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FINITE DEGREES OF FREEDOM
FOR THE REFINED BLOW-UP PROFILE
OF THE SEMILINEAR HEAT EQUATION

 V T NGUYEN  H ZAAG

A. – We refine the asymptotic behavior of solutions to the semilinear heat equation with
Sobolev subcritical power nonlinearity which blow up in some finite time at a blow-up point where
the (supposed to be generic) profile holds. In order to obtain this refinement, we have to abandon the
explicit profile function as a first order approximation, and take a non explicit function as a first order
description of the singular behavior. This non explicit function is in fact a special solution which we
construct, obeying some refined prescribed behavior. The construction relies on the reduction of the
problem to a finite dimensional one and the use of a topological argument based on index theory
to conclude. Surprisingly, the new non explicit profiles which we construct make a family with finite
degrees of freedom, namely N.NC1/

2 if N is the dimension of the space.

R. – Nous raffinons le comportement asymptotique des solutions de l’équation semilinéaire
de la chaleur avec une non-linéarité sous-critique au sens de Sobolev, qui explosent en temps fini à un
point d’explosion avec le profil communément admis comme générique. Pour obtenir ce raffinement,
nous devons abandonner le profil explicite comme premier ordre de l’approximation, et prenons à
la place une fonction non explicite comme première description du comportement au voisinage de
la singularité. Cette fonction non explicite est en fait une solution spécifique que nous construisons,
obéissant à un certain comportement prescrit. La construction repose sur la réduction du problème à
un problème en dimension finie et l’utilisation d’un argument topologique basé sur la théorie du degré
pour conclure. De façon étonnante, on constate que le nouveau profil non explicite produit une famille
avec un nombre fini de degrés de liberté, soit .NC1/N2 si N est la dimension de l’espace.

1. Introduction

We are interested in the following semilinear heat equation:

(1)

(
ut D �uC juj

p�1u;

u.0/ D u0 2 L
1.RN /;
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1242 V. T. NGUYEN AND H. ZAAG

where u.t/ W x 2 RN ! u.x; t/ 2 R, � denotes the Laplacian in RN , and

p > 1 or 1 < p <
N C 2

N � 2
if N � 3:

Equation (1) is a simple model for a large class of nonlinear parabolic equations. In
fact, it captures features common to a whole range of blow-up problems parsing in various
physical situations, particularly it highlights the role of scaling and self-similarity. Among
related equations, we would like nonetheless to mention: the solid fuel ignition model
(Bebernes, Bressan and Eberly [2]), the thermal explosion (Bebernes and Kassoy [3], Kassoy
and Poland [24]), [25]), surface diffusion (Bernoff, Bertozzi and Witelski [4]), the motion
by mean curvature (Soner and Souganidis [40]), vortex dynamics in superconductors
(Chapman, Hunton and Ockendon [8], Merle and Zaag [29]).

By standard results, the problem (1) has a unique classical solution u.x; t/ continuous in
time with values in L1.RN /, which exists at least for small times. The solution u.x; t/ may
develop singularities in some finite time (see Kaplan [23], Fujita [15], Levine [26], Ball [1],
Weissler [45] for the existence of finite-time blow-up solutions to (1)). In this case, we say
that u.x; t/ blows up in a finite time T < C1 in the sense that

lim
t!T
ku.t/kL1.RN / D C1:

Here we call T the blow-up time of u.x; t/. In such a blow-up case, we say that Oa 2 RN is a
blow-up point of u if u is not locally bounded in the neighborhood of . Oa; T /, this means that
there exists .xn; tn/! . Oa; T / such that ju.xn; tn/j ! C1 when n!C1.

Let us consider u.t/ a solution of (1) which blows up in finite time T at only one blow-
up point Oa. From the translation invariance of (1), we may assume that Oa D 0. Studying
the solution u.x; t/ near the singularity .0; T / is based on the following similarity variables
(see [17, 18]):

(2) T Œu�.y; s/ D .T � t /
1
p�1u.x; t/; y D

x
p
T � t

; s D � log.T � t /;

and w D T Œu� solves a new parabolic equation in .y; s/,

(3) @sw D Lw �
p

p � 1
w C jwjp�1w; .y; s/ 2 RN � Œ� logT;C1/;

where

(4) L D � �
y

2
� r C 1:

In view of (2), the study of u.x; t/ as .x; t/ ! .0; T / is then equivalent to the study
of T Œu�.y; s/ as s ! C1, and each result for u has an equivalent formulation in term
of T Œu�.

According to Giga and Kohn in [18] (see also [16, 17]), we know that:

If Oa is a blow-up point of u, then

(5) lim
t!T

.T � t /
1
p�1u. OaC y

p
T � t ; t / D lim

s!C1
T Œu�.y; s/ D ˙�;

uniformly on compact sets jyj � R, where � D .p � 1/�
1
p�1 .

The estimate (5) has been refined until the higher order by Filippas, Kohn and Liu [13],
[14], Herrero and Velázquez [20], [22], [41], [43], [42]. More precisely, they classified the
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REFINED BLOW-UP PROFILE OF THE SEMILINEAR HEAT EQUATION 1243

behavior of T Œu�.y; s/ for jyj bounded, and showed that one of the following cases occurs
(up to replacing u by �u if necessary),

- Case 1 (non-degenerate rate of blow-up): There exists ` 2 f1; : : : ; N g, and up to an orthogonal
transformation of space coordinates,

(6) 8R > 0; sup
jyj�R

ˇ̌̌̌
ˇT Œu�.y; s/ �

"
� C

�

4ps

 
2` �

X̀
iD1

jyi j
2

!#ˇ̌̌̌
ˇ D O

�
log s
s2

�
:

- Case 2 (degenerate rate of blow-up): There exists � > 0 such that

(7) 8R > 0; sup
jyj�R

jT Œu�.y; s/ � �j D O.e��s/;

(this exponential convergence has been refined up to the order 1 by Herrero and Velázquez, but
we omit that description since we choose in this work to concentrate on the non-degenerate rate
of blow-up mentioned in the case 1 above).

If ` D N , then Oa D 0 is an isolated blow-up point from Velázquez [41]. Merle and Zaag
[31, 32, 33] (with no sign condition), and Herrero and Velázquez [41, 22] (in the positive case)
established the following blow-up profile in the variable � D y

p
s

(which is the intermediate
scale that separates the regular and singular parts in the non-degenerate case):

(8) 8R > 0; sup
j�j�R

ˇ̌
T Œu�.�

p
s; s/ � f .�/

ˇ̌
! 0 as s !C1;

where

(9) f .�/ D �

�
1C

p � 1

4p
j�j2

�� 1
p�1

:

Herrero and Velázquez [21] proved that the profile (9) is generic in the case N D 1, and they
announced the same for N � 2, but they never published it.

Merle and Zaag [31], [32], [33] derived the limiting profile in the u.x; t/ variable, in sense
that u.x; t/! u�.x/ when t ! T if x ¤ 0 and x is the neighborhood of 0, with

(10) u�.x/ �

�
8pj log jxjj
.p � 1/2jxj2

� 1
p�1

as x ! 0:

They also showed that all the behaviors (6) with ` D N , (8) and (10) are equivalent.

Bricmont and Kupiainen [7], Merle and Zaag in [30] showed the existence of initial data
for (1) such that the corresponding solutions blow up in finite time T at only one blow-up
point Oa D 0 and verify the behavior (8). Note that the method of [30] allows to derive the
stability of the blow-up behavior (8) with respect to perturbations in the initial data or the
nonlinearity (see also Fermanian, Merle and Zaag [11], [12] for other proofs of the stability).

In this work, considering the expansions (6) with ` D N , (8) and (10), we ask whether we
can carry on these expansions and obtain lower order estimates. In particular in (10), we ask
whether we can obtain the following terms of the expansion, up to bounded functions? In
view of the self-similar transformation (2), a necessary condition would be to carry on the
expansion (6) up to the scale of e�

s
p�1 D .T � t /

1
p�1 . Unfortunately, any attempt to carry on

the expansion (6) would give bunches of terms in the scale of powers of 1
s
D

1
j log.T�t/j (with

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1244 V. T. NGUYEN AND H. ZAAG

possibly .log s/b corrections). This way, instead of reaching the scale of powers of the blow-
up variable .T � t /, we are trapped in logarithmic scales of that variable, namely 1

j log.T�t/ja .
Logarithmic scales also arise in some singular perturbation problems such as low Reynolds
number fluids and some vibrating membranes studies (see Ward [44] and the references
therein, see also Segur and Kruskal [39] for a Klein-Gordon equation). Since the logarithmic
scales go to zero slowly, infinite logarithmic series may be of only limited practical use in
approximating the exact solution. Relevant approximations, i.e., approximations up to lower
order terms .T � t /ˇ for ˇ > 0, lie beyond all logarithmic scales. In order to escape all
logarithmic scales, a possible idea would be to abandon expansions around the explicit profile
function (9), which happens to be only an approximate solution of Equation (3), and to
linearize around a non explicit profile function which is a solution of Equation (3). This
has been done by Fermanian and Zaag [12] whose work shows that when linearizing around
a fixed solution, say Ou a radially symmetric and decreasing solution to Equation (1) which
blows up in finite time T at only Oa D 0, they can reach the order .T � t /ˇ for ˇ > 0 through
a modulation of the dilation of Ou, provided that N D 1. In this paper, we aim at extending
their result to the higher dimensional case.

