Homomorphisms to constructed from random walks
[Homomorphismes dans construits par marches aléatoires]
Annales de l'Institut Fourier, Tome 60 (2010) no. 6, pp. 2095-2113.

Nous donnons une construction d’homomorphismes d’un groupe dans les nombres réels en utilisant une marche aléatoire sur le groupe. Cette construction est une alternative à une construction antécédente qui de plus s’applique dans des cas plus généraux. Les applications comprennent une estimation de la vitesse de fuite de marches aléatoires sur des groupes de croissance sous-exponentielle n’admettant pas d’homomorphismes non triviaux dans les nombres entiers et des inégalités entre la vitesse de fuite asymptotique et l’entropie asymptotique. Certaines des estimations d’entropie obtenues ont des applications indépendantes de la construction de l’homomorphisme, comme par exemple un théorème à la Liouville pour les fonctions harmoniques croissant lentement sur les groupes de croissance sous-exponentielle et certains groupes de croissance exponentielle.

We give a construction of homomorphisms from a group into the reals using random walks on the group. The construction is an alternative to an earlier construction that works in more general situations. Applications include an estimate on the drift of random walks on groups of subexponential growth admitting no nontrivial homomorphism to the integers and inequalities between the asymptotic drift and the asymptotic entropy. Some of the entropy estimates obtained have applications independent of the homomorphism construction, for example a Liouville-type theorem for slowly growing harmonic functions on groups of subexponential growth and on some groups of exponential growth.

DOI : 10.5802/aif.2577
Classification : 20F69, 60B15, 60G50
Keywords: Random walks on groups, Liouville type theorems, growth of harmonic functions, homomorphisms to $\mathbb{R}$, groups of intermediate growth, entropy, drift, Gaussian estimates
Mot clés : marche aléatoires sur les groupes, théorèmes à la Liouville, croissance de fonctions harmoniques, homomorphismes dans $\mathbb{R}$, groupes de croissance intermédiaire, entropie, vitesse de fuite, estimations gaussiennes
Erschler, Anna 1 ; Karlsson, Anders 2

1 Université Paris Sud Laboratoire de Mathématiques d’Orsay Bâtiment 425 91405 Orsay Cedex (France)
2 Université de Genève Section de mathématiques 2-4 rue du Lièvre Case postale 64 1211 Genève 4 (Suisse)
@article{AIF_2010__60_6_2095_0,
     author = {Erschler, Anna and Karlsson, Anders},
     title = {Homomorphisms to $\mathbb{R}$ constructed from random walks},
     journal = {Annales de l'Institut Fourier},
     pages = {2095--2113},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {6},
     year = {2010},
     doi = {10.5802/aif.2577},
     zbl = {1274.60015},
     mrnumber = {2791651},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2577/}
}
TY  - JOUR
AU  - Erschler, Anna
AU  - Karlsson, Anders
TI  - Homomorphisms to $\mathbb{R}$ constructed from random walks
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 2095
EP  - 2113
VL  - 60
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2577/
DO  - 10.5802/aif.2577
LA  - en
ID  - AIF_2010__60_6_2095_0
ER  - 
%0 Journal Article
%A Erschler, Anna
%A Karlsson, Anders
%T Homomorphisms to $\mathbb{R}$ constructed from random walks
%J Annales de l'Institut Fourier
%D 2010
%P 2095-2113
%V 60
%N 6
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2577/
%R 10.5802/aif.2577
%G en
%F AIF_2010__60_6_2095_0
Erschler, Anna; Karlsson, Anders. Homomorphisms to $\mathbb{R}$ constructed from random walks. Annales de l'Institut Fourier, Tome 60 (2010) no. 6, pp. 2095-2113. doi : 10.5802/aif.2577. http://www.numdam.org/articles/10.5802/aif.2577/

[1] Avez, A. Harmonic functions on groups, Differential geometry and relativity, Reidel, Dordrecht, 1976, p. 27-32. Mathematical Phys. and Appl. Math., Vol. 3 | MR | Zbl

[2] Avez, André Entropie des groupes de type fini, C. R. Acad. Sci. Paris Sér. A-B, Volume 275 (1972), p. A1363-A1366 | MR | Zbl

[3] Bartholdi, Laurent; Virág, Bálint Amenability via random walks, Duke Math. J., Volume 130 (2005) no. 1, pp. 39-56 | DOI | MR | Zbl

[4] Bowen, Rufus Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 1975 | MR | Zbl

[5] Carne, Thomas Keith A transmutation formula for Markov chains, Bull. Sci. Math. (2), Volume 109 (1985) no. 4, pp. 399-405 | MR | Zbl

[6] Derriennic, Yves Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (French) (Astérisque), Volume 74, Soc. Math. France, Paris, 1980 no. 4, pp. 183-201 | Numdam | MR | Zbl

[7] Dungey, Nick Properties of random walks on discrete groups: time regularity and off-diagonal estimates, Bull. Sci. Math., Volume 132 (2008) no. 5, pp. 359-381 | DOI | MR | Zbl

[8] Erschler, Anna On drift and entropy growth for random walks on groups, Ann. Probab., Volume 31 (2003) no. 3, pp. 1193-1204 | DOI | MR | Zbl

[9] Erschler, Anna Boundary behavior for groups of subexponential growth, Ann. of Math. (2), Volume 160 (2004) no. 3, pp. 1183-1210 | DOI | MR | Zbl

[10] Erschler, Anna Critical constants for recurrence of random walks on G-spaces, Ann. Inst. Fourier (Grenoble), Volume 55 (2005) no. 2, pp. 493-509 | DOI | Numdam | MR | Zbl

[11] Erschler, Anna Piecewise automatic groups, Duke Math. J., Volume 134 (2006) no. 3, pp. 591-613 | DOI | MR | Zbl

[12] Grigorchuk, R. I. Degrees of growth of finitely generated groups and the theory of invariant means, Math USSSR-Izv., Volume 25 (1985) no. 2, pp. 259-300 | DOI | MR | Zbl

[13] Guivarc’h, Y. Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Conference on Random Walks (Kleebach, 1979) (French) (Astérisque), Volume 74, Soc. Math. France, Paris, 1980 no. 3, pp. 47-98 | Numdam | MR | Zbl

[14] Hebisch, W.; Saloff-Coste, L. Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993) no. 2, pp. 673-709 | DOI | MR | Zbl

[15] Kaĭmanovich, Vadim A. “Münchhausen trick” and amenability of self-similar groups, Internat. J. Algebra Comput., Volume 15 (2005) no. 5-6, pp. 907-937 | DOI | MR | Zbl

[16] Kaĭmanovich, Vadim A.; Vershik, A. M. Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | DOI | MR | Zbl

[17] Karlsson, Anders; Ledrappier, François Linear drift and Poisson boundary for random walks, Pure Appl. Math. Q., Volume 3 (2007) no. 4, part 1, pp. 1027-1036 | MR | Zbl

[18] Mathieu, Pierre Carne-Varopoulos bounds for centered random walks, Ann. Probab., Volume 34 (2006) no. 3, pp. 987-1011 | DOI | MR | Zbl

[19] Peyre, Rémi A probabilistic approach to Carne’s bound, Potential Anal., Volume 29 (2008) no. 1, pp. 17-36 | DOI | MR | Zbl

[20] Revelle, David; Virag, Balint, 2005 (Research announcement at a Banff workshop)

[21] Varopoulos, Nicholas Th. Long range estimates for Markov chains, Bull. Sci. Math. (2), Volume 109 (1985) no. 3, pp. 225-252 | MR | Zbl

Cité par Sources :