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A FUNCTIONAL ANALYSIS PROOF OF GROMOV’S
POLYNOMIAL GROWTH THEOREM

BY NARuUTAKA OZAWA

ABSTRACT. — The celebrated theorem of Gromov asserts that any finitely generated group with
polynomial growth contains a nilpotent subgroup of finite index. Alternative proofs have been given
by Kleiner and others. In this note, we give yet another proof of Gromov’s theorem, along the lines
of Shalom and Chifan-Sinclair, which is based on the analysis of reduced cohomology and Shalom’s
property Hrp.

REsuME. — Un résultat célebre de Gromov affirme que tout groupe finiment engendré de croissance
polynomiale contient un sous-groupe nilpotent d’indice fini. Des preuves alternatives de ce résultat
ont été données par Kleiner, entre autres. Dans cette note, nous donnons une nouvelle preuve du
théoréme de Gromov, dans ’esprit de résultats de Shalom et Chifan-Sinclair, reposant sur ’analyse
de la cohomologie réduite et la propriété Hgp de Shalom.

1. Introduction

The celebrated theorem of Gromov ([10, 7]) asserts that any finitely generated group with
weakly polynomial growth contains a nilpotent subgroup of finite index. Here a group G is
said to have weakly polynomial growth if liminflog|S™|/logn < oo for any finite generating
subset S such that 1 € S = S~!. Alternative proofs have been given by Kleiner and others
([13, 18, 12, 3]). In this note, we give yet another proof of Gromov’s theorem, along the
lines of Shalom ([17]) and Chifan-Sinclair ([5]), which is based on the analysis of reduced
cohomology and Shalom’s property Hgp.

Let 7: G ~ &4 be a unitary representation. Recall that a 1-cocycle of G with coefficients
in 7 isamap b: G — &/ which satisfies

Vg,.x € G b(gx) =b(g) + mgb(x).
A 1-coboundary is a 1-cocycle of the form b(g) = & — ngé for some § € ¢/, and an

approximate 1-coboundary is a 1-cocycle that is a pointwise limit of 1-coboundaries. The
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550 N. OZAWA

spaces of 1-cocycles, 1-coboundaries, approximate 1-coboundaries are written respectively
by ZY(G,n), BY(G, ), and B1(G, ), and so the reduced cohomology space F(G, ) is
ZY(G,m)/BY(G, ). It is proved by Mok and Korevaar-Schoen ([15, 14], see also [16] and
Theorem A in Appendix) that any finitely generated group G without Kazhdan’s property
(T) admits a unitary representation 7 with HY(G,n) # 0. A group G is said to have
Shalom’s property Hgp if m(G, ) # 0 implies that 7 is not weakly mixing. Here =
is said to be weakly mixing if S/ admits no nonzero finite-dimensional 7 (G)-invariant
subspaces. We recall that infinite amenable groups, and in particular groups with weakly
polynomial growth, do not have property (T) (see e.g., [4, Chapter 12]). Thus, if such a
group has property Hgp, then it has a finite-dimensional unitary representation 7 with
HY(G,n) # 0. Shalom has observed that a proof of property Hgp for a group with weakly
polynomial growth implies Gromov’s theorem (see [17, Section 6.7] and [19]). In this paper,
we prove that a group with slow entropy growth has property Hgp, thus giving a new proof
of Gromov’s theorem. Here we say G has slow entropy growth if there is a non-degenerate
finitely-supported symmetric probability measure i on G with (e) > 0 such that

liminfn(H(u*" ) — H(u*")) < oo,
n
where H is the entropy functional. This property is formerly weaker than but probably

equivalent to weakly polynomial growth (see Section 3).

THEOREM. — A finitely generated group with slow entropy growth has property Hgp.

Acknowledgment

The author would like to thank Professor L. Saloff-Coste for drawing his attention to [8],
Professor A. Erschler for encouraging the author to include a proposition in Section 4, and
Professor A. Yadin for useful comments on the slow entropy growth condition.