Let us explain the difficulty raised in [12] for the caseN � 2. It is convenient to introduce
the following definitions:

D 1.1. – For all .a; T / 2 RN � R, we denote by Ba;T the set of all solutions to
Equation (1) which blow up in finite time T at point x D a (not necessary to be unique) and
have the stable profile (8) (or (6) with ` D N or (10)). We denote by B0a;T the subset of Ba;T
where a is the unique blow-up point and where no blow-up occurs at infinity (in the sense that
ju.x; t/j � C for all jxj � c0 and t 2 Œ0; T / for some C > 0 and c0 > 0).

D 1.2. – We denote by MN .R/ the set of all symmetric, real .N �N/ matrices.

Introducing the following dilation transformation for any � > 0,

(11) D� W u 7! D�u W .x; t/ 7! �
2
p�1u

�
�x; T � �2.T � t /

�
;

we see that D� is one-to-one from Ba;T to itself.

Let us consider Ou, a radially symmetric and decreasing solution to Equation (1) in B00;T
satisfying

(12) sup
y2RN

ˇ̌̌̌
T Œ Ou�.y; s/ �

�
f

�
y
p
s

�
C
N�

2ps

�ˇ̌̌̌
�

C
p
s
;

where f is defined in (9) (see Appendix A.1 for the justification of the existence of such a
solution). The solution Ou and T will be considered as fixed in the following. Then, we have
the following classification from [12]:

If u 2 B0;T , then, two cases arise:
- Case 1: There is a matrix B D B.u; Ou/ 2MN .R/ ( B 6� 0) such that

(13) T Œu�.y; s/ �T Œ Ou�.y; s/ D
1

s2

�
1

2
yT By � t r.B/

�
C o

�
1

s2

�
in L2�:
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- Case 2: There is a constant C > 0,

(14) kT Œu�.s/ �T Œ Ou�.s/kL2� �
Ce�s=2

s3
;

(see Appendix A.2 for the justification of this result).

WhenN D 1 ( B.u; Ou/ 2 R), the authors in [12] noted the following property when � > 0
and u D D� Ou is defined in (11):

(15) T ŒD� Ou�.y; s/ �T Œ Ou�.y; s/ D
� log�
ps2

�
1

2
jyj2 � 1

�
C o

�
1

s2

�
in L2�;

hence B.D� Ou; Ou/ D
� log�
p

(note that (15) is true whereverN � 2with�1 replaced by�N ).
This is due to the fact that

T ŒD� Ou�.s/ D T Œ Ou�.s C 2 log�/:

Therefore, choosing � such that � log�
p
D B.u; Ou/, that is � D e

p
� B.u; Ou/, we see from (13)

and (15) that

T Œu�.y; s/ �T ŒD� Ou�.y; s/ D o

�
1

s2

�
in L2�:

Hence, only (14) holds and

kT Œu�.s/ �T ŒD� Ou�.s/kL2� �
Ce�s=2

s3
:

This implies by [12] that when p � 3,

(16)
ju.x; t/ � D� Ou.x; t/j � C0; 8jxj � "0; 8t 2

�
t0; T

�
;

ju.x; t/ � D� Ou.x; t/j ! 0 as .x; t/! .0; T /;

)
where "0 > 0 and t0 2 Œ0; T /.

In view of (16), it appears that the non explicit one-parameter family D� Ou serves as a
sharp blow-up final profile for any arbitrary u 2 B0;T , accurate up to bounded functions.
This is to be considered as a refinement of (10), since D� Ou encapsulates all singular terms in
the expansion of u.x; t/ near the singularity .0; T /. However, there is a price to pay to reach
such an accuracy, and the price lies in the fact that D� Ou is not explicit, unlike u�.x/ in (10).

If N � 2, the matrix B.u; Ou/ in (13) has N.NC1/
2

real parameters. Applying the dilation
trick of [12] allows to manage only one parameter. Therefore, N.NC1/

2
�1 parameters remain

to be handled. This is the major reason preventing the authors in [12] from having such
a striking result in higher dimensions. Trying to apply other transformations which keep
the equation and B0;T invariant (rotation, symmetries of space coordinates, ...), we could
not handle all the remaining N.NC1/

2
� 1 parameters. Fortunately, we could overcome this

obstacle and construct a N.NC1/
2

parameters family, which generalizes the D� Ou family and
serves as the accurate profile for solutions in B0;T . In the following statement, we construct
that family:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1246 V. T. NGUYEN AND H. ZAAG

T 1 (Construction of blow-up solutions for Equation (1) in B00;T with a refined
behavior)

For any A 2 MN .R/, there exists s0.A / > 0 such that Equation (1) has a unique
solution uA in B00;TA

with TA D e
�s0.A / such that the following holds

(17) T ŒuA �.y; s/�T Œ Ou�.y; s/ D
1

s2

�
1

2
yT Ay � t r.A /

�
Co

�
1

s2

�
in L2� as s !C1:

R 1.3. – From (13), we see that Theorem 1 remains true if we change Ou by any other Qu
in B00;T .

R 1.4. – The blow-up time TA goes to zero when kAk ! C1.

As mentioned earlier, Theorem 1 is a major step in extending (16) to the higher dimen-
sional case. More precisely, we have the following result:

T 2 (A finite parameter family as a sharp profile for solutions of (1) having the
same profile (8))

Consider u 2 B0;T , then there exist a matrix A 2MN .R/, "0 > 0 and t0 2 Œ0; T / such that

.i/ kT Œu�.s/ �T Œ NuA �.s/kL2� D O

 
e�s=2

s3

!
as s !C1;

where NuA .x; t/ D uA .x; t C TA � T / and uA 2 B00;TA
is the solution to Equation (1)

constructed in Theorem 1. The convergence also holds in L1loc.
(ii) For all jxj � "0 and for all t 2 Œt0; T /,

(18) ju.x; t/ � NuA .x; t/
ˇ̌
� CmM

(
.T � t /

1
2�

1
p�1

j log.T � t /j
3
2

;
jxj1�

2
p�1

j log jxjj2�
1
p�1

)
;

where mM D min if 1 < p < 3 and mM D max if p � 3.

With this theorem, we see that if p � 3, then the difference u � uA is bounded and goes
to zero as t ! T , up to a good choice of A in MN .R/, although both functions blow up.
Therefore, Theorem 2 directly yields the following corollary:

C 1.5 (The sharp profile encapsulates all singular terms if p � 3)
Assume in addition to Theorem 2 that p � 3. Then

(19)
ˇ̌
u.x; t/ � uA .x; t C TA � T /

ˇ̌
� C0; 8jxj � "0; 8t 2 Œt0; T /;

and ˇ̌
u.x; t/ � uA .x; t C TA � T /

ˇ̌
! 0 as .x; t/! .0; T /:

R 1.6. – If we denote by OB the set of solutions constructed in Theorem 1, namely

(20) OB D OB. Ou/ , fuA 2 B00;TA
constructed in Theorem 1 satisfying (17)

ˇ̌
A 2MN .R/g;

and define from Corollary 1.5 the following equivalence relation ~ on B0;T for p � 3:

8u; v 2 B0;T ; u ~ v”9"0 > 0; .u � v/ 2 L
1
�
B.0; "0/ � ŒT � "0; T /

�
;

then
u~ W

OB ~ MN .R/;

4 e SÉRIE – TOME 50 – 2017 – No 5
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and

B0;T ~ MN .R/ � L1x;t :

This says that if we consider the blow-up asymptotic behavior given by (6) with ` D N or
(8) or (10) as a first order expansion describing the behavior of u.x; t/ near the singular point
.0; T /, then the following orders have N.NC1/

2
degrees of freedom which is the dimension of the

set MN .R/, up to bounded functions.

R 1.7. – If u blows up at time T at some point a ¤ 0 with the profile (6),
then u.x � a; t/ 2 B0;T . Thus, from Theorem 2 and Corollary 1.5, we have a sharp profile
for u.x � a; t/, hence for u. Note also that if u 2 B00;T , then estimates (18) and (19) hold for
all x 2 RN .

