Un résultat célèbre de Gromov affirme que tout groupe finiment engendré de croissance polynomiale contient un sous-groupe nilpotent d'indice fini. Des preuves alternatives de ce résultat ont été données par Kleiner, entre autres. Dans cette note, nous donnons une nouvelle preuve du théorème de Gromov, dans l'esprit de résultats de Shalom et Chifan-Sinclair, reposant sur l'analyse de la cohomologie réduite et la propriété de Shalom.
The celebrated theorem of Gromov asserts that any finitely generated group with polynomial growth contains a nilpotent subgroup of finite index. Alternative proofs have been given by Kleiner and others. In this note, we give yet another proof of Gromov's theorem, along the lines of Shalom and Chifan-Sinclair, which is based on the analysis of reduced cohomology and Shalom's property .
DOI : 10.24033/asens.2360
Mots-clés : Reduced cohomology, hamonic 1-cocycles, cohomologie réduite, 1-cocycle harmonique
@article{ASENS_2018__51_3_549_0, author = {Ozawa, Narutaka}, title = {A functional analysis proof of {Gromov's} polynomial growth theorem}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {549--556}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {3}, year = {2018}, doi = {10.24033/asens.2360}, mrnumber = {3831031}, zbl = {1474.20083}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2360/} }
TY - JOUR AU - Ozawa, Narutaka TI - A functional analysis proof of Gromov's polynomial growth theorem JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 549 EP - 556 VL - 51 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2360/ DO - 10.24033/asens.2360 LA - en ID - ASENS_2018__51_3_549_0 ER -
%0 Journal Article %A Ozawa, Narutaka %T A functional analysis proof of Gromov's polynomial growth theorem %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 549-556 %V 51 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2360/ %R 10.24033/asens.2360 %G en %F ASENS_2018__51_3_549_0
Ozawa, Narutaka. A functional analysis proof of Gromov's polynomial growth theorem. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 549-556. doi : 10.24033/asens.2360. http://www.numdam.org/articles/10.24033/asens.2360/
Disorder, entropy and harmonic functions, Ann. Probab., Volume 43 (2015), pp. 2332-2373 (ISSN: 0091-1798) | DOI | MR | Zbl
The structure of approximate groups, Publ. Math. IHÉS, Volume 116 (2012), pp. 115-221 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Graduate Studies in Math., 88, Amer. Math. Soc., Providence, RI, 2008, 509 pages (ISBN: 978-0-8218-4381-9; 0-8218-4381-8) | MR | Zbl
Group cohomology, harmonic functions and the first -Betti number, Potential Anal., Volume 6 (1997), pp. 313-326 (ISSN: 0926-2601) | DOI | MR | Zbl
On the ergodic theorem for affine actions on Hilbert space, Bull. Belg. Math. Soc. Simon Stevin, Volume 22 (2015), pp. 429-446 http://projecteuclid.org/euclid.bbms/1442364590 (ISSN: 1370-1444) | DOI | MR | Zbl
Isometric group actions on Hilbert spaces: growth of cocycles, Geom. Funct. Anal., Volume 17 (2007), pp. 770-792 (ISSN: 1016-443X) | DOI | MR | Zbl
Homomorphisms to constructed from random walks, Ann. Inst. Fourier (Grenoble), Volume 60 (2010), pp. 2095-2113 http://aif.cedram.org/item?id=AIF_2010__60_6_2095_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Finite-dimensional representations constructed from random walks (preprint arXiv:1609.08585, to appear in Comment. Math. Helv ) | MR
Groups of polynomial growth and expanding maps, Publ. Math. IHÉS, Volume 53 (1981), pp. 53-73 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Sur la cohomologie des groupes topologiques. II, Bull. Sci. Math., Volume 96 (1972), pp. 305-332 (ISSN: 0007-4497) | MR | Zbl
Stable group theory and approximate subgroups, J. Amer. Math. Soc., Volume 25 (2012), pp. 189-243 (ISSN: 0894-0347) | DOI | MR | Zbl
A new proof of Gromov's theorem on groups of polynomial growth, J. Amer. Math. Soc., Volume 23 (2010), pp. 815-829 (ISSN: 0894-0347) | DOI | MR | Zbl
Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom., Volume 5 (1997), pp. 333-387 (ISSN: 1019-8385) | DOI | MR | Zbl
Harmonic forms with values in locally constant Hilbert bundles, J. Fourier Anal. Appl. (Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993)), Volume Special Issue (1995), pp. 433-453 (ISSN: 1069-5869) | MR | Zbl
Rigidity of commensurators and irreducible lattices, Invent. math., Volume 141 (2000), pp. 1-54 (ISSN: 0020-9910) | DOI | MR | Zbl
Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math., Volume 192 (2004), pp. 119-185 (ISSN: 0001-5962) | DOI | MR | Zbl
A finitary version of Gromov's polynomial growth theorem, Geom. Funct. Anal., Volume 20 (2010), pp. 1502-1547 (ISSN: 1016-443X) | DOI | MR | Zbl
A proof of Gromov's theorem. (Web article https://terrytao.wordpress.com/2010/02/18/ and https://perma.cc/XY83-LRRE )
Convolution powers on locally compact groups, Bull. Sci. Math., Volume 111 (1987), pp. 333-342 (ISSN: 0007-4497) | MR | Zbl
Gromov's theorem on groups of polynomial growth and elementary logic, J. Algebra, Volume 89 (1984), pp. 349-374 (ISSN: 0021-8693) | DOI | MR | Zbl
Cité par Sources :