Finite degrees of freedom for the refined blow-up profile of the semilinear heat equation
[Nombre fini de degrés de liberté du profil raffiné de l'équation semilinéaire de la chaleur]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 5, pp. 1241-1282.

Nous raffinons le comportement asymptotique des solutions de l'équation semilinéaire de la chaleur avec une non-linéarité sous-critique au sens de Sobolev, qui explosent en temps fini à un point d'explosion avec le profil communément admis comme générique. Pour obtenir ce raffinement, nous devons abandonner le profil explicite comme premier ordre de l'approximation, et prenons à la place une fonction non explicite comme première description du comportement au voisinage de la singularité. Cette fonction non explicite est en fait une solution spécifique que nous construisons, obéissant à un certain comportement prescrit. La construction repose sur la réduction du problème à un problème en dimension finie et l'utilisation d'un argument topologique basé sur la théorie du degré pour conclure. De façon étonnante, on constate que le nouveau profil non explicite produit une famille avec un nombre fini de degrés de liberté, soit (N+1)N2 si N est la dimension de l'espace.

We refine the asymptotic behavior of solutions to the semilinear heat equation with Sobolev subcritical power nonlinearity which blow up in some finite time at a blow-up point where the (supposed to be generic) profile holds. In order to obtain this refinement, we have to abandon the explicit profile function as a first order approximation, and take a non explicit function as a first order description of the singular behavior. This non explicit function is in fact a special solution which we construct, obeying some refined prescribed behavior. The construction relies on the reduction of the problem to a finite dimensional one and the use of a topological argument based on index theory to conclude. Surprisingly, the new non explicit profiles which we construct make a family with finite degrees of freedom, namely N(N+1)2 if N is the dimension of the space.

Publié le :
DOI : 10.24033/asens.2344
Classification : 35K58, 35K55; 35B40, 35B44.
Keywords: Semilinear heat equations, finite-time blow-up, blow-up profile, stability.
Mot clés : Équation semilinéaire de la chaleur, explosion en temps fini, profil à l'explosion, stabilité.
@article{ASENS_2017__50_5_1241_0,
     author = {Nguyen, Van Tien and Zaag, Hatem},
     title = {Finite degrees of freedom  for the refined blow-up profile  of the semilinear heat equation},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1241--1282},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {5},
     year = {2017},
     doi = {10.24033/asens.2344},
     mrnumber = {3720029},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2344/}
}
TY  - JOUR
AU  - Nguyen, Van Tien
AU  - Zaag, Hatem
TI  - Finite degrees of freedom  for the refined blow-up profile  of the semilinear heat equation
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 1241
EP  - 1282
VL  - 50
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2344/
DO  - 10.24033/asens.2344
LA  - en
ID  - ASENS_2017__50_5_1241_0
ER  - 
%0 Journal Article
%A Nguyen, Van Tien
%A Zaag, Hatem
%T Finite degrees of freedom  for the refined blow-up profile  of the semilinear heat equation
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 1241-1282
%V 50
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2344/
%R 10.24033/asens.2344
%G en
%F ASENS_2017__50_5_1241_0
Nguyen, Van Tien; Zaag, Hatem. Finite degrees of freedom  for the refined blow-up profile  of the semilinear heat equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 5, pp. 1241-1282. doi : 10.24033/asens.2344. http://www.numdam.org/articles/10.24033/asens.2344/

Ball, J. M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser., Volume 28 (1977), pp. 473-486 (ISSN: 0033-5606) | DOI | MR | Zbl

Bebernes, J. W.; Bressan, A.; Eberly, D. A description of blowup for the solid fuel ignition model, Indiana Univ. Math. J., Volume 36 (1987), pp. 295-305 (ISSN: 0022-2518) | DOI | MR

Bernoff, A. J.; Bertozzi, A. L.; Witelski, T. P. Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff, J. Statist. Phys., Volume 93 (1998), pp. 725-776 (ISSN: 0022-4715) | DOI | MR | Zbl

Bebernes, J. W.; Kassoy, D. R. A mathematical analysis of blowup for thermal reactions—the spatially nonhomogeneous case, SIAM J. Appl. Math., Volume 40 (1981), pp. 476-484 (ISSN: 0036-1399) | DOI | MR | Zbl