Note that Theorem 2 and Corollary 1.5 were already proved in one dimension by Fermanian
and Zaag [12]. Thus, the novelty of our contribution lays in the higher dimensional case.

As in [12], we believe that our result is a forward step in the problem of the regularity of the
blow-up set, which has been poorly studied in the literature and is challenging. In particular,
Zaag in [49] (see also [47] and [48]) used the ideas given in [12] and proved that under a non-
degeneracy condition, the blow-up set is a C2 manifold if it is continuous and its Hausdorff

dimension is equal to N � 1. He also derived the first description of the blow-up profile of
solutions to (1) near a non-isolated blow-up point.

Let us now briefly give the main ideas of the proof of Theorem 1. The proof is based
on techniques developed by Bricmont and Kupiainen in [7], Merle and Zaag in [30] for the
construction of a solution to Equation (1) in B00;T , that is, prescribing only the behavior
(8). Because we need in addition the estimate (17) (note that this estimate is the crucial
point in order to obtain Theorem 2), we need new ideas. Instead of linearizing Equa-

tion (3) around f
�
y
p
s

�
defined in (9) as in [7] and [30], our major idea is to linearize

Equation (3) around T Œ Ou�, where Ou is the given radially symmetric solution to Equation (1)
in B00;T . Although this choice may seem less interesting, given that T Œ Ou� is not explicit,

unlike f
�
y
p
s

�
, it is in fact much more advantageous, since linearizing around T Œ Ou� gener-

ates no rest term, unlike with f
�
y
p
s

�
. This way, we are able to reach the order 1

s2
in the

expansion of solutions to Equation (3) (as expected in (17)), unlike with f
�
y
p
s

�
, where we

are stuck in the log s
s2

order. Let us first review the method of [7] and [30] for the construction
of a solution in B00;T . In those papers, the proof is performed in the framework of similarity
variables defined in (2). In that setting, the problem reduces to the construction of a solution
w to (3) such that

v.y; s/ D w.y; s/ � f

�
y
p
s

�
! 0 as s !C1:

Satisfying such a property is guaranteed by the condition that v.s/ belongs to some set
VA.s/ � L1.RN / which shrinks to 0 as s ! C1. Since the linearization of Equation (3)

around f
�
y
p
s

�
gives .N C 1/ positive modes, N.NC1/

2
zero modes, then an infinite dimen-

sional negative part, the method relies on two arguments:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1248 V. T. NGUYEN AND H. ZAAG

– The use of the bounding effect of the heat kernel to reduce the problem of the control
of v in VA to the control of its positive modes.

– The control of the .N C1/ positives modes thanks to a topological argument based on
index theory.

Because the arguments of [7] and [30] allow the construction of solutions in B00;T for Equa-
tion (1) without caring about estimate (17), therefore, we need some crucial modifications
of the arguments of [30] in order to achieve additionally the estimate (17) as well. Although
these modifications do not affect the general framework developed in [30], they lay in 3 crucial
places:

i. We no longer linearize Equation (3) around the profile f
�
y
p
s

�
defined in (9) as in [7]

and [30]. we instead replace this explicit profile by an implicit one, say T Œ Ou�, where Ou is
the radial solution to Equation (1) in B00;T . This way, we go beyond the log s

s2
order in

the expansion of the solution and achieve the expected estimate (17).
ii. The change of the definition of the shrinking set VA in a very delicate way, so that
v.s/ 2 VA.s/ implies u 2 B00;T with estimate (17) satisfied. With this change, we
need to choose less explicit initial data u0 so that the corresponding initial data of v,
say v.s0/, belongs to VA.s0/, unlike with [30] where the initial data is given explicitly.
See Section 2.2, particularly see Definition 2.2 and Lemma 2.5.

iii. In [7] and [30], the N.NC1/
2

zero modes turned to be controllable like the negative
modes, and this was made possible thanks to the effect of the linear potential term ˛v

in (28).
Here, because we changed the definition of the shrinking set VA in order to satisfy

(17) as well, the N.NC1/
2

zero modes become in some sense “positive”. This way, the
topological argument concerns all N C 1C N.NC1/

2
terms.

We would like to mention that Masmoudi and Zaag [27] adapted the method of [30] for
the following Ginzburg-Landau equation:

(21) @tu D .1C {ˇ/�uC .1C {ı/juj
p�1u;

where p � ı2 � ˇı.p C 1/ > 0 and u W RN � Œ0; T / ! C. Note that the case ˇ D 0 and
ı 2 R small has been studied earlier by Zaag [46]. The same technique is successfully used
by Nouaili and Zaag [35] for the following non-variational complex-valued semilinear heat
equation:

@tu D �uC u
2;

where u W RN � Œ0; T /! C. In [10], Ebde and Zaag use these ideas to show the persistence
of the profile (9) under weak perturbations of Equation (1) by lower order terms involving u
andru (see also Nguyen and Zaag [34] for the case of the strong perturbations). This kind of
topological arguments has proved to be successful in various situations including hyperbolic
and parabolic equations, in particular with energy-critical exponents. This was the case for
the heat equation with exponential source by Bressan [5, 6], for the construction of multi-
solitons for the semilinear wave equation in one space dimension by Côte and Zaag [9], the
wave maps by Raphaël and Rodnianski [36], the Schrödinger maps by Merle, Raphaël and
Rodnianski [28], the critical harmonic heat flow by Schweyer [38] and the two-dimensional
Keller-Segel equation by Raphaël and Schweyer [37].
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As mentioned earlier, Theorem 1 is the major step in deriving Theorem 2 which actually
extends (16) to the higher dimensional case. Let us briefly give the main steps of the proof
of Theorem 2. Consider u in B0;T . Our goal is to choose a particular matrix A 2 MN .R/
such that the difference .T � t /

1
p�1

�
u.x; t/ � uA .x; t C TA � T /

�
, where uA 2 B00;TA

is the

solution constructed in Theorem 1, goes to zero in the scale of .T � t /ˇ for some ˇ > 0. In
order to obtain this estimate, we follow the idea of [12] treated for the one dimensional case
and proceed in three steps:

– In the first step, we apply Theorem 2 with the matrix A D B.u; Ou/ given in the
result of [12] recalled in (13), hence, deriving the existence of uA satisfying (17), we see that
kT Œu�.s/�T ŒuA �.s/kL2� goes to zero exponentially, and also inL1.jyj � R/ for anyR > 0
by parabolic regularity.

– In the second step, we extend the estimate in compact sets to the larger sets jyj � K
p
s

by estimating the effect of the convective term �y
2
� r in the Definition (4) of L in Lq� spaces

with q > 1.
– In the last step, we use a uniform ODE comparison result for Equation (1) to estimate

the difference u.x; t/ � uA .x; t C TA � T / in the outer region where "0 � jxj �

K
p
.T � t /j log.T � t /j for some "0 > 0, and then get the conclusion.

We give the proof of Theorem 1 in Section 2. The proof of Theorem 2 and Corollary 1.5 are
given in Section 3.

Acknowledgement. – We are very grateful to the referee for his comments, which helped us
to clarify our argument.

2. Construction of blow-up solutions for (1) satisfying a prescribed behavior.

This section is devoted to the proof of Theorem 1. Consider Ou 2 B00;T the given radially
symmetric solution to Equation (1) satisfying (12) and A 2MN .R/, we aim at constructing
a solution uA for Equation (1) such that

(22) sup
�2RN

ˇ̌̌̌
.TA � t /

1
p�1uA .�

q
j log.TA � t /j.TA � t /; t/ � f .�/

ˇ̌̌̌
�

Cp
j log.TA � t /j

;

where f is defined in (9), and in the self-similar transformation (2), it holds that

(23) T ŒuA �.y; s/ �T Œ Ou�.y; s/ D
1

s2

�
1

2
yT Ay � t r.A /

�
C o

�
1

s2

�
in L2�:

If A D 0, then, we simply take uA D Ou which already satisfies (22) as we explain in
Appendix A.1. Therefore, we only consider here the case where

(24) A ¤ 0:

If Ow D T Œ Ou�, in the similarity variables framework (2), we reduce to finding s0 D s0.A / 2 R
and wA ;0.y/ such that the solution wA .y; s/ to Equation (3) with the initial datum wA ;0

exists for all s � s0 and

(25) sup
y2RN

jwA .y; s/ � Ow.y; s/j ! 0 as s !C1;
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with

(26) wA .y; s/ � Ow.y; s/ D
1

s2

�
1

2
yT Ay � t r.A /

�
C o

�
1

s2

�
in L2�:

Here, we follow the framework proposed in [30] for the proof of weaker version of
Theorem 1, where only estimate (22) is needed, in particular estimate (26) is not considered
and no solution Ou nor matrix A are needed. As in [30], the proof relies on the understanding
of the dynamics of the self-similar version of Equation (3) around the function Ow with some
refinement for the dynamics on the null mode to take care of (26). This is indeed one of the
major novelties in our work. More precisely, the proof is divided into 2 steps:

– Thanks to a dynamical system formulation, we show that the control of the similarity
variable version wA .y; s/ (2) around the sharper profile Ow given in (25) and (26)
reduces to the control of the N C 1 positive modes and the N.NC1/

2
zero modes.

