)-(3.7),

: . e D R A
[{za'(2)p.iA = B)| S la'(2)||2] S s72log™ (s)(Imf] + |B] + 1512
<572 log ™ (9)((z + DImf| + |B] + [b]2)
S sl + 57 log ™ (s).

Third, from (2.10) and (3.6)(3.7),

(3.17)

(G1.id = B)| S G ll1oe S 27 2™ S 572 log™2(s).
Fourth, from (2.10) and (3.6)—(3.7),
(@o,.id — B)| < [Wo,llzee < lal> < s~ log 2(s).
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Last, since A, B € ¥, for k > 2, we have
(! TRO= 2T G - MQa (. — (21 — 21))).i4 = B)| S 57" |,
and, proceeding as before for the other terms in W, we obtain
(! PO ROV (y — (2 — 21)), 14 = B)| S 57" || + 57 log (s).
The proof of (3.16) (and thus the one of (3.15)) is complete.

Step 3: Modulation differential system. We now use the specific orthogonality conditions
chosen in (2.28) and the general Formula (3.15) to control the modulation vector m{ as
in (3.9), i.e., to justify the first order differential system of the modulation parameters. Before
proceeding with these computations, we briefly describe the general scheme used to obtain a
control at order s~2 log™2(s) as in (3.9). We also refer to [53] for similar computations. Each
orthogonality condition required on 7; in (2.28) is of the form (y, A + iB) = 0, where A
and B are real-valued Schwartz functions. Inserting such relation into (3.15), one obtains

(3.18)

(m%-MQ,iA— B)‘ S, iL—A—LyB)| + s 2log %(s) + s~ " |mf].

Using the five orthogonality conditions in (2.28) and non degeneracy conditions (related
to the choice of the orthogonality conditions and to the definition of the vector M),
(3.18) implies directly an estimate of the vector m{ of the form

g] S lmllL2 + 572 log ™2 (s) + 57" [

)

and thus, for s large, and using (3.6), |771‘1’| < 57t log_3/ 2(s). However, this is not sharp

enough for our needs (compare with the size of a in (3.7)). Following [53], we will see
that the special choice of orthogonality conditions in (2.28) and the relations (1.23) lead to
cancelations of the first order terms in 1 in the right-hand side of (3.18), and thus prove the
desired estimate (3.9). Now, we check one by one these special cancelations.

{(n1,]y|>0) = 0. Using the first orthogonality condition of (2.28), namely (i, |y|>Q) = 0,
we obtain (3.18) with A = |y|?Q and B = 0, that is

g - M. i1y Q)| S [t iL-(yP Q)] + 52 1og 2(s) + 5™ |t

Since L_(|y|>Q) = —4AQ (by explicit computation), by the fifth orthogonality relation in
(2.28), one has (n1,iL_(|y|?Q)) = —4(n1,i AQ) = 0. Moreover, by the definitions of /¢
and M in Lemma 3, and parity properties, we have

ca A
(m§-MQ,ily[?Q) = c1(b + X)’
where ¢; = —(AQ, |y|?Q) # 0. Therefore, we obtain
A -
(3.19) ‘b + X‘ < 572 log™2(s) + s~ ind].

We see that the desired cancelation has been obtained in the estimate of |b + %|.

The computations corresponding to the other four orthogonality relations in (2.28) are
perfomed in a similar way using (3.18) and (1.23). We briefly sketch them.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



722 Y. MARTEL AND P. RAPHAEL

(n1,y0)=0.Let A = yQ and B = 0. Since L_(yQ) = —2VQ, (1n1,iVQ) = 0 and
(m§ - MQ,in) =c(z—-28+ %2), where ¢, = —(0,, O, y1 Q) # 0, we obtain similarly

A
(3.20) :—28+ 7 < s72log 2 (s) + sV m.

(n1.ip) = 0.Let A = 0 and B = p. Recall that L4 p = |y|?>Q (this is the definition of p)
and (n1,|y|?>Q) = 0 (from (2.28)). Since

(WO, 1P Q) = e5( = 1+ 2 = FBz = 2)  calh+ 07 ~2b(b + 5) @)

where c3, c4 # 0, we obtain, for some c,
A : A B,
(3.2D) ‘()) —14+8%- Xﬁz —Bz)+c(b+b*—2b(b + X) —a)| <s%log 2(s) + s~Hmg).

(m,iVQ)=0.Let A = 0and B = VQ. Since Ly VQ = 0, and (m{ -MQ,VQ) =
cs (,3 —AB 4+ 528+ %z)), where ¢s = —(y1 0, dy, Q) # 0, we obtain

. A b A R
(3.22) (,3 — TR+ 3G —2B+ 72| S 572 log 2 (s) + 57 i,

(m,iAQ)=0.Let A = 0and B = AQ in (3.18). Note that L+ (AQ) = —20, and
by the definition of s**, |(n1, Q)| < C**s~2log™2(s) (observe that we do not use an exact
cancelation here, but the fact that (n1, Q) is a special direction, controlled directed using mass
properties in the next step). Moreover, (¢ -1\7IQ, AQ) = ce(b+b%—2b(b + %) —a), where
e = i(|y|2Q, AQ) # 0, so that we obtain from (3.18)

: A
(3.23) b+b*—-2b(b + X) —a| S C**s % log % (s) + s~ m4|.

Combining (3.19)~(3.23), we have proved, for all s € [s**, s'"],
g ()] < C**s72log™2(s) + s~ |mf,
and thus, for s large enough,
(3.24) Im§(s)| < C**s™*log~2(s).

Step 4: Minimal mass property of the approximate solution. The proof of the degeneracy
estimate (3.10) relies on the following minimal mass property for the ansatz P under the
bootstrap assumptions (3.6):

(3.25) [IP)llz2 = 1P 2] < 572 log > (s).
Note that the implicit constant on the right-hand side does not depend on C**. By the
Definition (2.9) of Ep, we have

1d 5 ;

Ed—snpni2 = (iP,iP) = (Ep.iP).

