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A FUNCTIONAL ANALYSIS PROOF OF GROMOV’S
POLYNOMIAL GROWTH THEOREM

 N OZAWA

A. – The celebrated theorem of Gromov asserts that any finitely generated group with
polynomial growth contains a nilpotent subgroup of finite index. Alternative proofs have been given
by Kleiner and others. In this note, we give yet another proof of Gromov’s theorem, along the lines
of Shalom and Chifan-Sinclair, which is based on the analysis of reduced cohomology and Shalom’s
property HFD.

R. – Un résultat célèbre de Gromov affirme que tout groupe finiment engendré de croissance
polynomiale contient un sous-groupe nilpotent d’indice fini. Des preuves alternatives de ce résultat
ont été données par Kleiner, entre autres. Dans cette note, nous donnons une nouvelle preuve du
théorème de Gromov, dans l’esprit de résultats de Shalom et Chifan-Sinclair, reposant sur l’analyse
de la cohomologie réduite et la propriété HFD de Shalom.

1. Introduction

The celebrated theorem of Gromov ([10, 7]) asserts that any finitely generated group with
weakly polynomial growth contains a nilpotent subgroup of finite index. Here a group G is
said to have weakly polynomial growth if lim inf log jSnj= logn <1 for any finite generating
subset S such that 1 2 S D S�1. Alternative proofs have been given by Kleiner and others
([13, 18, 12, 3]). In this note, we give yet another proof of Gromov’s theorem, along the
lines of Shalom ([17]) and Chifan-Sinclair ([5]), which is based on the analysis of reduced
cohomology and Shalom’s property HFD.

Let � WG y H be a unitary representation. Recall that a 1-cocycle of G with coefficients
in � is a map bWG ! H which satisfies

8g; x 2 G b.gx/ D b.g/C �gb.x/:

A 1-coboundary is a 1-cocycle of the form b.g/ D � � �g� for some � 2 H , and an
approximate 1-coboundary is a 1-cocycle that is a pointwise limit of 1-coboundaries. The
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550 N. OZAWA

spaces of 1-cocycles, 1-coboundaries, approximate 1-coboundaries are written respectively
by Z1.G; �/, B1.G; �/, and B1.G; �/, and so the reduced cohomology space H 1.G; �/ is
Z1.G; �/=B1.G; �/. It is proved by Mok and Korevaar-Schoen ([15, 14], see also [16] and
Theorem A in Appendix) that any finitely generated group G without Kazhdan’s property
(T) admits a unitary representation � with H 1.G; �/ ¤ 0. A group G is said to have
Shalom’s property HFD if H 1.G; �/ ¤ 0 implies that � is not weakly mixing. Here �
is said to be weakly mixing if H admits no nonzero finite-dimensional �.G/-invariant
subspaces. We recall that infinite amenable groups, and in particular groups with weakly
polynomial growth, do not have property (T) (see e.g., [4, Chapter 12]). Thus, if such a
group has property HFD, then it has a finite-dimensional unitary representation � with
H 1.G; �/ ¤ 0. Shalom has observed that a proof of property HFD for a group with weakly
polynomial growth implies Gromov’s theorem (see [17, Section 6.7] and [19]). In this paper,
we prove that a group with slow entropy growth has property HFD, thus giving a new proof
of Gromov’s theorem. Here we say G has slow entropy growth if there is a non-degenerate
finitely-supported symmetric probability measure � on G with �.e/ > 0 such that

lim inf
n

n.H.��nC1/ �H.��n// <1;

where H is the entropy functional. This property is formerly weaker than but probably
equivalent to weakly polynomial growth (see Section 3).

T. – A finitely generated group with slow entropy growth has property HFD.

Acknowledgment

The author would like to thank Professor L. Saloff-Coste for drawing his attention to [8],
Professor A. Erschler for encouraging the author to include a proposition in Section 4, and
Professor A. Yadin for useful comments on the slow entropy growth condition.