– Then, we solve the finite dimensional problem thanks to a topological argument based
on index theory.

For the reader’s convenience, we organize the proof in 4 subsections:

– In the first subsection, we formulate the constructive problem.
– In the second subsection, we give the definition of the shrinking set VA and the prepa-

ration of initial data for the problem.
– In the third subsection, we give all the arguments of the proof without the details, which

are left for the following subsection.
– In the fourth subsection, we give the proof of an important proposition which gives the

reduction of the problem to a finite dimensional one.

2.1. Formulation of the constructive problem.

Consider s0 > 0 to be fixed large enough later. Let us introduce the change of function

(27) vA .y; s/ D wA .y; s/ � Ow.y; s/;

where Ow D T Œ Ou� is the solution of (3) which satisfies (12) and Ou is the considered radially
decreasing solution of (1). Then, from (3), vA (or v for simplicity) solves the following
equation: for all .y; s/ 2 RN � Œs0;C1/,

(28) vs D . L C .y; s//v C B.v/ D . L C ˛.y; s//v C B.v/C ..y; s/ � ˛.y; s//v;

where L is given in (4) and

.y; s/ D p
�
j Ow.y; s/jp�1 � �p�1

�
;(29)

B.v/ D j Ow C vjp�1. Ow C v/ � j Owjp�1 Ow � pj Owjp�1v;(30)

˛.y; s/ D p
�
j'.y; s/jp�1 � �p�1

�
; where '.y; s/ D f

�
y
p
s

�
C
N�

2ps
:(31)

As mentioned earlier, we linearize Equation (3) around Ow, instead of the profile f
�
y
p
s

�
.

Working with v generates no rest term in Equation (28) and this is one of the major ideas
in this work. Looking at the second version of Equation (28), the reader may ask why we use
the function ˛.y; s/ instead of .y; s/ as the potential. In fact, the use of the potential ˛ is
convenient for the two following reasons:
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i. We want to use the same dynamical system formulation given in [7] and [30], and that
analysis was already based on the understanding of the linear operator L C ˛ and its
related Duhamel formulation, together with some related a priori estimates that were
already obtained (see Lemma 2.9 below for these estimates).

ii. In view of (12), we see from the definitions of ˛ and  that they are almost the same in
the sense that k˛.s/� .s/kL1 ! 0 as s !C1. Therefore, the term . � ˛/v in (28)
is easily controlled (see Lemma B.3 below).

Satisfying (25) reduces to the construction of a function v such that

(32) kv.s/kL1.RN / ! 0 as s !C1:

In fact, we will be more specific and require v to satisfy some geometrical property, namely
that v belongs to some set VA � L1.RN / where VA.s/ shrinks to v � 0 as s ! C1. This
set is very similar to that of [30], except for the control of the null modes, where we modify
the definition of [30] in a crucial way to handle the requirement given in (26). In fact, our
new definition covers the one of [30]. Again, we insist on the fact that this is our second main
contribution and novelty in this work, with respect to [30] (see Definition 2.2 for more clarity,
especially condition (46) below).

Our analysis uses the Duhamel formulation of Equation (28): for each s � � � s0, we
have

(33) v.s/ D K .s; �/v.�/C

Z s

�

K .s; �/ ŒB.v.�//C ..�/ � ˛.�//v.�/� d�;

where K is the fundamental solution of the linear operator L C ˛ defined for each � > 0

and s � � by

(34) @s K .s; �/ D . L C ˛/K .s; �/; K .�; �/ D Identity:

The linear operator L is self-adjoint inL2�.RN /, whereL2� is the weightedL2 space associated
with the weight � defined by

(35) �.y/ D

NY
iD1

�1.yi / with �1.�/ D
1
p
4�
e�
j�j2

4 ;

and
spec. L / D f1 �

n

2
; n 2 Ng:

Forˇ D .ˇ1; : : : ; ˇN / 2 NN , the eigenfunctions corresponding to 1� jˇ j
2

(jˇj D ˇ1C� � �CˇN )
are

(36) �ˇ .y/ D �ˇ1.y1/ � � ��ˇN .yN /;

where

(37) �k.�/ D

Œ k2 �X
iD0

kŠ

i Š.k � 2i/Š
.�1/i�k�2i ; k 2 N;

satisfy

(38)
Z
R
�k.�/�n.�/�1.�/d� D 2

kkŠık;n:

Note from Lemma B.1 that the potential ˛.y; s/ has two fundamental properties:
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i) ˛.�; s/! 0 in L2� as s !C1. In particular, the effect of ˛ on the bounded sets or in the
“blow-up” region (jyj � K

p
s) is regarded as a perturbation of the effect of L .

ii) outside of the “blow-up” region, we have the following property: for all " > 0, there exist
C" > 0 and s" such that

(39) sup
s�s";jyj�C"

p
s

ˇ̌̌̌
˛.y; s/ �

�
�

p

p � 1

�ˇ̌̌̌
� ":

This means that LC˛ behaves like L� p
p�1

in the region jyj � K
p
s. Because 1 is the largest

eigenvalue of L , the operator L� p
p�1

has a purely negative spectrum. Therefore, the control
of v.y; s/ in L1 outside of the “blow-up” region will be done without difficulties.

Since the behavior of ˛ inside and outside of the “blow-up” region is different, let us
decompose v as follows: Let �0 2 C10 .Œ0;C1// with supp.�0/ � Œ0; 2� and �0 � 1 on Œ0; 1�.
We define

(40) �.y; s/ D �0

�
jyj

K
p
s

�
;

where K > 0 is to be fixed large enough, and write

(41) v.y; s/ D vb.y; s/C ve.y; s/;

where
vb.y; s/ D �.y; s/v.y; s/ and ve.y; s/ D .1 � �.y; s//v.y; s/:

Note that supp.vb.s// � B.0; 2K
p
s/ and supp.ve.s// � RN n B.0;K

p
s/.

In order to control vb , we expand it with respect to the spectrum of L in L2� since the
eigenfunctions of L span the whole space L2�.RN /. More precisely, we write v as follows:

v.y; s/ D v0.s/C v1.s/ � y C
1

2
yT v2.s/ y � t r.v2.s//C v�.y; s/C ve.y; s/;(42)

where v0.s/ D P0.vb/.y; s/, v1.s/ � y D P1.vb/.y; s/, v�.y; s/ D P�.vb/.y; s/ DP
m�3 Pm.vb/.y; s/, and Pm is the projector on the eigenspace corresponding to the eigen-

value 1 � m
2

defined by

Pm.vb/.y; s/ D
X

ˇ2NN ;jˇ jDm

�ˇ .y/

k�ˇk
2

L2�

Z
RN

�ˇ .y/vb.y; s/�.y/dy;(43)

where �ˇ is defined in (36), and v2.s/ 2MN .R/ defined by

v2.s/ D

Z
RN

vb.y; s/M .y/�.y/dy;(44)

where

M .y/ D

�
1

4
yiyj �

1

2
ıij

�
1�i;j�N

:(45)

R 2.1. – Note that given a function g 2 L1.RN / depending only on the variable y,
we may expand it for each s > 0 according to the expansion detailed between (41) and (45);
naturally, because of the truncation �.y; s/, all the introduced quantities: gb , ge, gm and g� do
depend on s (and also on y, except of course for gm). This extension of the expansion (42) to
functions depending only on y will prove to be useful in Definition 2.2 below, when we introduce
our “shrinking” set.
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The reader should keep in mind that vm; m D 0; 1; 2 and v� are coordinates of vb and not
those of v.