In view of the formula for &p (2.9), and the definition of P = Zj P;, (3.25) follows by
integration of the following estimate: for all j, k € {1,..., K},

(3.26) ([T W] (v — z&). i [T Qa (v — 2j))| < 572 log 2 (s).
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Proof of (3.26). — We start by proving (3.26) in the case j = k = 1. From (2.9):
([T W)y — z0).i[e"T% Qa (v — 20)) = (¥1,iQ4) = (i - MQ, +izd'(z)p+ Gy + Vg,.i0Q4).
Note that (MQ,iQ) = 0. Thus, by (3.24), (3.6)~(3.7),
|7 - MQa.iQa)| 5 lallm§] S C**s™*log™(s) S 57> log > (s).

Next, we claim the following estimate, which justifies the special choice of a(z) done in (2.5)
(see also Sect. 2.2)

(3.27) [(iza'(z)p + G1.iQa)| S 57> log 2 (s).
Indeed, first by (3.6)—(3.7) and (2.11),

(3.28) (G1.1Qa) + kealp. Q)bz3 ™| S 57> log ().
Second, we note that by (3.24) and (3.6)—(3.7),

(3.29) |z —bz| < s og™ ' (s),

and that by the definition of a(z) in (2.5),
(3.30) la’(z) — ca/cz%e_"z| < P < 572 log 2(s).

Gathering (3.28)—(3.30), we obtain (3.27). Finally, since Q, and Wg,, given by (2.12) are real-
valued, we have the cancelation

(Wo,.1Qa) = 0.
The collection of above estimates concludes the proof of (3.26) for j = k = 1.

We now prove (3.26) in thecase k = 1 and j € {2,..., K}. Note that
[([e™* W] (v — z). i[e™ Qa](y — 2)))|
= | - MQq +i2d(2)p + Gy + Wo,. 1" T O~ CI=2 Tk 0, (y — (2 — z1)))l.
First, by (3.24), for some g > 0,
(7 - MQq. 1!/ O~ DT Q4 (y — (2 — z0)))]|
< |méz%e™F < C** s *logd(s) < s log 2 (s).
Second, using similar arguments, for some g > 0,
(i2d'(2)p + G1 + Wo,.1e" DO~ Q 4 (y — (2 — z0))| S 57" log! (5).
The collection of above estimates concludes the proof of (3.25).
Step 5: Proof of (3.10). The conservation of mass for the solution u and (3.1) implies:
lu@)lz2 = llu@™)lL2 = P72
By (2.26),
(e(s).P) = % ()72 = PG> — lles)1Z2) -
Therefore, using (3.6)—(3.7) and (3.25), we obtain
[{e(s), P)| < 572 log ™ (s).
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Now, we use the symmetry (e, Pr) = (e, P;) = K e(s),P) forall j,k € {l,...,K}.
Moreover, by (3.6)-(3.7),
_ _5
(e(s), P1) = (1. Qa) = (m, Q) + O(lalllellL2) = (m, Q) + O(s> log™2 (s)).
Gathering this information, we obtain |(n1, Q)] < s2log 2(s), i.e., estimate (3.10). In
particular, choosing C ** large enough, we have s** = s*.
Step 6: Conclusion. The estimate (3.11) is a direct consequence of (3.9) and (3.6)—(3.7).
We now turn to the proof of (3.12). Using (3.9), (3.6)—(3.7) and (1.22),
|2'(2)p] S Q2 (blz + 5~ log ™ (s))s 2 log ' (5) S Q¥ log™ (s).
By (3.9),
it - MOl S 0752 log ().
Next, by the definition of Gy in (2.14), the decay |p| < Q% (see (1.22)) and |ex —e1| = «
fork # 1,

K
61l S 02" (0T (0 —2(ex —e1) +1al0F (1) 0F (v — 2(ex —e1)))

k=2
S03(2e™ 457 S 025 log (o).
Finally, by the definition of Wp, in (2.12),
Wo.l S 02lal? S 025~ log ().
The same estimates hold for V £, which finishes the proof of (3.12). O

3.3. Energy functional

Consider the nonlinear energy functional for ¢
1 1 —
H(s,¢) = 5/ (|v,s|2 + |e]? — 3 (P +e|* —|P|* —4|P]*Re (sP))) )

Pick a smooth function y : [0, +00) — [0, o0), non increasing, with y = 1 on [0, 1—10], x=0
on [é, +00). We define the localized momentum:

J=Y Uk Ji(s.e)=bIm / (2 VOOirk.  qr(s.y) = x (log ' )]y — z(s)]) -
k

Finally, set

F(s,e) = H(s, &) — J(s, ¢).
The functional F is coercive in ¢ at the main order and it is an almost conserved quantity for
the problem.

ProrosiTiON 8§ (Coercivity and time control of the energy functional).
For all s € [s*, s,

(31 Fis.600) 2 160) 1 + 06 log (1),
and
d
630 LR £ 5 og O+ 57 o 06
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Proof of Proposition 8. — Step 1: Coercivity. The proof of the coercivity (3.31) is a stan-
dard consequence of the coercivity property (1.24) around one solitary wave with the orthog-
onality properties (2.28), (3.10), and an elementary localization argument. Hence we briefly
sketch the argument. First, using the coercivity property (1.24) and the orthogonality prop-
erties (2.28), (3.10) and localization arguments, we have

(3.33) H(s. &) 2 |lell?, + O(s*log™(5)).

Note that the error term O(s~*log™*(s)) is due to the fact that the bound (3.10) replaces a
true orthogonality (11 (s), Q) = 0. We refer to the proof of Lemma 4.1 in Appendix B of [33]
for a similar proof. Second, we note that by (3.6)~(3.7), [J(s,&)| < [blz]lell3,, < s el
and (3.31) follows.