2. Reduced cohomology and harmonic 1-cocycles

Let G be a finitely generated group and fix a non-degenerate finitely-supported symmetric
probability measure u with u(e) > 0. Let 7: G ~ &/ be a unitary representation. We first
recall the fact that every element in the reduced cohomology space H1(G, ) is uniquely
represented by a p-harmonic 1-cocycle (see [11, 1]). The space Z!(G, ) of 1-cocycles is a
Hilbert space under the norm

/
blz16m = (X m@Ib@I?) "

and the space B1(G, ) agrees with the closure of B'(G, ) in the Hilbert space Z'(G, ).
We observe that b € Z!(G, n) is orthogonal to BY(G, x) if and only if it is p-harmonic:
> m(x)b(x) = 0 or equivalently ) . u(x)b(gx) = b(g) for all g € G. Indeed, this follows
from the identities b(x~!) + 7 'h(x) = b(e) = 0 and

D ) (b(x),§ — mx§) = 2()_ u(x)b(x). 6).
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GROMOV’S POLYNOMIAL GROWTH THEOREM 551

Since Z1(G, ) = B1(G, n)® B'(G, w)* as a Hilbert space, H (G, ) can be identified with
the space B' (G, )+ of u-harmonic 1-cocycles.

By the above discussion, we may concentrate on p-harmonic 1-cocycles. For any
w-harmonic 1-cocycle b, one has Y, pu**(x)[|b(x)|> = n Y, u(x)||b(x)||* (by induction
on n). In this section, we give a better inequality, which is inspired by the work of Chifan
and Sinclair ([5]). Let ¢/ ® & denote the Hilbert space tensor product of the Hilbert space
¢/ and its complex conjugate . We recall that 7 is weakly mixing if and only if the unitary
representation 7 ® 7 on 4 ® & has no nonzero invariant vectors. Indeed, $# ® ¥ can
be identified with the space S>(¢#) of Hilbert-Schmidt operators on ¢/, and under this
identification 7, ® 7z becomes the conjugation action Ad , of 7, on S»(¢#) (see e.g.,
Section 13.5 in [4]). Since any nonzero Hilbert-Schmidt operator (which is Ad 7 -invariant)
is compact and has a nonzero finite-dimensional eigenspace (which is mg-invariant), our
claim follows.

LEMMA. — Let b: G — §H be a p-harmonic 1-cocycle with coefficients in a weakly mixing
unitary representation w. Then one has

. [Errwewebw],,, o

In particular,

sup = 3 1 (@)l (b(x), £) — 0.

Eean, <1 M

Proof. — Since b is u*"-harmonic for every n, one has for everyn and g € G

3 W) (b(gx) ® b(gx) = b(g) ® b(g) + (g ® 7)Y 1" (1) (B(x) ® b(x)).

Thus, putting ¢ := Y u(x)(b(x) ® b(x)) and T := > ¢ H(g) (e ® 7e), one has

D oMb ®b(x) =Y (@)™ (x)(b(gx) ® b(gx))
x 8g,X

=0+ Ty w" (x)(b(x) ® b(x))

== 4+T+--+T"NHe

Since 7 is weakly mixing, 7 ® 7 admits no nonzero invariant vectors, and hence by strict
convexity of a Hilbert space, 1 is not an eigenvalue of the self-adjoint contraction 7. Hence,
the measure m(-) := (Er(-)¢ ), associated with the spectral resolution E7 of T, is
supported on [—1, 1] and satisfies m({1}) = 0. Thus, one has

%H;u*"(x)aa(x) o5| 0= ([ | ) 0

by Bounded Convergence Theorem. The second statement follows from the first, because

[(b(x), 6)> = (b(x) ® b(x),§ ®E). O
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552 N. OZAWA

3. Concavity of the entropy functional

We recall the basic fact that the entropy functional

pr H(p):==> px)logp(x) =) p(x)log

1
p(x)
is concave and examine its modulus of concavity. Our discussion in this section is inspired by

Erschler and Karlsson’s work [8]. See also [2] for relevant information. Let p and ¢ be any
non-negative functions. For convenience, we put

p+q H(p)+H(q)'

3(p.q) = H( ) — >

Since

1 a+b_ _a+b _ la—b]?