2.2. Definition of a shrinking set VA.s/ and preparation of initial data.

Our two requirements (25) and (26) directly follow if we construct a solution v.s/ of
Equation (28) such that v.s/ belongs to a set VA.s/ for some s0 � 1, where VA.s/ is defined
in the following:

D 2.2 (A shrinking set to zero). – Let � 2
�
0; 1
2

�
, for each A > 0, for each

s > 0, we define VA.s/ as being the set of all functions g in L1.RN / such that

jg0.s/j �
A

s2C�
; jg1;i .s/j �

A

s2C�
; 8i 2 f1; : : : ; N g;ˇ̌̌

g2;ij .s/ �
aij

s2

ˇ̌̌
�

A2

s2C�
; 8i; j 2 f1; : : : ; N g;(46)

8y 2 RN ; jg�.y; s/j �
A

s2C�
.1C jyj3/;

kge.s/kL1 �
A2

s1=2C�
;

where g0; g1;i ; g2;ij ; g� and ge are defined as in (42), aij ’s are the coefficient of the given
matrix A .

We also define OVA.s/ � R � RN �MN .R/ as follows:

OVA.s/ D

�
�

A

s2C�
;
A

s2C�

�
�

�
�

A

s2C�
;
A

s2C�

�N
�

�
MN

��
�
A2

s2C�
;
A2

s2C�

��
C

A

s2

�
:

R 2.3. – Note that even though the expansion (42) was introduced for functions of
both variables y and s, it naturally extends to functions of only the variable y, as we explain in
Remark 2.1 right after Equation (45).

R 2.4. – In [30], the shrinking set was very similar in the sense that one has to take
� D 0 above and to replace the condition (46) by

(47) 8i; j 2 f1; : : : ; N g; jg2;ij .s/j �
A2 log s
s2

:

This way, Definition 2.2 and especially (46) appear as the originality in our strategy. Let us note
that our shrinking set VA.s/ is included in [30], provided that s is large enough (with respect to
the matrix A ).

In order to see that the requirements (25) and (26) are fulfilled when v.s/ 2 VA.s/ for all
s � s0, we write from (42),

v.y; s/ D

�
v0.s/C v1.s/ � y C

1

2
yT v2.s/ y � t r.v2.s//C v�.y; s/

�
� 1fjyj�2Kpsg C ve.y; s/;

which gives by Definition 2.2

(48) sup
y2RN

jv.y; s/j �
C.A/

s1=2C�
;

hence (32) and (25).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1254 V. T. NGUYEN AND H. ZAAG

As for (26), we see from (46) that

(49) wA ;2.s/ � Ow2.s/ D v2.s/ D
A

s2
C O

�
1

s2C�

�
on the one hand. On the other hand, introducing uA the solution to Equation (1) which
blows up at time TA D e�s0 such that T ŒuA � D wA D Ow C v. From the classification
result of [12] given in page 1244, we see that case 2 does not hold, otherwise we would have by

projectionwA ;2.s/� Ow2.s/ D O
�
e�s=2

s3

�
. Hence, A D 0 from (49), which is a contradiction

from (24). Therefore, only case 1 holds, and we have

(50) wA .y; s/ � Ow.y; s/ D
1

s2

�
1

2
yT By � t r.B/

�
C o

�
1

s2

�
for some B D B.uA ; Ou/. Therefore, projecting on the null modes, we get

wA ;2.s/ � Ow2.s/ D
1

s2
BC o

�
1

s2

�
:

From (49), it follows that A D B.uA ; Ou/. Thus, (26) follows from (50).

Our goal then becomes to construct a solution v.s/ of Equation (28) such that

v.s/ 2 VA.s/; for all s � s0;

for some s0. Let us first give the general form we take for initial data to fulfill this requirement.
Initial data (at time s0) for Equation (28) will depend on a finite number of real parameters
d0, d1;i and d2;ij with 1 � i; j � N as given in the following lemma:

L 2.5 (Decomposition of initial data on the different components))

For each A > 1, there exists ı1.A/ > 0 such that for all s0 � ı1.A/: If we consider the
following function as initial data for Equation (28):

(51) vd0;d1;d2.y; s0/ D

 
A

s
2C�
0

.d0 C d1 � y/C
1

2
yT Od2 y � 2tr. Od2/

!
�.2y; s0/;

where

Od2;ij D
aij

s20
C
A2d2;ij

s
2C�
0

;

and � is defined in (40), then, the following holds:

(i) If jd0jCjd1jCjd2j � 2, then, the components of vd0;d1;d2.s0/ (or v.s0/ for short) satisfy:ˇ̌̌̌
ˇv0.s0/ � Ad0

s
2C�
0

ˇ̌̌̌
ˇ � Ce�s0 ;

ˇ̌̌̌
ˇv1;i .s0/ � Ad1;is

2C�
0

ˇ̌̌̌
ˇ � Ce�s0 ; 8i 2 f1; : : : ; N g;ˇ̌̌̌

ˇv2;ij .s0/ � aijs20 � A
2d2;ij

s
2C�
0

ˇ̌̌̌
ˇ � Ce�s0 ; 8i; j 2 f1; : : : ; N g;

jv�.y; s0/j � C

 
jd0j C jd1j C jd2j C kAk

s
5=2
0

!
.1C jyj3/;

ve.y; s0/ � 0:
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(ii) If .d0; d1; d2/ is chosen such that .v0; v1; v2/.s0/ 2 OVA.s0/, then

jd0j C jd1j C jd2j � 2; v�.s0/1C jyj3


L1
�

C

s
5=2
0

; kve.s0/kL1 D 0;

and v.s0/ 2 VA.s0/ with “strict inequalities,” except for .v0; v1; v2/.s0/, in the sense that

jv0.s0/j �
A

s
2C�
0

; jv1;i .s0/j �
A

s
2C�
0

; 8i 2 f1; : : : ; N g;ˇ̌̌̌
v2;ij .s0/ �

aij

s20

ˇ̌̌̌
�

A2

s
2C�
0

; 8i; j 2 f1; : : : ; N g;

8y 2 RN ; jv�.y; s0/j <
A

s
2C�
0

.1C jyj3/;

kve.s0/kL1 <
A2

s
1=2C�
0

:

(iii) There exists a subset Ds0 � R � RN �MN .R/ such that the mapping

.d0; d1; d2/ 7! .v0; v1; v2/.s0/

is linear and one to one from Ds0 on to OVA.s0/ and maps @Ds0 into @ OVA.s0/. Moreover,
it is of degree one on the boundary and the following equivalence holds:

v.s0/ 2 VA.s0/ if and only if .d0; d1; d2/ 2 Ds0 :

Proof. – For parts (i) and (ii), the proof is purely technical and follows from the Defi-
nition (42). For details in a similar case, see Nouaili and Zaag [35]. Part (iii) follows from
the first three estimates in part (i), part (ii) and Definition 2.2 of VA. This ends the proof of
Lemma 2.5.

2.3. Reduction to a finite dimensional problem and conclusion of Theorem 1.

Let us state the following central proposition which implies Theorem 1:

P 2.6 (Sufficient condition for Theorem 1). – There exist A > 1 and S0 > 0

such that for all s0 � S0, there exists .d0; d1; d2/ 2 Ds0 such that the Equation (28) with initial
data at s D s0 given by vd0;d1;d2.y; s0/ (51), has a unique solution vd0;d1;d2.s/ defined for all
s � s0 such that

vd0;d1;d2.s/ 2 VA.s/; 8s � s0:

Let us first give the proof of Proposition 2.6, then the proof of Theorem 1 will be given
later. The proof of Proposition 2.6 follows from the general ideas developed in [30]. It is
divided in two parts:
– In the first part, we reduce the problem of the control v.s/ in VA.s/ to the control
of .v0; v1; v2/.s/, which are the components of v corresponding to the positive and null
modes given in expansion (42). That is, we reduce an infinite dimensional problem to a finite
dimensional one.
– In the second part, we solve the finite dimensional problem, using dynamics of .v0; v1; v2/.s/
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and a topological argument based on the variation of the finite dimensional parameters
.d0; d1; d2/ appearing in the expression (51) of initial data vd0;d1;d2.y; s0/.

Part I: Reduction to a finite dimensional problem. In this step, we first show through a priori
estimates that the control of v.s/ in VA.s/ reduces to the control of .v0; v1; v2/.s/ in OVA.s/. As
presented in [30] (see also [46], [27], [35], [34]), this step makes the heart of our contribution.
We mainly claim the following:

P 2.7 (Control of v.s/ by .v0; v1; v2/.s/ in OVA.s/). – There existA3 > 0 such
that for eachA � A3, there exists ı3.A/ > 0 such that for each s0 � ı3.A/, we have the following
properties:

if .d0; d1; d2/ is chosen so that .v0; v1; v2/.s0/ 2 OVA.s0/, and
if for all s 2 Œs0; s1�, v.s/ 2 VA.s/ and v.s1/ 2 @VA.s1/ for some s1 � s0, then

(i) (Reduction to a finite dimensional problem) .v0; v1; v2/.s1/ 2 @ OVA.s1/.
(ii) (Transversality) There exists �0 > 0 such that for all � 2 .0; �0/,

.v0; v1; v2/.s1 C �/ 62 OVA.s1 C �/ (hence, v.s1 C �/ 62 VA.s1 C �/).