Step 2: Variation of the energy. We estimate the time variation of the functional H and
claim: for all s € [s*, s'"],

d _
(334) | [H(s, £(5))] - > (k- VP2l P + €2 P)
k

S s log 2 (s)[le(s) g + 57" log ™ (9)[le() |17+
The time derivative of s — H (s, £(s)) splits into two parts
d .
75 H(s.2())] = DeH(s, £(5)) + (DeH(s. £(5)). ).

where D denotes differentiation of H with respect to s and D, denotes differentiation of H
with respect to e. First compute:

DsH = —(P,|P + ¢>(P + &) — |P?|P — (2¢|P|* + EP?)).
Observe that by the definition of Py in (2.3),
Py = —2k‘VPk+i(/ék‘(y_zk)_%|y_zk|2)Pk +zd'(z)px  where px = [Tk p](y —z).
By (3.11), (3.6)~(3.7) and (2.5),

Bil + 16] + |20’ (2)] S 572 1og™2(s).

Since

J 1P+ e+ 6) — 1P21P = QelPP? 4+ 2%)| < el
we obtain

(1B 0 =20 = 51y = 2P P + 20/ oo [P+ (P + ) — [P2[P — (22| + 52|
S s log 2 () llel 7 -
Next, note that
[P+ e]2(P + &) — |P?|P — (2¢|P|? + EP?) = 2[¢|?P + &P + [¢|e.

By (3.11) and (3.6)~(3.7), || < s~ and thus by (3.6)(3.7),

. 3 —113 —21.5—3 2
(2 - VPe. [el)| S s7h lellz S 572 log 2 (9)lleli7n -
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For j # k, since e ™% < 572 by (3.6)—(3.7) and the decay properties of Py, P},
[(Zk - VP, 21el* Py + €7 P)| S UsI 7 Nlell70
Gathering these computations, we have obtained

(3.35) DsH(s, e) = Z(Z'k VP 2el P+ €2 Pr) + O™ |lellz0)-
k
Second,

D;H(s,e) = —Ae + ¢ — ([P + ¢|*(P + ¢) — |P|*P),
so that the Equation (3.13) of ¢ rewrites
A
ié — DH(s, &) — iXAs +(1—-yp)e+ Ep =0.
In particular,

(DeH(s,€). €) =

—

iDH(s,¢e),ié)

(D:H(s, €), Ae) — (1 — p)(iD:H(s, €), &) — (iD:H(s, &), Ep).

NI

We recall that
(=Ae, Ae) = | Ve|?, (s, Ae) =0, (|g]?e, Ae) = %/ le|*,
and thus, using also (3.6)—(3.7), (1.3), and the decay properties of Q,
(DeH(s, €), Ae)| < el + el < llellz-
In particular, from (3.9) and (3.6)-(3.7), we deduce

A -
7(D:H(s.8), Ae)| S s Hog™ () lell 7

Note that the estimate on b in (3.6)—(3.7) implies |b] < s~ log™!(s) < s~! which avoids the
use of virial localized identities (as in [53, 20]) to control the above term. By (3.9) and (3.6)—
(3.7), we estimate
[(1=7)(iDeH(s, ), 8)| S s72llell -
Finally, integrating by parts, using (3.12) and (3.6)—(3.7), we have
[(iDeH(s, €), Ep)| S (IVel, [V Erl) + (le] + |6, |Epl) S 572 log () el g1
The collection of above estimates finishes the proof of (3.34).

Step 3: Variation of the localized momentum. We now claim: for all s € [s*, 5],

(3.36) ‘%[J(s, 6] —b Y {2k - VP 2lel? P + 2 Py)
k

S5 log () e() g1 + 57 og T () le() 17 -

Indeed, we compute, for any £,

d .
%[Jk(s, e(s))] = bIm /(zk -Ve)eyr + bIm /(z'k -Ve)eyr + b1Im /(Zk -Ve)ex
+b(ié, zi - 2xkVe + eVxr)).
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By (3.9) and (3.6)—(3.7), we have

+ <572 llell -

b Im [(zk -Ve)éeyk| + [bIm /(zk - Ve)eyk
Note that by direct computations, (3.9) and (3.6)—(3.7),

2kl S (7 log™ )]y — zi| + |2 ) Tog ™ ()| (log ™' (9)(y — zk ()] < 57" log™ ()
and so, by (3.6)—(3.7),

bim [ i Vereie| <57 log 2(5) el

Now, we use the Equation (3.13) of € to estimate b (i ¢, zx - Cxx Ve + eV xx)). By integration
by parts, we check the following

(Ae.2(zk - Ve) yk) :/|V8|2(Zk'V)(k)_z((vg‘v)(k)7(zk'VE)),

(Ao e(zi Vi) = [ V6P Vo) + 5 [P e Viazo.
Thus,
(Ag, z - 2xkVe + V) = =2((Ve - Vi), (zx - Ve)) + %/ e[ (z& - V(A xx)-
By (3.6)<(3.7), |b| < s 'log™'(s) and |zx| < log(s). Moreover, |V yx| < log™' (s). Therefore,
(Ve - Vi), (zx - V)| S 57 Hog  (5)llell 7 -

Similarly, by |V(Ayx)| < log™3(s), we obtain

’b/ |6 (zk - V(Axi))| S 57 og 2 (9)llell 7 -
In conclusion, for term Ae in the equation of &, we obtain
|b(Ae, zi - Qu Ve + eV S s7 og™ (s)llell -
For the mass term in the equation of ¢, we simply check by integration by parts that
(e.2k - Qe Ve +eVyr)) = 0.