—(al blogb) — 1 > >

2(a oga + blogb) 5 og 7 Z8ath >
for any a, b > 0 (this follows from the fact (¢ logt)” = (1 +logt) =t~! > (a + b)~! forall
t between a and b), one has

() — g
D2 8T g0

This implies concavity of H. Moreover, for any non-negative function f, one has

(1) Y @l —al(x) < 83(p.) Y F)?(p + @) (x)) '

by the Cauchy-Schwarz inequality.In particular, || p — ¢ll1 < 88(p.q)|lp + qll1)"/2.

For any probability measures « and v on G and go € G, one has
2 H(p s v) — H(v) = 2min{zu(e), ;1(g0)}5(v, gov).

Here pxv = Zg w(g)(gv) and (gv)(x) = v(g~'x). Indeed, put A := min{u(e), u(go)} and
observe that v’ := (1—24)"'(u* v —(Av 4+ Agov)) is a convex combination of gv’s, and that
H(gv) = H(v) for any g. Hence, H(v') > H(v) by concavity and

VvV + gov
2

H(pxv)— H®@v) = HQ2A + (1 =2A0") = H(v)

> (LY 20

—H®W))+ (1 =20)(HO) - H®v))
> 2A8(v,gov).

Here we explain that a group G with weakly polynomial growth has slow entropy growth.
Let 1 be any non-degenerate finitely-supported symmetric probability measure on G with
u(e) > 0. By concavity of log, one has

*n *n 1
Hu*) =) p*(x)log —
> Hn

*n
<log Y & 0 _ log| supp ™.

0= e )
Since | supp #*"| = |(supp p)"| has weak polynomial growth, this implies that
H *n
d = timint £ _
n logn
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GROMOV’S POLYNOMIAL GROWTH THEOREM 553

Now for any d’ < liminfy, n(H(u*"*') — H(u*")), one has

n—1 n—1 d’

Hp*™) = Z(H(/,L*k-H) — H(uw**)) > const. + Z — = const. + d'logn.

k=0 k=1 k
Thus d’ < d, that is to say, G has slow entropy growth. It is likely that the converse is also
true. Indeed, suppose that G does not have weakly polynomial growth. Then, for any d, one
has liminf,, |$™|/n? = oo and so, by Varopoulos’s inequality ([20]), #*"(¢) = O(n~4/2). But
since u*"(e) > u*"(g) for every even n and every g € G by the Cauchy-Schwarz inequality,
this implies

d
> const. + —lo
ey ~ O g o8
for even n. Since d was arbitrary, one has lim,, H(u*")/logn = oo.

H(pu™) > log

4. Proof of theorem

Proof of theorem. — Let b:G — &/ be a 1-cocycle with coefficients in a weakly mixing
unitary representation 7, and we will prove that b € B1(G, 7). As discussed in Section 2,
we may assume that b is yu-harmonic. Let g € supp i and & € &# be given. Then, since b is
u**-harmonic for every n € N, one has for every n

(b(2).8) = (D _(b(gx) — b)) (x).£) = > _(b(x).£)(gu™" — ™) (x).
X X

and so, by inequalities (1) and (2),
(b(2). £)> < 88(u™" . gi*™) Y [(b(x). )P (g™ + p*")(x)

< Ag(H@*"™) = H(@™) Y~ [(b(x), )7 (g™ + 1) (x),

where 1, = 4min{u(e), n(g)}~". Since > [(b(x),&)|*(gn*" + w*")(x) has sublinear
growth by the lemma of Section 2 (and the Cauchy-Schwarz inequality), slow entropy growth
implies that (b(g),&) = 0. Since g € suppu and § € &/ were arbitrary and u is non-
degenerate, this implies that b = 0. O

Note that the slow entropy growth condition implies the following ([8, Lemma 8])
liminfr =2 max |u*" — gu** |1 < .
n lgl=1
Since the slow entropy growth condition seems too restrictive, we give here a supplementary
result that the above condition yields a weaker conclusion (although the author is still not
aware of any super-polynomial growth group to which the proposition applies.)