Proof. – Since we would like to keep the proof of Proposition 2.6 short, we leave the proof
of Proposition 2.7 to the next subsection.

Part II: Topological argument for the finite dimensional problem. In the following proposi-
tion, we study the Cauchy problem for Equation (28).

P 2.8 (Local in time solution of Equation (28)). – For all A > 1, there
exists ı5.A/ such that for all s0 � ı5.A/, the following holds: For all .d0; d1; d2/ 2 Ds0 , there
exists smax.d0; d1; d2/ > s0 such that Equation (28) with initial data vd0;d1;d2.s0/ given in (51)
has a unique solution satisfying v.s/ 2 VAC1.s/ for all s 2 Œs0; smax/.

Proof. – Using the Definition (27) of v and the similarity variables transformation (2),
we see that the Cauchy problem of (28) is equivalent to the Cauchy problem of Equation (1).
Note that the initial data for (1) is derived from the initial data for (28) at s D s0 given
in (51), and it belongs to L1.R/, which insures the local existence of u in L1.R/ (see the
introduction). From part (iii) of Lemma 2.5, we have vd0;d1;d2.s0/ 2 VA.s0/ � VAC1.s0/.
Then there exists smax such that for all s 2 Œs0; smax/, we have v.s/ 2 VAC1.s/. This concludes
the proof of Proposition 2.8.

Let us now derive the conclusion of Proposition 2.6, assuming Proposition 2.7. Although
the derivation of the conclusion is the same as in [30], we would like to give details of the
proof for the reader’s convenience.

Proof of Proposition 2.6, assuming Proposition 2.7. – Let us take A � A1 and s0 � ı3,
where A1 and ı3 are given in Proposition 2.7. We will find a parameter .d0; d1; d2/ in the
set Ds0 defined in Lemma 2.5 such that

vd0;d1;d2.s/ 2 VA.s/; 8s 2 Œs0;C1/;

where vd0;d1;d2 is the solution to Equation (28) with initial data given in (51).
We proceed by contradiction. From (iii) of Lemma 2.5, this means that for all .d0; d1; d2/ 2 Ds0 ,

there exists s�.d0; d1; d2/ � s0 such that vd0;d1;d2.s/ 2 VA.s/ for all s 2 Œs0; s�� and
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vd0;d1;d2.s�/ 2 @VA.s�/. Applying item (i) in Proposition 2.7, we see that vd0;d1;d2.s�/ can
leave VA.s�/ only by its first three components, that is

.v0; v1; v2/.s�/ 2 @ OVA.s�/:

Therefore, we can define the following function:

ˆ W Ds0 7! @.Œ�1; 1� � Œ�1; 1�N �MN .Œ�1; 1�//

.d0; d1; d2/!

 
s
2C�
�

A
v0.s�/;

s
2C�
�

A
v1.s�/;

s
2C�
�

A2

�
v2.s�/C

A

s2�

�!
:

Since v.y; s/ is continuous in .d0; d1; d2; s/ (see Lemma 2.5 and Proposition 2.8), it follows
that .v0; v1; v2/.s/ is continuous with respect to .d0; d1; d2; s/ too. Then, using the transver-
sality property of .v0; v1; v2/ on @ OVA (part (ii) of Proposition 2.7), we see that s�.d0; d1; d2/ is
continuous. Therefore, ˆ is continuous.

If we manage to prove thatˆ is of degree one on the boundary, then we have a contradic-
tion from the degree theory. Let us prove that. From item (iii) in Lemma 2.5, we see that if
.d0; d1; d2/ is on the boundary of Ds0 , then

v.s0/ 2 VA.s0/ and .v0; v1; v2/.s0/ 2 @ OVA.s0/:

Using (ii) of Proposition 2.7, we see that v.s/ must leave VA.s/ at s D s0, hence s�.d0; d1; d2/ D s0

and ˆ.d0; d1; d2/ D

�
s
2C�
0

A
v0.s0/;

s
2C�
0

A
v1.s0/;

s
2C�
0

A2
.v2.s0/C

A

s2
0

/

�
. Using again (iii) of

Lemma 2.5, we see that the restriction of ˆ to the boundary is of degree 1. This gives us a
contradiction (by the index theory). Thus, there exists .d0; d1; d2/ 2 Ds0 such that for all
s � s0, vd0;d1;d2.s/ 2 VA.s/, which is the conclusion of Proposition 2.6.

Let us now derive Theorem 1 from Proposition 2.6, assuming Proposition 2.7.

Proof of Theorem 1 from Proposition 2.6, assuming Proposition 2.7
Applying Proposition 2.6 with s0 D S0, we derive the existence of vA .s/ 2 VA.s/ for all

s � S0. Let us introduce wA the solution of (3) such that

wA .y; s/ D Ow.y; s/C vA .y; s/;

then uA is the solution of Equation (1) such that

T ŒuA � D wA :

From the arguments given around (48) and (49), we have proved that wA satisfies (25) and
(26), hence uA satisfies (22) and (23). It remains to show that uA blows up only at the origin.
To this end, let us remark from (22) that

.TA � t /
1
p�1uA .0; t/ � f .0/ D �;

and
8x0 ¤ 0; .TA � t /

1
p�1uA .x0; t /! 0; as t ! TA :

From the classification result of Giga and Kohn [18], this implies that uA blows up only at
the origin. Hence, uA 2 B00;TA

with (17) satisfied. This concludes the proof of Theorem 1,
assuming Proposition 2.7 holds.
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2.4. Proof of Proposition 2.7.

We give in this subsection the proof of Proposition 2.7 in order to complete the proof of
Theorem 1. The proof follows the ideas of [30] and we proceed in three steps:

– Step 1: we give a priori estimates on v.s/ in VA.s/: assume that for given A > 0 large,
� > 0 and an initial time s0 � �2.A; �/ � 1, we have v.s/ 2 VA.s/ for each s 2 Œ�; �C��
where � � s0, then using the integral form (33) of v.s/, we derive new bounds on v�.s/
and ve.s/ for s 2 Œ�; � C ��.

– Step 2: we show that these new bounds are better than those defining VA.s/. It then
remains to control .v0; v1; v2/.s/. This means that the problem is reduced to the control
of a finite dimensional function .v0; v1; v2/.s/ and then we get the conclusion (i) of
Proposition 2.7.

– Step 3: we derive from (28) differential equations satisfied by .v0; v1; v2/.s/ to show its
transversality on @ OVA.s/, which yields the conclusion (ii) of Proposition 2.7.

Step 1: A priori estimates on v.s/ in VA.s/. Here, we prepare for the proof of item (i) in
Proposition 2.7, which follows if we show thatv�.y; s1/1C jyj3


L1
�

A

2s
2C�
1

and kve.s1/kL1 �
A2

2s
1=2C�
1

:

As in [7] and [30], we will make a priori estimate on the projections of the Duhamel formu-
lation (33), on the negative and exterior part of the solution. The influence of the kernel K

in this formula is very clear. Therefore, it is convenient to give the following result inspired
by Bricmont and Kupiainen [7] which gives the dynamics of the linear operator K :

L 2.9 (A priori estimates of the linearized operator in the decomposition (42))
For all � > 0, there exists �0 D �0.�/ such that if � � �0 � 1 and #.�/ satisfies

(52)
2X

mD0

j#m.�/j C

#�.y; �/1C jyj3


L1
C k#e.�/kL1 < C1;

then, �.s/ D K .s; �/#.�/ satisfies for all s 2 Œ�; � C ��, ��.y; s/1C jyj3


L1
�
Ces��

�
.s � �/2 C 1

�
s

�
j#0.�/j C j#1.�/j C

p
sj#2.�/j

�
C Ce�

.s��/
2

#�.y; �/1C jyj3


L1
C
Ce�.s��/

2

s3=2
k#e.�/kL1 ;(53)

k�e.s/kL1 � Ce
s��

 
2X
lD0

sl=2j#l .�/j C s
3=2

#�.y; �/1C jyj3


L1

!
C Ce�

.s��/
p k#e.�/kL1 :(54)

where C D C.�;K/ > 0 (K is given in (40)), #m; #�; #e and �m; ��; �e are defined by (41) and
(42).

R 2.10. – In view of Formula (33), we see that Lemma 2.9 will play an important role
in deriving the new bounds on the components of v.s/ and making our proof simpler. This means
that, given bounds on the components of v.�/; B.v.�//; R.�/, we directly apply Lemma 2.9 with
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K .s; �/ replaced by K .s; �/ and then integrate over � to obtain estimates on the components
of v.