Bricmont, J.; Kupiainen, A. Universality in blow-up for nonlinear heat equations, Nonlinearity, Volume 7 (1994), pp. 539-575 http://stacks.iop.org/0951-7715/7/539 (ISSN: 0951-7715) | DOI | MR | Zbl

Bressan, A. On the asymptotic shape of blow-up, Indiana Univ. Math. J., Volume 39 (1990), pp. 947-960 (ISSN: 0022-2518) | DOI | MR | Zbl

Bressan, A. Stable blow-up patterns, J. Differential Equations, Volume 98 (1992), pp. 57-75 (ISSN: 0022-0396) | DOI | MR | Zbl

Chapman, S. J.; Hunton, B. J.; Ockendon, J. R. Vortices and boundaries, Quart. Appl. Math., Volume 56 (1998), pp. 507-519 (ISSN: 0033-569X) | DOI | MR | Zbl

Côte, R.; Zaag, H. Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Comm. Pure Appl. Math., Volume 66 (2013), pp. 1541-1581 (ISSN: 0010-3640) | DOI | MR | Zbl

Ebde, M. A.; Zaag, H. Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term, SeMA J., Volume 55 (2011), pp. 5-21 (ISSN: 1575-9822) | DOI | MR | Zbl

Filippas, S.; Kohn, R. V. Refined asymptotics for the blowup of ut-Δu=up , Comm. Pure Appl. Math., Volume 45 (1992), pp. 821-869 (ISSN: 0010-3640) | DOI | MR | Zbl

Fermanian Kammerer, C.; Merle, F.; Zaag, H. Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Ann., Volume 317 (2000), pp. 347-387 (ISSN: 0025-5831) | DOI | MR | Zbl

Fermanian Kammerer, C.; Zaag, H. Boundedness up to blow-up of the difference between two solutions to a semilinear heat equation, Nonlinearity, Volume 13 (2000), pp. 1189-1216 (ISSN: 0951-7715) | DOI | MR | Zbl

Filippas, S.; Liu, W. X. On the blowup of multidimensional semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 10 (1993), pp. 313-344 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Fujita, H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α , J. Fac. Sci. Univ. Tokyo Sect. I, Volume 13 (1966), pp. 109-124 (ISSN: 0040-8980) | MR | Zbl

Glimm, J.; Jaffe, A., Springer, New York, 1987, 535 pages (ISBN: 0-387-96476-2) | DOI | MR

Giga, Y.; Kohn, R. V. Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 297-319 (ISSN: 0010-3640) | DOI | MR | Zbl

Giga, Y.; Kohn, R. V. Characterizing blowup using similarity variables, Indiana Univ. Math. J., Volume 36 (1987), pp. 1-40 (ISSN: 0022-2518) | DOI | MR | Zbl

Giga, Y.; Kohn, R. V. Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., Volume 42 (1989), pp. 845-884 (ISSN: 0010-3640) | DOI | MR | Zbl

Herrero, M. A.; Velázquez, J. J. L. Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, Volume 5 (1992), pp. 973-997 (ISSN: 0893-4983) | DOI | MR | Zbl

Herrero, M. A.; Velázquez, J. J. L. Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 19 (1992), pp. 381-450 (ISSN: 0391-173X) | Numdam | MR | Zbl

Herrero, M. A.; Velázquez, J. J. L. Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 10 (1993), pp. 131-189 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Kaplan, S. On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., Volume 16 (1963), pp. 305-330 (ISSN: 0010-3640) | DOI | MR | Zbl

Kassoy, D. R.; Poland, J. The thermal explosion confined by a constant temperature boundary. I. The induction period solution, SIAM J. Appl. Math., Volume 39 (1980), pp. 412-430 (ISSN: 0036-1399) | DOI | MR | Zbl

Kassoy, D. R.; Poland, J. The thermal explosion confined by a constant temperature boundary. II. The extremely rapid transient, SIAM J. Appl. Math., Volume 41 (1981), pp. 231-246 (ISSN: 0036-1399) | DOI | MR | Zbl

Levine, H. A. Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put=-Au+(u) , Arch. Rational Mech. Anal., Volume 51 (1973), pp. 371-386 (ISSN: 0003-9527) | DOI | MR | Zbl