PROPOSITION. — Let G be a finitely generated group with the word length | - | and let p be
a non-degenerate finitely-supported symmetric probability measure with u(e) > 0. Assume
that there is § > 0 such that for any ¢ > 0 and any N € N there isn > N such that for
any g € Gandany E C G if |g| < én'/? and uw*"(E) > 1 — § then u*"(gEB,,1/2) > 6.
Here B, = {x : |x| < r}. Then, any 1-cocycle b with coefficients in a weakly mixing unitary
representation w has sublinear growth in the sense that |b(g)| < f(g|) for some f with

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



554 N. OZAWA

f(n)/n — 0. In particular if G moreover has a controlled Folner sequence, then G has property
Hep.

Proof. — Since approximate 1-coboundaries have sublinear growth ([6, Corollary 3.3]),
we may assume that b is a u-harmonic cocycle such that ||b(g)|| < |g|. Let y > 0 be given
arbitrary and put ¢ := y§2. By the lemma of Section 2, there is N such that n > N implies

sup Y " ()[(b(x). §) < en.
Eech, 1E1=1 %

Take n > max{N, 4§72} which fulfills the statement in the proposition. Let g € G be such
that |g| < 8n'/2. For each unit vector £ € &/, put

Ee:={x € G :|(b(x),&)| <en'/?/8}

and observe that u*"(Eg) > 1 — §. Hence, one has u*™"(E x¢ N g 'E¢B,,12) > 0by
assumption, and so there exist xg € Ex¢ and yg € Bg,1/2 such that gxgye € Eg. It follows
that

[(b(g). 6)] = [{b(gxgye). §)] + [(b(xg), wg€)| + [(b(ve). g, 6)
< 38n1/2/8 = 3)/8}11/2.
This means that ||b(g)|| < 3y8n'/2 for all g € G such that |g| < §n'/2, and so

max{[|b(g)] : |gl <m} _ . max{|b(e)ll :|g| <m} _ 3ysn'/

li f 8
m m E m = nt/2] — Y
where the first equality follows from subadditivity. Since y > 0 was arbitrary, this proves the
first statement. The second follows from [6, Corollary 3.7]. O
Appendix

Property (T) and harmonic 1-cocycles

We give a simple proof of the theorem of Mok and Korevaar-Schoen cited in the intro-
duction ([15, 14], see also [13, Appendix A]). After submitting the first draft of this paper, the
author learned that the same proof had been presented in Jesse Peterson’s lecture at Vander-
bilt University in Spring 2013. A more explicit construction (which still uses an ultrafilter) is
provided later in [9].

THEOREM A. — Let G be a finitely generated group without property (T). Then, for any
non-degenerate finitely-supported symmetric probability measure p on G, there is a nonzero
u-harmonic 1-cocycle with coefficients in some unitary representation.

Proof. — Since G does not have property (T), there is a unitary representation 7: G ~ &4
having approximate invariant vectors but having no nonzero invariant vectors (see [4,
Theorem 12.1.7]). Thus the self-adjoint contraction 7 = ), u(x)7x € B(¢#) contains 1 in
the spectrum, but not as an eigenvalue. This means that 1 is a limit point of the spectrum of T'.
Hence there 1is a sequence ¢, \(O such that the spectral subspaces
Mn = Er([1 —2¢,,1 — &,]) $# are nonzero. Take unit vectors &, € ¢#,. One has

Z,U«(X)HEn - nxén”z =2(1 = (T&y, &) € [2en. 4en].

4¢ SERIE - TOME 51 —2018 - N° 3



GROMOV’S POLYNOMIAL GROWTH THEOREM 555

Fix a free ultrafilter %/ and consider the ultrapower unitary representation mq, on the
ultrapower Hilbert space ¢#q, (see [4, 12.1.4]). Then the map b:G — Hq,, given by
b(x) = (8;1/ 2(5,, — 7x&n))n— s, 18 a 1-cocycle with coefficients in 7, such that

D n@Ib)? = Tim et Y p)lln — meball® € [2.4]

and
121 Cb)l = Tim &2 Y (o) En — makn)
X X
— 1 —1/2 _ ; 1/2 _
= lim &1/ ;a Tl < lim 2¢,/ = 0.
This means that b is a nonzero p-harmonic 1-cocycle. O
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