R 2.11. – Note that the proof of this result was given by Bricmont and Kupiainen [7]
only when N D 1 for simplicity. Of course, their proof naturally extends to higher dimensions.
Since our paper is relevant only whenN � 2 (otherwise, Fermanian and Zaag proved the result
in [12] when N D 1), we felt we should give the proof of this lemma in higher dimensions for
the reader’s convenience.

Proof. – Let us mention that Lemma 2.9 relays mainly on the understanding of the
behavior of the kernel K .s; �/. The proof is essentially the same as in [7], but the estimates of
those paper did not present explicitly the dependence on all the components of #.�/ which
is less convenient for our analysis below. Because the proof is long and technical, we leave it
to Appendix C. As we wrote in the remark following Lemma 2.9, we give the proof for all
dimensions N � 1, noting that the proof of [7] is valid also in all dimensions, though the
authors give the proof only when N D 1 for simplicity.

We now assume that for some � > 0, for each s 2 Œ�; � C ��, we have v.s/ 2 VA.s/ with
� � s0. Applying Lemma 2.9, we get new bounds on all terms in the right hand side of (33),
and then on v. More precisely, we claim the following:

L 2.12. – There exists A2 > 0 such that for each A � A2, �� > 0, there exists
�2.A; �

�/ > 0 with the following property: for all s0 � �2.A; ��/, for all � � ��, assume that
for all s 2 Œ�; � C ��, v.s/ 2 VA.s/ with � � s0, then there exists C D C.��/ > 0 such that for
all s 2 Œ�; � C ��,
i) (linear term) #�.y; s/1C jyj3


L1
�

C

s2C�
C

C

s2C�

�
Ae�

s��
2 C A2e�.s��/

2
�
;

k#e.s/kL1 �
C

s1=2C�
C

C

s1=2C�

�
Aes�� C A2e�

s��
p

�
;

where

K .s; �/v.�/ D #.y; s/ D #0 C #1 � y C
1

2
yT #2 y � t r.#2/C #�.y; s/C #e.y; s/:

If � D s0, we assume in addition that .d0; d1; d2/ is chosen such that .v0; v1; v2/.s0/ 2 OVA.s0/.
Then we have for all s 2 Œs0; s0 C ��,#�.y; s/1C jyj3


L1
�

C

s2C�
; k#e.s/kL1 �

Ces�s0

s1=2C�
:

(ii) (remaining terms)ˇ�.y; s/1C jyj3


L1
�

C

s2C�
; kˇe.s/kL1 �

C

s1=2C�
;

where Z s

�

K .s; �/ ŒB.v.�//C ..�/ � ˛.�//v.�/� d�

D ˇ.y; s/ D ˇ0 C ˇ1 � y C
1

2
yTˇ2 y � t r.ˇ2/C ˇ�.y; s/C ˇe.y; s/:
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Proof. – (i) It immediately follows from the definition of VA.�/ and Lemma 2.9. For
part (ii), all what we need to do is to substitute the estimates on the components of B.v/
and

R.y; s/ D ..y; s/ � ˛.y; s//v.y; s/

in Lemma B.2 and Lemma B.3 into Lemma 2.9, integrating over Œ�; s� with respect to � ,
and taking �2.A; ��/ large enough, we then have the conclusion. This ends the proof of
Lemma 2.12.

Step 2: Deriving conclusion (i) of Proposition 2.7. – This step is not new and follows also
[30] and [7]. We give it for the reader’s convenience and for the sake of completeness. Here
we use Lemma 2.12 in order to derive the conclusion of (i) of Proposition 2.7. Indeed, from

Equation (33) and Lemma 2.12, we derive new bounds on
 v�.y;s/
1Cjyj3


L1

and kve.s/kL1 ,

assuming that for all s 2 Œ�; � C ��, v.s/ 2 VA.s/, for � � �� and � � s0 � �1.A; �
�/

(�1 is given in Lemma 2.12). The key estimate is to show that for s D �C� (or s 2 Œ�; �C��
if � D s0), these bounds are better than those defining VA.s/, provided that � � ��.A/. More
precisely, we claim the following proposition, which directly yields item (i) of Proposition 2.7:

P 2.13 (Control of v.s/ by .v0; v1; v2/.s/ in OVA.s/). – There exists A4 > 1

such that for each A � A4, there exists ı4.A/ > 0 such that for each s0 � ı4.A/, we have
the following properties:

if .d0; d1; d2/ is chosen so that .v0; v1; v2/.s0/ 2 OVA.s0/, and
if for all s 2 Œs0; s1�, v.s/ 2 VA.s/ for some s1 � s0, then: for all s 2 Œs0; s1�,

(55)

 v�.y; s/1C jyj3


L1
�

A

2s2C�
; kve.s/kL1 �

A2

2s1=2C�
:

Indeed, if v.s1/ 2 @VA.s1/, then v0.s1/; v1.s1/; v2.s1//must be in @ OVA.s1/ from the definition
of VA.s/ and (55). This concludes part (i) of Proposition 2.7, assuming Proposition 2.13
holds.

Let us now give the proof of Proposition 2.13 in order to conclude the proof of part (i) of
Proposition 2.7.

Proof of Proposition 2.13. – Note that the conclusion of this proposition is very similar
to Proposition 3.7, pages 157 in [30]. But for the reader’s convenience, we give here their
argument.

Let �1 � �2 be two positive numbers which will be fixed in term of A later. It is enough
to show that (55) holds in two cases: s � s0 � �1 and s � s0 � �2. In both cases, we use
Lemma 2.12 and suppose A � A2 > 0, s0 � maxf�2.A; �1/; �2.A; �2/; �6.A/; 1g.

Case s � s0 � �1: Since we have for all � 2 Œs0; s�, v.�/ 2 VA.�/, we apply Lemma 2.12 with
A and �� D �1, and � D s � s0. From (33) and Lemma 2.12, we have v�.y; s/1C jyj3


L1
�

C

s2C�
; kve.s/kL1 �

Ce�1

s1=2C�
:

If we fix �1 D 3
2

logA and A large enough, then (55) satisfies.
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Case s � s0 � �2: Since we have for all � 2 Œ�; s�, v.�/ 2 VA.�/, we apply Lemma 2.12 with
A, � D �� D �2, � D s � �2. From (33) and Lemma 2.12, we have v�.y; s/1C jyj3


L1
�

C

s2C�

�
1C Ae�

�2
2 C A2e��

2
2

�
;

kve.s/kL1 �
C

s1=2C�

�
1C Ae�2 C A2e�

�2
p

�
:

To obtain (55), it is enough to have A � 4C and

C

�
Ae�

�2
2 C A2e��

2
2

�
�
A

4
;

C

�
Ae�2 C A2e�

�2
p

�
�
A2

4
:

If we fix �2 D log.A=8C/ and take A large enough, we then have the conclusion. This
completes the proof of Proposition 2.13 and part (i) of Proposition 2.7 too.

Step 3: Deriving conclusion (ii) of Proposition 2.7. – We give the proof of item (ii) of Propo-
sition 2.7 in this step. We aim at proving that when .v0.s/; v1.s/; v2.s// touches @ OVA.s/
at s D s1, it actually leaves OVA at s1 for s1 � s0 where s0 will be large enough. In fact, this is
a direct consequence of the following lemma:

L 2.14 (ODE satisfied by the expanding modes). – For all A > 0, there exists
�6.A/ such that for all s � �6.A/, v.s/ 2 VA.s/ implies thatˇ̌

v00.s/ � v0.s/
ˇ̌
�
C

s3
;(56)

8i 2 f1; : : : ; N g;

ˇ̌̌̌
v01;i �

1

2
v1;i .s/

ˇ̌̌̌
�
C

s3
;(57)

8i; j 2 f1; : : : ; N g;

ˇ̌̌̌
h0ij .s/C

2

s
hij .s/

ˇ̌̌̌
�

CA

s3C�
;(58)

where h.s/ D v2.s/ � A
s2

.

R 2.15. – In comparison with [30], we have a new estimate, namely (58), which will
be used to prove the outgoing transverse crossing property on v2;ij .