We also check that

(iAe zi - 2 Ve +eVyi)) = 2{ie, (2 - Ve) xi) + (i(y - Ve). e(zi - Vi),
and thus, by (3.6)-(3.7),
A
A

b1 |16 Ae. zi - Qrx Ve + eV )| S 572 log™ () el -

Next, from (3.12),
b(Ep. 2k - Qi Ve + eV )| S 572 log 2 (5) el -
Now, we only have to deal with the term

b{|P + 8|2(P + &) — |P|2P, zk - 2xVe + eVyr)).
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Recall that [P+¢|>(P+¢)—|P?|P = (2¢|P|? +&P?) +2|¢|?P+ 2P+ |¢|¢. First, by (3.6)~(3.7),
it is clear that

|b(2IelPP + &P + |e?e, zx - Qua Ve + V)| S s ellzpn Ss72 log_%(S)II(?II?,l.
Second, since |b| < s7 log ™' (s), |zx| < log(s) and |V x| < log™' (s),
|b(26[P|*> + 8P, 6(zx - V)| S 57" log ™ (9)llel 7 -

Third, by the decay property of Q and the definition of yy,
b(2e(IP2 = 30 1P12) +3(P2 = 30 PP). G- Voo )| < 57 lell,
J J

and, for j # k,
b(26I Py + EP2 i - Ve) k)| S 57 lellZy
Finally, we compute by integration by parts,
(26| P|*> + EPZ, (z& - Vo) xx) = —(zk - V Px. 2lel* Pr + €7 Py)

1
—5 Re (/ (2|8|2Pk2 + 82|Pk|2) (zk - V)(k)) .

As before,

pRe ( [ (@R PE+ 1P) G Va0 )| 57 0w 0l
The collection of above bounds concludes the proof of (3.36).
Step 4: Conclusion. Recall that, by (3.11), |2z — bzx| < 57! log™'(s), and so
[((Gk — bzk) - VP, 2lel* P + 2 Pi)| < s7 Hog H(9) el 71 -
and (3.32) now follows from (3.34), (3.36). This concludes the proof of Proposition 8. O

3.4. End of the proof of Proposition 6
We close the bootstrap estimates (3.6) and prove (3.5).
Step 1: Closing the estimates in . By (3.32) in Proposition 8 and then (3.6)—(3.7), we have

— — — — — _7
S 572 log () llell g + 57 og T (9)llellfn S 577 log T2 (s).

d
G0
Thus, by integration on [s, s'"] for any s € [s*, s'"], using £(s'") = 0 (see (3.3)), we obtain
[F(s, £(5))| < 572 log 2 (s).
By (3.31) in Proposition 8, we obtain
oy 1
eIz < 72 log™2 (s).
Therefore, for so large enough, for all s € [s*, s'"],
1 _ _
le@) 7 < 33 *log ™ (s).

which strictly improves the estimate on ||s||f11 in (3.6).
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Step 2: Closing the parameter estimates. First, note that from (3.11), | ,3| < s72log2(s).
Together with the choice B(s'") = " = 0 (see (3.4)), direct integration in time gives, for all
s € [s*,5™], |B(s)| < s~'log 2 (s). For so large enough, we obtain, for all s € [s*, s'"],

1
B < 557" log 3 (s).
which strictly improves the estimate on 8(s) in (3.6).

Second, recall from (3.11), (3.7) and the definition of a(z) in (2.5), for all s € [s*, s'"],

. 1
‘b +cqz2e**

Ss72log 2 (s), |2zt —b| ST log TR (s).
Since |b| < s72log™ (s) and |2z7!| < 57! log™! (s), it follows that

)bb + caéz_%e_“ <53 log 3 (s).

Integrating on [s, s*”] for any s € [s*,s"), using the special relation between b'” and z'"
fixed in (3.4)

bZ(Sin) — ﬁz—%(sin)e—lcz(si"), b(sin) >0,
K
we obtain
(3.37) .
2 st :
Ca =3 o*z| < 52 log3(s) + / )z'z—%e—“ ds' < s~21log~3(s), b(s) > 0.

h?— Lz72e
K

N

From (3.6)—(3.7) and (3.7), we have

20, _1

_ oy o 5
272e7¥% — 572 log % (s)| < s 2 log 2 s.

K

Therefore, the following estimate on b(s) follows from (3.37)
1p% — 572 log2(s)| < 572 log ™3 (s).

This implies, for all s € [s*, s'"],

(3.38) b — s log ™" (5)] S s log 3 (s),

which strictly improves the estimate on b(s) in (3.6).

Finally, we address the estimate on z(s). From (3.37), (3.6)—(3.7) and (3.11), we have

1
2
(3.39) 2271 (—Zc") shem57
K

< s log 2(s).

Using z < log™!(s), we obtain
1

(3.40) '% (et - (Lo

< log™ 1 (s).
2 Slog™ (s)

<log™'(s) + ‘22_%e%2

We need to adjust the initial choice of z(s'") = z!" through a topological argument (see [11]
for a similar argument). We define ¢ and £ the following two functions on [s*, s"]

(3.41) cm=(£)3%ﬁisw=@w—Wr%mw

a
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Then, (3.40) writes
(3.42) £(s) = 1] < log™ (5).
According to (3.6), our objective is to prove that there exists a suitable choice of
E(siM) = ¢ e [sin — 5in log—%(sin)’sin 4 gin log—%(sin)],
so that s* = so. Assume for the sake of contradiction that for all ¢ € [—1, 1], the choice
é-in = sin 4 g-ﬂsin log—%(sin)
leads to s* = s*(¢*) € (so,s'"). Since all estimates in (3.6) except the one on z(s) have been
strictly improved on [s*, 5], it follows from s*(¢*) € (so, s'”*) and continuity that
1% () — 5% = s*log 2 5* e, C(s*(¢h) = s* £5*log 2 s*.
We need a transversality condition to reach a contradiction. We compute:
§(5) = 2(¢(5) = 9)(E(5) = s log(s) — (§(s) — )25 log(s) —577).
At s = s*, this gives
E6™) +267)7 S () og 2 ().
Thus, for s¢ large enough,
(3.43) E(s*) < —(s™)7L.
Define the function ® by
O F e[, 1] ((s*) — s*)(s*) log? (s*) € {1, 1},

A standard consequence of the transversality property (3.43) is the continuity of the function
t* € [=1,1] — s*(¢%). In particular, the function @ is also continuous from [—1, 1] to {1, —1}.
Moreover, for (¥ = —1 and ¢* = 1, £(s*) = 1 and é(s*) < 0 by (3.43) and so in these cases
s* = 5" Thus, ®(—1) = —1 and ®(1) = 1, but this is in contradiction with the continuity.