2. Reduced cohomology and harmonic 1-cocycles

LetG be a finitely generated group and fix a non-degenerate finitely-supported symmetric
probability measure � with �.e/ > 0. Let � WG y H be a unitary representation. We first
recall the fact that every element in the reduced cohomology space H 1.G; �/ is uniquely
represented by a �-harmonic 1-cocycle (see [11, 1]). The space Z1.G; �/ of 1-cocycles is a
Hilbert space under the norm

kbkZ1.G;�/ WD
�X
x

�.x/kb.x/k2
�1=2

;

and the space B1.G; �/ agrees with the closure of B1.G; �/ in the Hilbert space Z1.G; �/.
We observe that b 2 Z1.G; �/ is orthogonal to B1.G; �/ if and only if it is �-harmonic:P
x �.x/b.x/ D 0 or equivalently

P
x �.x/b.gx/ D b.g/ for all g 2 G. Indeed, this follows

from the identities b.x�1/C ��1x b.x/ D b.e/ D 0 andX
x

�.x/hb.x/; � � �x�i D 2h
X
x

�.x/b.x/; �i:
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GROMOV’S POLYNOMIAL GROWTH THEOREM 551

SinceZ1.G; �/ D B1.G; �/˚B1.G; �/? as a Hilbert space,H 1.G; �/ can be identified with
the space B1.G; �/? of �-harmonic 1-cocycles.

By the above discussion, we may concentrate on �-harmonic 1-cocycles. For any
�-harmonic 1-cocycle b, one has

P
x �
�n.x/kb.x/k2 D n

P
x �.x/kb.x/k

2 (by induction
on n). In this section, we give a better inequality, which is inspired by the work of Chifan
and Sinclair ([5]). Let H ˝ NH denote the Hilbert space tensor product of the Hilbert space
H and its complex conjugate NH . We recall that � is weakly mixing if and only if the unitary
representation � ˝ N� on H ˝ NH has no nonzero invariant vectors. Indeed, H ˝ NH can
be identified with the space S2.H / of Hilbert-Schmidt operators on H , and under this
identification �g ˝ N�g becomes the conjugation action Ad�g of �g on S2.H / (see e.g.,
Section 13.5 in [4]). Since any nonzero Hilbert-Schmidt operator (which is Ad�g -invariant)
is compact and has a nonzero finite-dimensional eigenspace (which is �g -invariant), our
claim follows.

L. – Let bWG ! H be a �-harmonic 1-cocycle with coefficients in a weakly mixing
unitary representation � . Then one has

1

n

X
x

��n.x/.b.x/˝ Nb.x//


H˝ NH
! 0:

In particular,

sup
�2H ; k�k�1

1

n

X
x

��n.x/jhb.x/; �ij2 ! 0:

Proof. – Since b is ��n-harmonic for every n, one has for every n and g 2 GX
x

��n.x/.b.gx/˝ Nb.gx// D b.g/˝ Nb.g/C .�g ˝ N�g/
X
x

��n.x/.b.x/˝ Nb.x//:

Thus, putting � WD
P
x �.x/.b.x/˝

Nb.x// and T WD
P
g �.g/.�g ˝ N�g/, one hasX

x

��n.x/.b.x/˝ Nb.x// D
X
g;x

�.g/��n�1.x/.b.gx/˝ Nb.gx//

D � C T
X
x

��n�1.x/.b.x/˝ Nb.x//

D � � � D .1C T C � � � C T n�1/�:

Since � is weakly mixing, � ˝ N� admits no nonzero invariant vectors, and hence by strict
convexity of a Hilbert space, 1 is not an eigenvalue of the self-adjoint contraction T . Hence,
the measure m. � / WD hET . � /�; �i, associated with the spectral resolution ET of T , is
supported on Œ�1; 1� and satisfies m.f1g/ D 0. Thus, one has

1

n

X
x

��n.x/.b.x/˝ Nb.x//


H˝ NH
D

�Z 1

�1

ˇ̌̌1C t C � � � C tn�1
n

ˇ̌̌2
dm.t/

�1=2
! 0

by Bounded Convergence Theorem. The second statement follows from the first, because
jhb.x/; �ij2 D hb.x/˝ Nb.x/; � ˝ N�i.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



552 N. OZAWA

3. Concavity of the entropy functional

We recall the basic fact that the entropy functional

p 7! H.p/ WD �
X
x

p.x/ logp.x/ D
X
x

p.x/ log
1

p.x/

is concave and examine its modulus of concavity. Our discussion in this section is inspired by
Erschler and Karlsson’s work [8]. See also [2] for relevant information. Let p and q be any
non-negative functions. For convenience, we put

ı.p; q/ WD H.
p C q

2
/ �

H.p/CH.q/

2
:

