A functional analysis proof of Gromov's polynomial growth theorem
[Une preuve de l'analyse fonctionnelle du théorème de la croissance polynomiale de Gromov]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 549-556.

Un résultat célèbre de Gromov affirme que tout groupe finiment engendré de croissance polynomiale contient un sous-groupe nilpotent d'indice fini. Des preuves alternatives de ce résultat ont été données par Kleiner, entre autres. Dans cette note, nous donnons une nouvelle preuve du théorème de Gromov, dans l'esprit de résultats de Shalom et Chifan-Sinclair, reposant sur l'analyse de la cohomologie réduite et la propriété H FD de Shalom.

The celebrated theorem of Gromov asserts that any finitely generated group with polynomial growth contains a nilpotent subgroup of finite index. Alternative proofs have been given by Kleiner and others. In this note, we give yet another proof of Gromov's theorem, along the lines of Shalom and Chifan-Sinclair, which is based on the analysis of reduced cohomology and Shalom's property H FD .

Publié le :
DOI : 10.24033/asens.2360
Classification : 20F65; 60B15, 43A07
Mots-clés : Reduced cohomology, hamonic 1-cocycles, cohomologie réduite, 1-cocycle harmonique
@article{ASENS_2018__51_3_549_0,
     author = {Ozawa, Narutaka},
     title = {A functional analysis proof of {Gromov's} polynomial growth theorem},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {549--556},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {3},
     year = {2018},
     doi = {10.24033/asens.2360},
     mrnumber = {3831031},
     zbl = {1474.20083},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2360/}
}
TY  - JOUR
AU  - Ozawa, Narutaka
TI  - A functional analysis proof of Gromov's polynomial growth theorem
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 549
EP  - 556
VL  - 51
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2360/
DO  - 10.24033/asens.2360
LA  - en
ID  - ASENS_2018__51_3_549_0
ER  - 
%0 Journal Article
%A Ozawa, Narutaka
%T A functional analysis proof of Gromov's polynomial growth theorem
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 549-556
%V 51
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2360/
%R 10.24033/asens.2360
%G en
%F ASENS_2018__51_3_549_0
Ozawa, Narutaka. A functional analysis proof of Gromov's polynomial growth theorem. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 549-556. doi : 10.24033/asens.2360. http://www.numdam.org/articles/10.24033/asens.2360/

Benjamini, I.; Duminil-Copin, H.; Kozma, G.; Yadin, A. Disorder, entropy and harmonic functions, Ann. Probab., Volume 43 (2015), pp. 2332-2373 (ISSN: 0091-1798) | DOI | MR | Zbl

Breuillard, E.; Green, B.; Tao, T. The structure of approximate groups, Publ. Math. IHÉS, Volume 116 (2012), pp. 115-221 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Brown, N. P.; Ozawa, N., Graduate Studies in Math., 88, Amer. Math. Soc., Providence, RI, 2008, 509 pages (ISBN: 978-0-8218-4381-9; 0-8218-4381-8) | MR | Zbl

Bekka, M. E. B.; Valette, A. Group cohomology, harmonic functions and the first L2-Betti number, Potential Anal., Volume 6 (1997), pp. 313-326 (ISSN: 0926-2601) | DOI | MR | Zbl

Chifan, I.; Sinclair, T. On the ergodic theorem for affine actions on Hilbert space, Bull. Belg. Math. Soc. Simon Stevin, Volume 22 (2015), pp. 429-446 http://projecteuclid.org/euclid.bbms/1442364590 (ISSN: 1370-1444) | DOI | MR | Zbl

de Cornulier, Y.; Tessera, R.; Valette, A. Isometric group actions on Hilbert spaces: growth of cocycles, Geom. Funct. Anal., Volume 17 (2007), pp. 770-792 (ISSN: 1016-443X) | DOI | MR | Zbl

Erschler, A.; Karlsson, A. Homomorphisms to constructed from random walks, Ann. Inst. Fourier (Grenoble), Volume 60 (2010), pp. 2095-2113 http://aif.cedram.org/item?id=AIF_2010__60_6_2095_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Erschler, A.; Ozawa, N. Finite-dimensional representations constructed from random walks (preprint arXiv:1609.08585, to appear in Comment. Math. Helv ) | MR

Gromov, M. Groups of polynomial growth and expanding maps, Publ. Math. IHÉS, Volume 53 (1981), pp. 53-73 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Guichardet, A. Sur la cohomologie des groupes topologiques. II, Bull. Sci. Math., Volume 96 (1972), pp. 305-332 (ISSN: 0007-4497) | MR | Zbl

Hrushovski, E. Stable group theory and approximate subgroups, J. Amer. Math. Soc., Volume 25 (2012), pp. 189-243 (ISSN: 0894-0347) | DOI | MR | Zbl

Kleiner, B. A new proof of Gromov's theorem on groups of polynomial growth, J. Amer. Math. Soc., Volume 23 (2010), pp. 815-829 (ISSN: 0894-0347) | DOI | MR | Zbl

Korevaar, N. J.; Schoen, R. M. Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom., Volume 5 (1997), pp. 333-387 (ISSN: 1019-8385) | DOI | MR | Zbl

Mok, N. Harmonic forms with values in locally constant Hilbert bundles, J. Fourier Anal. Appl. (Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993)), Volume Special Issue (1995), pp. 433-453 (ISSN: 1069-5869) | MR | Zbl

Shalom, Y. Rigidity of commensurators and irreducible lattices, Invent. math., Volume 141 (2000), pp. 1-54 (ISSN: 0020-9910) | DOI | MR | Zbl

Shalom, Y. Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Math., Volume 192 (2004), pp. 119-185 (ISSN: 0001-5962) | DOI | MR | Zbl

Shalom, Y.; Tao, T. A finitary version of Gromov's polynomial growth theorem, Geom. Funct. Anal., Volume 20 (2010), pp. 1502-1547 (ISSN: 1016-443X) | DOI | MR | Zbl

Tao, T. A proof of Gromov's theorem. (Web article https://terrytao.wordpress.com/2010/02/18/ and https://perma.cc/XY83-LRRE )

Varopoulos, N. T. Convolution powers on locally compact groups, Bull. Sci. Math., Volume 111 (1987), pp. 333-342 (ISSN: 0007-4497) | MR | Zbl

van den Dries, L.; Wilkie, A. J. Gromov's theorem on groups of polynomial growth and elementary logic, J. Algebra, Volume 89 (1984), pp. 349-374 (ISSN: 0021-8693) | DOI | MR | Zbl

Cité par Sources :