In conclusion, there exists at least a choice of
. . . . 1 . . . 1 .
é-(sln) — é-ln c (Szn _ sln log—j(sln)7sln + sln log_j(sln))
such that s* = s¢.

Step 3: Conclusion. To finish proving (3.5), we only have to prove the estimate on A(s).
From (3.9) and (3.38), we obtain

A
T4 og )| S 57 log™2 (s).

By integration on [s, s*”], for any s € [so,s'"), using the value A(s'") = A" = log™!(s")
(see (3.4)), we have

llog(A(s)) + log(log(s))| < log™2(s),
and thus
(3.44) |)t(s) - log_1 (s)| < log_% (s).

This concludes the proof of Proposition 6.
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4. Compactness arguments

The objective of this section is to finish the construction of Theorem 1 by passing to the
limit on a sequence of solutions given by Proposition 6.
4.1. Construction of a sequence of backwards solutions

We claim the following consequence of Proposition 6.

LEMMA 9. — There exist to > 1 and a sequence of solutions u, € C([to—T,0], ) of (1.1),
where

4.1) T, > +00 asn — 400,

satisfying the following estimates, for all t € [ty — Ty, 0],
4.2)

2
za(t) — Zlog(t + Ty)| < log(log(t + Tn)),  |Aa(t) —log™"(t + To)| S log 2 (1 + Ty).
K

|ba(t) = (t + T) " log (1 + To)| + 1Ba(@)] + llen 1 S (¢ + To) " log 3 (¢ + Ty,
|an(t)| 5 @+ Tn)_2 IOg_l(t + Tn), €1(0) =0,

where (Ay, Zu, Yn, Bn, bn) are the parameters of the decomposition of u,, given by Lemima 5, that
is

ei)’n(t)

i k.n X al
4.3) U (t, x) = e (; [eTen0,,] (T(t) - zn(t)ek) + én (l, m)) ;

withTy ,(t,y) = /3,1(1)(61(-)/)—%|y|2 and Qg,, = Q +anp. Moreover, forallt € [ty—T,,0],

4.4) /|un(l,x)|2|x|2dx S

Proof. — Applying Proposition 6 with s = n for any large n, there exists a solution u, (¢)
of (1.1) defined on the time interval [—T7},, 0] where

n
Tn =/ Aﬁ(s)ds,
50

and whose decomposition satisfies the uniform estimates (3.5) on [—T},0]. First, we see
that (4.1) follows directly from the estimate on A, (s) in (3.5).

Proof of (4.2). From (3.5) and the definition of the rescaled time s (see (3.2)), for any
s € [s9,n], we have

N
ts) + T, =/ A2(s')ds' where [A2(s) —log 2(s)| < log 3 (s).

0
Fix 59 > 59 large enough independent of n so that, for all 5 < s < n,

1 $ 3
Eslog_z(s) < / A2(s")ds" = slog 2(s) + O(s log_%(s)) < Eslog_z(s).
50
Fix tg = 250 log™*(S). Then, for all 7 € [to — Ty, 0],

{4 T, = slog 2(s) (1 + 0(1og—%(s))) > %slog_z(s),
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and
s = (t + Tp) log?(t + Tp) (1 + O(log 2 (¢ + T,,))) .
Thus, estimates (4.2) are direct consequences of (3.5).
Proof of (4.4). — From (4.3) and ¢, (0) = 0, we have u,(0) € X. It is then standard (see

e.g., [7], Proposition 6.5.1) that u, € C([to — Ty, 0], X). We claim the following preliminary
estimates. Fix A = 1K—6 > 8. Foranyk € {1,...,K}, forallt € [to — T, 0],

1 X
*) 2(0) [ ‘Q“" (A_(t) _Z"(”e")

1 v, ([eil"k,n Qan] (%(t) — zn(t)ek))

A%(t) |x|>A

Indeed, (4.5) follows from a change of variable and the decay properties of Q and p,

1 X
%f \Qaﬂ (m) ‘Z"“’ek)

where we have used from (4.2),
(4.7) An(©)zn (1) S 1.
To show (4.6), we see first that by (4.2),

. 2 _3
V[T 04, ]| S 19Qa, )1 + (1Bl + b7V P) 02,0) 5 e3P,
Thus, by change of variable (using A > 8),
1

2
x?dx S 1,

2
dx < (t + Ty ™.