Since
1

2
.a log aC b log b/ �

aC b

2
log

aC b

2
�
ja � bj2

8.aC b/
� 0

for any a; b � 0 (this follows from the fact .t log t /00 D .1C log t /0 D t�1 � .aC b/�1 for all
t between a and b), one has

ı.p; q/ �
X
x

jp.x/ � q.x/j2

8.p.x/C q.x//
� 0:

This implies concavity of H . Moreover, for any non-negative function f , one has

(1)
X
x

f .x/jp � qj.x/ �
�
8ı.p; q/

X
x

f .x/2.p C q/.x/
�1=2

by the Cauchy-Schwarz inequality.In particular, kp � qk1 � .8ı.p; q/kp C qk1/1=2.

For any probability measures � and � on G and g0 2 G, one has

(2) H.� � �/ �H.�/ � 2minf�.e/; �.g0/gı.�; g0�/:

Here��� D
P
g �.g/.g�/ and .g�/.x/ D �.g�1x/. Indeed, put � WD minf�.e/; �.g0/g and

observe that �0 WD .1�2�/�1.���� .��C�g0�// is a convex combination of g�’s, and that
H.g�/ D H.�/ for any g. Hence, H.�0/ � H.�/ by concavity and

H.� � �/ �H.�/ D H.2�
� C g0�

2
C .1 � 2�/�0/ �H.�/

� 2�
�
H.

� C g0�

2
/ �H.�/

�
C .1 � 2�/

�
H.�0/ �H.�/

�
� 2�ı.�; g0�/:

Here we explain that a groupG with weakly polynomial growth has slow entropy growth.
Let � be any non-degenerate finitely-supported symmetric probability measure on G with
�.e/ > 0. By concavity of log, one has

H.��n/ D
X
x

��n.x/ log
1

��n.x/
� log

X
x2supp��n

��n.x/

��n.x/
D log j supp��nj:

Since j supp��nj D j.supp�/nj has weak polynomial growth, this implies that

d WD lim inf
n

H.��n/

logn
<1:
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Now for any d 0 < lim infn n.H.��nC1/ �H.��n//, one has

H.��n/ D

n�1X
kD0

.H.��kC1/ �H.��k// � const.C
n�1X
kD1

d 0

k
D const.C d 0 logn:

Thus d 0 � d , that is to say, G has slow entropy growth. It is likely that the converse is also
true. Indeed, suppose thatG does not have weakly polynomial growth. Then, for any d , one
has lim infn jSnj=nd D1 and so, by Varopoulos’s inequality ([20]),��n.e/ D O.n�d=2/. But
since ��n.e/ � ��n.g/ for every even n and every g 2 G by the Cauchy-Schwarz inequality,
this implies

H.��n/ � log
1

��n.e/
� const.C

d

2
logn

for even n. Since d was arbitrary, one has limnH.�
�n/= logn D1.

4. Proof of theorem

Proof of theorem. – Let bWG ! H be a 1-cocycle with coefficients in a weakly mixing
unitary representation � , and we will prove that b 2 B1.G; �/. As discussed in Section 2,
we may assume that b is �-harmonic. Let g 2 supp� and � 2 H be given. Then, since b is
��n-harmonic for every n 2 N, one has for every n

hb.g/; �i D h
X
x

.b.gx/ � b.x//��n.x/; �i D
X
x

hb.x/; �i.g��n � ��n/.x/;

and so, by inequalities (1) and (2),

jhb.g/; �ij2 � 8ı.��n; g��n/
X
x

jhb.x/; �ij2.g��n C ��n/.x/

� �g.H.�
�nC1/ �H.��n//

X
x

jhb.x/; �ij2.g��n C ��n/.x/;

where �g D 4minf�.e/; �.g/g�1. Since
P
x jhb.x/; �ij

2.g��n C ��n/.x/ has sublinear
growth by the lemma of Section 2 (and the Cauchy-Schwarz inequality), slow entropy growth
implies that hb.g/; �i D 0. Since g 2 supp� and � 2 H were arbitrary and � is non-
degenerate, this implies that b D 0.

Note that the slow entropy growth condition implies the following ([8, Lemma 8])

lim inf
n

n�1=2 max
jgj�1
k��n � g��nk1 <1:

Since the slow entropy growth condition seems too restrictive, we give here a supplementary
result that the above condition yields a weaker conclusion (although the author is still not
aware of any super-polynomial growth group to which the proposition applies.)