Merle, F.; Raphaël, P.; Rodnianski, I. Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, C. R. Math. Acad. Sci. Paris, Volume 349 (2011), pp. 279-283 (ISSN: 1631-073X) | DOI | MR | Zbl

Merle, F.; Zaag, H. A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann., Volume 316 (2000), pp. 103-137 (ISSN: 0025-5831) | DOI | MR | Zbl

Masmoudi, N.; Zaag, H. Blow-up profile for the complex Ginzburg-Landau equation, J. Funct. Anal., Volume 255 (2008), pp. 1613-1666 (ISSN: 0022-1236) | DOI | MR | Zbl

Merle, F.; Zaag, H. Reconnection of vortex with the boundary and finite time quenching, Nonlinearity, Volume 10 (1997), pp. 1497-1550 (ISSN: 0951-7715) | DOI | MR | Zbl

Merle, F.; Zaag, H. Stability of the blow-up profile for equations of the type ut=Δu+|u|p-1u , Duke Math. J., Volume 86 (1997), pp. 143-195 (ISSN: 0012-7094) | DOI | MR | Zbl

Merle, F.; Zaag, H. Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., Volume 51 (1998), pp. 139-196 (ISSN: 0010-3640) | DOI | MR | Zbl

Merle, F.; Zaag, H. Refined uniform estimates at blow-up and applications for nonlinear heat equations, Geom. Funct. Anal., Volume 8 (1998), pp. 1043-1085 (ISSN: 1016-443X) | DOI | MR | Zbl

Nouaili, N.; Zaag, H. Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation, Comm. Partial Differential Equations, Volume 40 (2015), pp. 1197-1217 (ISSN: 0360-5302) | DOI | MR

Nguyen, V. T.; Zaag, H. Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 16 (2016), pp. 1275-1314 | DOI | MR

Raphaël, P.; Rodnianski, I. Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. IHÉS, Volume 115 (2012), pp. 1-122 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Raphaël, P.; Schweyer, R. Stable blowup dynamics for the 1-corotational energy critical harmonic heat flow, Comm. Pure Appl. Math., Volume 66 (2013), pp. 414-480 (ISSN: 0010-3640) | DOI | MR | Zbl

Schweyer, R. Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., Volume 263 (2012), pp. 3922-3983 (ISSN: 0022-1236) | DOI | MR | Zbl

Segur, H.; Kruskal, M. D. Nonexistence of small-amplitude breather solutions in ϕ4 theory, Phys. Rev. Lett., Volume 58 (1987), pp. 747-750 (ISSN: 0031-9007) | DOI | MR

Soner, H. M.; Souganidis, P. E. Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature, Comm. Partial Differential Equations, Volume 18 (1993), pp. 859-894 (ISSN: 0360-5302) | DOI | MR | Zbl

Velázquez, J. J. L. Higher-dimensional blow up for semilinear parabolic equations, Comm. Partial Differential Equations, Volume 17 (1992), pp. 1567-1596 (ISSN: 0360-5302) | DOI | MR | Zbl

Velázquez, J. J. L. Classification of singularities for blowing up solutions in higher dimensions, Trans. Amer. Math. Soc., Volume 338 (1993), pp. 441-464 (ISSN: 0002-9947) | DOI | MR | Zbl

Velázquez, J. J. L. Estimates on the (n-1)-dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., Volume 42 (1993), pp. 445-476 (ISSN: 0022-2518) | DOI | MR | Zbl

Ward, M. J., ICIAM 95 (Hamburg, 1995) (Math. Res.), Volume 87, Akademie Verlag, Berlin, 1996, pp. 435-462 | MR | Zbl

Weissler, F. B. Single point blow-up for a semilinear initial value problem, J. Differential Equations, Volume 55 (1984), pp. 204-224 (ISSN: 0022-0396) | DOI | MR | Zbl

Zaag, H. On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 19 (2002), pp. 505-542 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Zaag, H. One-dimensional behavior of singular N-dimensional solutions of semilinear heat equations, Comm. Math. Phys., Volume 225 (2002), pp. 523-549 (ISSN: 0010-3616) | DOI | MR | Zbl

Zaag, H. Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J., Volume 133 (2006), pp. 499-525 (ISSN: 0012-7094) | DOI | MR | Zbl

Zaag, H. Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 15 (1998), pp. 581-622 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl

Cité par Sources :