(4.6)

2
xPdx = f 100y )P 1 0)y + An()zn Ok [2dy < 1,

2

; X
- v le.n - t d
220 Jupoal ([e Qa (An(z) zn( )ek)) g
= Ve 0, ]| dy
AR (@) Jiy+za@)ex|>A/An (@)
<Slog?(t + T,) e Ildy <+ T % =+ Ty

|y1>4 log(t+Tn)
where we have used from (4.2) (possibly taking a larger ¢),
A A 34 4 A
—|zu (2 — — — ) log(t+T,) = —log(t+T,).
co = W g0l (5 - e = o)

Thus (4.6) is proved. Observe that (4.5)—(4.6) and (4.2) imply
_s
48) Oz S 1 1VatOlz2guisn S ¢+ T log 2 (¢ + Ty).

|y+zn(®)er| >

Define ¢ : R? — [0,1] by ¢(x) = (]x| — A)? for |x| > A and ¢(x) = 0 otherwise. By
elementary computations,

d
—[|un|2<p=2lm /(V(p-VM,Qﬁ,, =4/ (i-Vun)ﬁ,,goé.
dt Ix[>4 \|x]

Thus, by (4.8),
1

. ; % 5 2
& el < (fibe) ([ vaoP) s+t g o ([ re)

4¢ SERIE - TOME 51 — 2018 = N° 3




BLOW UP FOR CRITICAL NONLINEAR SCHRODINGER EQUATION 733

By integration and (4.8), the following uniform bound holds on [ty — T}, 0],
/ lun(t, x)?¢(x)dx < 1 and thus /|un(t,x)|2x2dx <1,
which finishes the proof of (4.4). O

4.2. Compactness argument

By (4.2)-(4.4), the sequence (u,(t9 — Tp)) is bounded in X. Therefore, there exists a
subsequence of (u,) (still denoted by (u,)) and uy € X such that

un(to — Tp) — up  weakly in H'!(R?),
Up(to—Tp) = up in HO(R?) for0 <o < 1,asn — +o0.

Let u be the solution of (1.1) corresponding to u(#p) = uo. By the local Cauchy theory
for (1.1) (see [7] and [8]) and the properties of the sequence u,(¢) (recall that 7,, — 00), it
follows that u € C([tg, +00), X). Moreover, for all0 < ¢ < 1, for all ¢ € [tg, +00),

Uyt — Ty) —> u(t) in HO.

By weak convergence in H!, u(t) satisfies (2.25) for all t > to. Moreover, the decomposi-
tion (p, ) of u satisfies, for all > 1o,

4.9) pn(t —Tp) — p(t), en(t —T,) — e(t)in H®, e,(t —Tp) — &(t)in H!
(see e.g., [37], Claim p. 598). In particular, for all z € [tg, +00), u(¢t) decomposes as

_ 0] iTy x —A(t)z(t)eg X
(4.10) u(t,x) = 0 (Zk: [6 Qa] (T) + ¢ (t, m)) ,

where T (1, ) = B(t)(ex - ) — 22|y|? and

(1)~ 2 log(t)| < loglog(@)),  [3(0) ~log™ ()] < log * (),

@11 b)) = log )] + [BO] + le@ g S 17 og 3 (0). la()] S 2 log™ (1),

flu(l,x)|2|x|2dx <1
Note that by (4.11), we have forall k € {1,..., K},

_ log(log(1))

2 2
xp(t) = At)z(t)exy — —ex, with |xp(t) — —ex| S
K K log(z)

Since A1 (1) ||le(@) || g1 S ¢t log_% (¢) and, by (4.10) and (4.11),
@12 AT O e oo - 0| | S AT OWBOI+ b®)] + la@)]) S 1 log (),
we obtain the following stronger form of (1.11)
) 1 .= xx (1) _ _
_Liy(@) - —k < 1 1 2
ut)—e ZA(r)Q( 0 )” St log o (¢).
k H1
Next, since for j # k, for some ¢,

A1) / VO (v — 2(0e) - VO (v — 2(1)e;)| dy < |zl <o,

(4.13)
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we also obtain (1.12). As a final remark, note that by global existence and uniform bound
in X, the virial identity (1.7) implies the rigidity £(u) = 0. This concludes the proof of
Theorem 1.

4.3. Proof of Corollary 2

For —t;' <t < 0, we set

o)y =z, A@) =A™, a@) =al™h, b)) = b,

7)) =y(el™, By =BT, &) = e, Ta(t,y) = Be)(ex - y)—ﬁlyl2

so that from (4.11),

by _ _3
Sloglloglell.  |A() —|rl|log ]| < |logle]| 72,

. 2
Z(t) — —|log ]|
K

4.14)
~ _ 5 ~ _7 ~ _
‘b(t)—lllllogllll 3‘ +IBOI+1EO g < lellloglel|72, la@)] < lelllogle]] ™.

We see from (4.10) that the pseudo-conformal transform v(¢) of u(¢) as defined in (1.5)
satisfies

_ 7| _ er® iTe o 1( 5 _
v(t,x) =e HMw(t,x), w(,x)= ;\(l) (; [e Qa] ()NL(I) 2 )ek) ( ( )))

Note in particular that i(t)Z(t) ~ %|t| ast 1 0. From this, it follows that
Iv(t X)> =~ K|Qll7280 ast 0.

Finally, since Vv (f,x) = ¢ S (Vw ) (t,x),and ast 10,

Z\tl

o
o [ PP <

/ [ 0a] (& 2ew) + 2 ) [[Iyiay < 1.
k

/ V(. x)2dx ~ K[VQ|R 1|2 log ]2,

we obtain (1.13). Note that [ |x[*|v(7,x)|> < ¢? implies by (1.7) that [ |x|*|v(r,x)|* =
t2E(v). Thus, E(v) > 0.

BIBLIOGRAPHY

[1] C. ANTONINI, Lower bounds for the .2 minimal periodic blow-up solutions of critical
nonlinear Schrédinger equation, Differential Integral Equations 15 (2002), 749-768.

[2] V. Banica, Remarks on the blow-up for the Schrédinger equation with critical mass
on a plane domain, Ann. Sc. Norm. Super. Pisa CL. Sci. 3 (2004), 139-170.

[3] V. Banica, R. CaRLES, T. DUYCKAERTS, Minimal blow-up solutions to the mass-
critical inhomogeneous NLS equation, Comm. Partial Differential Equations 36
(2011), 487-531.