P. – Let G be a finitely generated group with the word length j � j and let � be
a non-degenerate finitely-supported symmetric probability measure with �.e/ > 0. Assume
that there is ı > 0 such that for any " > 0 and any N 2 N there is n � N such that for
any g 2 G and any E � G if jgj � ın1=2 and ��n.E/ � 1 � ı then ��n.gEB"n1=2/ � ı.
Here Br D fx W jxj � rg. Then, any 1-cocycle b with coefficients in a weakly mixing unitary
representation � has sublinear growth in the sense that kb.g/k � f .jgj/ for some f with

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



554 N. OZAWA

f .n/=n! 0. In particular ifG moreover has a controlled Følner sequence, thenG has property
HFD .

Proof. – Since approximate 1-coboundaries have sublinear growth ([6, Corollary 3.3]),
we may assume that b is a �-harmonic cocycle such that kb.g/k � jgj. Let  > 0 be given
arbitrary and put " WD ı2. By the lemma of Section 2, there is N such that n � N implies

sup
�2H ; k�k�1

X
x

��n.x/jhb.x/; �ij2 < "2n:

Take n � maxfN; 4ı�2g which fulfills the statement in the proposition. Let g 2 G be such
that jgj � ın1=2. For each unit vector � 2 H , put

E� WD fx 2 G W jhb.x/; �ij � "n
1=2=ıg

and observe that ��n.E�/ > 1 � ı. Hence, one has ��n.E��
g�
\ g�1E�B"n1=2/ > 0 by

assumption, and so there exist x� 2 E��
g�

and y� 2 B"n1=2 such that gx�y� 2 E� . It follows
that

jhb.g/; �ij � jhb.gx�y�/; �ij C jhb.x�/; �
�
g �ij C jhb.y�/; �

�
gx�
�ij

� 3"n1=2=ı D 3ın1=2:

This means that kb.g/k � 3ın1=2 for all g 2 G such that jgj � ın1=2, and so

lim
m

maxfkb.g/k W jgj � mg
m

D inf
m

maxfkb.g/k W jgj � mg
m

�
3ın1=2

bın1=2c
� 6;

where the first equality follows from subadditivity. Since  > 0 was arbitrary, this proves the
first statement. The second follows from [6, Corollary 3.7].

Appendix

Property (T) and harmonic 1-cocycles

We give a simple proof of the theorem of Mok and Korevaar-Schoen cited in the intro-
duction ([15, 14], see also [13, Appendix A]). After submitting the first draft of this paper, the
author learned that the same proof had been presented in Jesse Peterson’s lecture at Vander-
bilt University in Spring 2013. A more explicit construction (which still uses an ultrafilter) is
provided later in [9].

T A. – Let G be a finitely generated group without property (T). Then, for any
non-degenerate finitely-supported symmetric probability measure � on G, there is a nonzero
�-harmonic 1-cocycle with coefficients in some unitary representation.

Proof. – SinceG does not have property (T), there is a unitary representation � WG y H

having approximate invariant vectors but having no nonzero invariant vectors (see [4,
Theorem 12.1.7]). Thus the self-adjoint contraction T D

P
x �.x/�x 2 B.H / contains 1 in

the spectrum, but not as an eigenvalue. This means that 1 is a limit point of the spectrum of T .
Hence there is a sequence "n & 0 such that the spectral subspaces
Hn WD ET .Œ1 � 2"n; 1 � "n�/H are nonzero. Take unit vectors �n 2 Hn. One hasX

x

�.x/k�n � �x�nk
2
D 2.1 � hT �n; �ni/ 2 Œ2"n; 4"n�:
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Fix a free ultrafilter U and consider the ultrapower unitary representation �U on the
ultrapower Hilbert space H U (see [4, 12.1.4]). Then the map bWG ! H U , given by
b.x/ D ."

�1=2
n .�n � �x�n//n!U , is a 1-cocycle with coefficients in �U such thatX

x

�.x/kb.x/k2 D lim
n!U

"�1n

X
x

�.x/k�n � �x�nk
2
2 Œ2; 4�

and

k

X
x

�.x/b.x/k D lim
n!U

"�1=2n k

X
x

�.x/.�n � �x�n/k

D lim
n!U

"�1=2n k

X
x

.1 � T /�nk � lim
n!U

2"1=2n D 0:

This means that b is a nonzero �-harmonic 1-cocycle.
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