[4] H. BEresTYCKI, P.-L. LioNs, Nonlinear scalar field equations. I. Existence of a
ground state, Arch. Rational Mech. Anal. 82 (1983), 313-345.

4¢ SERIE - TOME 51 —2018 = N° 3


http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#4

BLOW UP FOR CRITICAL NONLINEAR SCHRODINGER EQUATION 735

[5] T. BOULENGER, Minimal mass blow up for NLS on a manifold, thése de doctorat,
Université d’Orsay, 2012.

[6] J. BoURGAIN, W. WANG, Construction of blowup solutions for the nonlinear
Schrodinger equation with critical nonlinearity, Ann. Scuola Norm. Sup. Pisa CI
Seci. 25 (1997), 197-215.

[71 T. CAZENAVE, Semilinear Schrodinger equations, Courant Lecture Notes in Math.
10, New York University, Courant Institute of Mathematical Sciences, New York;
Amer. Math. Soc., Providence, RI, 2003.

[8] T. CazeNavE, F. B. WEISSLER, The Cauchy problem for the critical nonlinear
Schrodinger equation in H®, Nonlinear Anal. 14 (1990), 807-836.

[9] S.-M. CHANG, S. GUSTAFSON, K. NAkANIsHI, T.-P. Tsa1, Spectra of linearized
operators for NLS solitary waves, SIAM J. Math. Anal. 39 (2007/08), 1070-1111.

[10] C. CovrvroT, Type II blow up manifold for the energy super critical wave equation,
preprint arXiv:1407.4525, to appear in Mem. Amer. Math. Soc.

[11] R. COTE, Y. MARTEL, F. MERLE, Construction of multi-soliton solutions for the
L?-supercritical generalized Korteweg-de Vries and NLS equations, Rev. Mat.
Iberoam. 27 (2011), 273-302.

[12] B. DobsonN, Global well-posedness and scattering for the mass critical nonlinear
Schrodinger equation with mass below the mass of the ground state, Adv. Math. 285
(2015), 1589-1618.

[13] R. DONNINGER, M. HUANG, J. KRIEGER, W. SCHLAG, Exotic blowup solutions for
the 1> focusing wave equation in R3, Michigan Math. J. 63 (2014), 451-501.

[14] T. DuyckaAkrTs, C. E. KENIG, F. MERLE, Profiles for bounded solutions of disper-
sive equations, with applications to energy-critical wave and Schrodinger equations,
Commun. Pure Appl. Anal. 14 (2015), 1275-1326.

[15] T. DuyckAEgrTs, F. MERLE, Dynamic of threshold solutions for energy-critical NLS,
Geom. Funct. Anal. 18 (2009), 1787-1840.

[16] C. FaN, Log-log blow up solutions blow up at exactly m points, preprint
arXiv:1510.00961.

[17] M. A. HERRERO, J. J. L. VELAZQUEZ, Flat blow-up in one-dimensional semilinear
heat equations, Differential Integral Equations 5 (1992), 973-997.

[18] J. JENDREJ, Construction of type II blow-up solutions for the energy-critical wave
equation in dimension 5, J. Funct. Anal. 272 (2017), 866-917.

[19] R. KiLrip, T. TAo, M. VisaN, The cubic nonlinear Schrédinger equation in two
dimensions with radial data, J. Eur. Math. Soc. (JEMS) 11 (2009), 1203-1258.

[20] J. KRIEGER, E. LENZMANN, P. RaPHARL, Nondispersive solutions to the L2-critical
half-wave equation, Arch. Ration. Mech. Anal. 209 (2013), 61-129.

[21] J. KRIEGER, Y. MARTEL, P. RaPHAEL, Two-soliton solutions to the three-
dimensional gravitational Hartree equation, Comm. Pure Appl. Math. 62 (2009),
1501-1550.

[22] J. KRIEGER, W. SCHLAG, Non-generic blow-up solutions for the critical focusing NLS
in 1-D, J. Eur. Math. Soc. 11 (2009), 1-125.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE


http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#9
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#10
http://arxiv.org/abs/1407.4525
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#11
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#15
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#16
http://arxiv.org/abs/1510.00961
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#18
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#19
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#20
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#21
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#22

736

Y. MARTEL AND P. RAPHAEL

[23] J. KRIEGER, W. SCHLAG, Full range of blow up exponents for the quintic wave equa-

tion in three dimensions, J. Math. Pures Appl. 101 (2014), 873-900.

[24] J. KRIEGER, W. SCHLAG, D. TATARU, Renormalization and blow up for charge one

[25] M.

[26] S.

[27] Y.

[28] Y.

[29] Y.

[30] Y.

[31] Y.

[32] Y.

[33] Y.

[34] F.

equivariant critical wave maps, Invent. math. 171 (2008), 543-615.

K. KwoNG, Uniqueness of positive solutions of Au — u + u? = 0in R”, Arch.
Rational Mech. Anal. 105 (1989), 243-266.

LE Coz, Y. MARTEL, P. RAPHAEL, Minimal mass blow up solutions for a double
power nonlinear Schrodinger equation, Rev. Mat. Iberoam. 32 (2016), 795-833.
MARTEL, Asymptotic N -soliton-like solutions of the subcritical and critical gener-
alized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), 1103-1140.
MARTEL, F. MERLE, Multi solitary waves for nonlinear Schrédinger equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 849-864.

MARTEL, F. MERLE, Inelastic interaction of nearly equal solitons for the quartic
gKdV equation, Invent. math. 183 (2011), 563-648.

MARTEL, F. MERLE, P. RAPHAEL, Blow up for the critical generalized Korteweg
de Vries equation. I: Dynamics near the soliton, Acta Math. 212 (2014), 59-140.
MARTEL, F. MERLE, P. RaPHAEL, Blow up for the critical generalized Korteweg de
Vries equation. II: Minimal mass dynamics, J. of Math. Eur. Soc. 17 (2015), 1855—
1925.

MARTEL, F. MERLE, P. RAPHAEL, Blow up for the critical generalized Korteweg
de Vries equation III: exotic regimes, Ann. Sc. Norm. Super. Pisa CI. Sci. 14 (2015),
575-631.

MARTEL, F. MERLE, T.-P. Tsal, Stability in H! of the sum of K solitary waves for
some nonlinear Schrodinger equations, Duke Math. J. 133 (2006), 405-466.
MERLE, Construction of solutions with exactly k blow-up points for the Schrodinger
equation with critical nonlinearity, Comm. Math. Phys. 129 (1990), 223-240.

. MERLE, Determination of blow-up solutions with minimal mass for nonlinear

Schrodinger equations with critical power, Duke Math. J. 9 (1993), 427-454.

. MERLE, P. RAPHAEL, Sharp upper bound on the blow-up rate for the critical

nonlinear Schrodinger equation, Geom. Funct. Anal. 13 (2003), 591-642.

. MERLE, P. RAPHAEL, On universality of blow-up profile for L? critical nonlinear

Schrodinger equation, Invent. math. 156 (2004), 565-672.

. MERLE, P. RaPHAEL, The blow-up dynamic and upper bound on the blow-up rate

for critical nonlinear Schrodinger equation, Ann. of Math. 161 (2005), 157-222.

. MERLE, P. RAPHAEL, Profiles and quantization of the blow up mass for critical

nonlinear Schrédinger equation, Comm. Math. Phys. 253 (2005), 675-704.

. MERLE, P. RAPHAEL, On a sharp lower bound on the blow-up rate for the L? critical

nonlinear Schrédinger equation, J. Amer. Math. Soc. 19 (2006), 37-90.

. MERLE, P. RaPHAEL, I. RopN1ANSKI, Type II blow up for the energy supercritical

NLS, Camb. J. Math. 3 (2015), 439-617.

. MERLE, P. RAPHAEL, J. SZEFTEL, The instability of Bourgain-Wang solutions for

the L2 critical NLS, Amer. J. Math. 135 (2013), 967-1017.

4¢ SERIE - TOME 51 —2018 = N° 3


http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#23
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#24
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#25
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#26
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#27
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#28
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#29
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#30
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#31
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#32
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#33
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#34
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#35
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#36
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#37
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#38
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#39
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#40
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#41
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#42

BLOW UP FOR CRITICAL NONLINEAR SCHRODINGER EQUATION 737

[43] F. MERLE, P. RAPHAEL, J. SZEFTEL, On collapsing ring blow-up solutions to the mass
supercritical nonlinear Schrodinger equation, Duke Math. J. 163 (2014), 369-431.

[44] F. MERLE, H. ZaAG, On the stability of the notion of non-characteristic point and
blow-up profile for semilinear wave equations, Comm. Math. Phys. 333 (2015), 1529—
1562.

[45] E. MioT, Dynamique des points vortex dans une équation de Ginzburg-Landau
complexe, in Seminaire: Equations aux Dérivées Partielles. 2009-2010, Sémin. Equ.
Dériv. Partielles, Ecole Polytech., Palaiseau, 2012, exp. n° XXI, 13.

[46] T. MizumacHI, Weak interaction between solitary waves of the generalized KdV equa-
tions, SIAM J. Math. Anal. 35 (2003), 1042-1080.

[47] M. Musso, F. PAcarDp, J. WEI, Finite-energy sign-changing solutions with dihedral
symmetry for the stationary nonlinear Schrédinger equation, J. Eur. Math. Soc. 14
(2012), 1923-1953.

[48] H. Nawa, Asymptotic and limiting profiles of blowup solutions of the nonlinear
Schroédinger equation with critical power, Comm. Pure Appl. Math. 52 (1999), 193—
270.

[49] G. PERELMAN, On the formation of singularities in solutions of the critical nonlinear
Schrodinger equation, Ann. Henri Poincaré 2 (2001), 605-673.

[50] G. PERELMAN, Two soliton collision for nonlinear Schrodinger equations in dimension
1, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 357-384.

[51] F. PLancHON, P. RaPHAEL, Existence and stability of the log-log blow-up dynamics
for the L2-critical nonlinear Schrddinger equation in a domain, Ann. Henri Poincaré
8 (2007), 1177-12109.

[52] P. RaPHAEL, Stability of the log-log bound for blow up solutions to the critical non
linear Schrodinger equation, Math. Ann. 331 (2005), 577-609.

[53] P. RaPHAEL, J. SZEFTEL, Existence and uniqueness of minimal blow-up solutions to
an inhomogeneous mass critical NLS, J. Amer. Math. Soc. 24 (2011), 471-546.

[54] M. 1. WEINSTEIN, Nonlinear Schrodinger equations and sharp interpolation estimates,
Comm. Math. Phys. 87 (1982/83), 567-576.

[55] M. I. WEINSTEIN, Modulational stability of ground states of nonlinear Schrodinger
equations, SIAM J. Math. Anal. 16 (1985), 472-491.

(Manuscrit regu le 3 décembre 2015
accepté, aprés révision, le 25 janvier 2017.)

Yvan MARTEL
CMLS, Ecole polytechnique, CNRS
91128 Palaiseau, France
E-mail: yvan.martel@polytechnique.edu

Pierre RAPHAEL
Université de Nice Sophia-Antipolis
Batiment Dieudonné, bureau 724
Campus Valrose
06130 Nice, France
E-mail: pierre.raphael@unice.fr

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE


http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#43
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#44
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#45
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#46
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#47
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#48
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#49
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#50
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#51
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#52
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#53
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#54
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_3.html#55




	1. Introduction
	2. Approximate solution
	3. Backwards uniform estimates
	4. Compactness arguments
	Bibliography