Let us first derive the conclusion (ii) of Proposition 2.7 from Lemma 2.14, then we will
prove it later. From item (i) of Proposition 2.7, we know that

(59) v0.s1/ D
"A

s
2C�
1

; v1;i .s1/ D
"A

s
2C�
1

or hij .s1/ D
"A2

s
2C�
1

;

for some " 2 f�1; 1g and i; j 2 f1; : : : ; N g. In order to show that .v0.s/; v1.s/; v2.s//
leaves OVA.s/ at s1 for s1 � s0, it is enough to show that if (59) holds, then (respectively)

(60) "
d

ds
v0.s1/ >

d

ds

�
A

s2C�

�
.s1/; "

d

ds
v1;i .s1/ >

d

ds

�
A

s2C�

�
.s1/;

or

(61) "
d

ds
hij .s1/ >

d

ds

�
A2

s2C�

�
.s1/:
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If v0.s1/ or v1;i .s1/ touches the boundary of the interval, say for example, when v1;i .s1/ D
A2

s
2C�
1

, then we write from (57),

v01;i .s1/ �
1

2
v1;i .s1/ �

C

s31
�
A=2 � C

s
2C�
1

� 0 > �
.2C �/A

s
3C�
1

D
d

ds

�
A

s2C�

�
.s1/;

provided that A � 2C . Now, if hij .s1/ D A2

s
2C�
1

, then we write from (58)

h0ij .s1/ � �
2

s1
hij .s1/ �

CA

s
3C�
1

D �
2A2

s
3C�
1

�
CA

s
3C�
1

> �
.2C �/A2

s
3C�
1

D
d

ds

�
A2

s2C�

�
.s1/;

provided that A � 2C
�

. All the other cases follow similarly. This concludes part (ii) of
Proposition 2.7, assuming Lemma 2.14 holds.

Let us now give the proof of Lemma 2.14 to complete the proof of Proposition (2.7).

Proof of Lemma 2.14. – Estimates (56), (57) and (58) follow in the same way, though
(58) is more delicate. Therefore, we only prove (58), and refer the interested reader to [30]
(precisely in page 158-159) where a proof similar to the proof of (56) and (57) can be found.
In order to prove (58), we considerA > 0 and s > 0which will be taken large in the following
and assume that v.s/ 2 VA.s/.

Let us recall from (28) the equation satisfied by v,

(62) @sv D . L C ˛.y; s//v C B.v/C ..y; s/ � ˛.y; s//v:

Note that we have no rest term in Equation (62), since we linearize here around a solution of
(3), namely Ow, unlike the equation of [30] where the authors linearize Equation (3) around

f
�
y
p
s

�
, which only an approximate solution of (3). This absence of rest term in our setting is

the key to (58), which should be viewed as a refined version of the equation satisfied by v2;ij
in [30] reading as ˇ̌̌̌

v02;ij .s/C
2

s
v2;ij

ˇ̌̌̌
�
C

s3
;

(to derive this equation, the reader should repeat steps at pages 158-159 in [30] withm D 2).
Accordingly, we claim that estimate (58) directly follows from the following inequality:

(63) 8i; j 2 f1; : : : ; N g;

ˇ̌̌̌
v02;ij .s/C

2

s
v2;ij .s/

ˇ̌̌̌
�

CA

s3C�
:

Indeed, since v2.s/ D h.s/C
A
s2

, we directly obtain (58) by a simple substitution.
Let us now focus on the derivation of (63). We multiply Equation (62) by �.y; s/M .y/�.y/,

where � and M is introduced in (35) and (45), to get

(64)
Z
RN

vs�M �dy D

Z
RN

�
Lv C ˛v C B.v/C . � ˛/v

�
�M �dy:

Arguing as in [30] (see page 158), we derive for s large

(65)

ˇ̌̌̌Z
RN

vs�M �dy �
dv2

ds

ˇ̌̌̌
C

ˇ̌̌̌Z
RN

Lv�M �dy

ˇ̌̌̌
� Ce�s :
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Recall from Lemma B.2 that j�.y; s/B.v.y; s//j � C jv.y; s/j2. Hence,ˇ̌̌̌Z
RN

B.v/�M �dy

ˇ̌̌̌
� C

Z
RN
jvj2.1C jyj2/�dy:

Since v.s/ 2 VA.s/, we have by Definition 2.2,

(66) 8y 2 RN ; jv.y; s/j �
C

s2
.1C jyj3/;

Hence

(67)

ˇ̌̌̌Z
RN

B.v/�M �dy

ˇ̌̌̌
�
C

s4

Z
RN
.1C jyj8/�dy �

C

s4
:

From the proof of Lemma B.3, we know that

8y 2 RN ; j..y; s/ � ˛.y; s//�.y; s/j �
C log s
s2

.1C jyj3/:

This estimate together with (66) yields

(68)

ˇ̌̌̌Z
RN
. � ˛/v�M �dy

ˇ̌̌̌
�
C log s
s4

Z
RN
.1C jyj8/�dy �

C log s
s4

:

From Lemma B.1, we writeZ
RN

˛v�M �dy D �
1

4s

Z
RN
.jyj2 � 2N/v�M �dy C

Z
RN
Q̨v�M �dy;

where

j Q̨ .y; s/j �
C

s2
.jyj4 C 1/; 8y 2 RN :

Using this estimate together with (66), we deriveˇ̌̌̌Z
RN
Q̨v�M �dy

ˇ̌̌̌
�
C

s4

Z
RN
.1C jyj7/�dy �

C

s4
:

It remains to estimate

R.s/ D �
1

4s

Z
RN
.jyj2 � 2N/v�M �dy D �

1

4s

Z
RN

 
NX
kD1

�2.yk/

!
v�M �dy;

where �2 is defined in (37).
Since v.y; s/�.y; s/ D vb.y; s/ D

PC1
`D0 P`.vb/.y; s/ from (41) and (42), we get

R.s/ D �
1

4s

NX
kD1

C1X
`D0

Z
RN

P`.vb/.y; s/�2.yk/M .y/�.y/dy:

Note that for ` � 5 and for all k 2 f1; : : : ; N g,Z
RN

P`vb.y; s/M ij .y/�2.yk/�.y/dy D 0

because of the orthogonality relation (38). Therefore,

R.s/ D �
1

4s

NX
kD1

4X
`D0

Z
RN

P`.vb/.y; s/�2.yk/M .y/�.y/dy:
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By straightforward computations, we obtain for ` D 2,

NX
kD1

Z
RN

P2.vb/.y; s/�2.yk/M .y/�.y/dy D 8v2.s/:

For ` D 0; 1; 3; 4, we see from Definition 2.2 that since v.s/ 2 VA.s/, then jv0.s/jC jv1.s/jC
jv3.s/j C jv4.s/j �

CA
s2C�

; hence,
ˇ̌R

RN P`.vb/.y; s/�2.yk/M .y/�.y/dy
ˇ̌
�

CA
s2C�

. Thus,

(69)

ˇ̌̌̌
R.s/C

2

s
v2.s/

ˇ̌̌̌
�

CA

s3C�
:

Substituting estimates (65), (67), (68) and (69) into (64), we obtain (63). This concludes the
proof of Lemma 2.14 and Proposition 2.7 as well.

3. Uniform boundedness up to blow-up of the difference between a solution
having the stable profile and a particular constructed solution

This section is devoted to the proof of Theorem 2 and Corollary 1.5. Clearly, Corollary 1.5
directly follows form Theorem 2. Therefore, we only prove Theorem 2. Our approach is
identical to what done in [12]. Therefore, we shall refer to [12] for most of the details and
only sketch the main steps of the proof.

Proof of Theorem 2. – Consider u in B0;T (B0;T has been introduced in Definition 1.1)
and Ou in B00;T is the given radially symmetric and decreasing solution to Equation (1).
We aim at choosing a particular matrix A 2MN .R/ such that the difference
.T � t /

1
p�1 ju.x; t/ � NuA .x; t/j reaches significantly small error terms of order .T � t /�

for some � > 0, where NuA .x; t/ D uA .x; t C TA � T / 2 B00;T and uA .x; t/ 2 B00;TA
is

the solution to Equation (1) constructed in Theorem 1. The proof will be done through the
similarity variables setting (2) and we proceed in three steps:

– Step 1: We work in the L2� space and show that up to a particular choice of A

in MN .R/, the difference .T Œu�.y; s/�T Œ NuA �.y; s// in L2� goes to zero exponentially.
This yields an estimate on the difference uniformly for y in compact sets and complete
the proof of item (i) in Theorem 2.

– Step 2: We extend the previous convergence from compact sets to larger sets jyj �
K
p
s, i.e., the blow-up region where jxj � K

p
.T � t /j log.T � t /j after the transfor-

mation (2), thanks to the transport effect of the term�1
2
y �r in the Definition (4) of L .

– Step 3: We use the information on the edge of the blow-up region, i.e., when jxj D
K
p
.T � t /j log.T � t /j as initial data to solve the ODE u0 D up, which gives estimates

in the outer region where "0 � jxj � K
p
.T � t /j log.T � t /j for some "0 > 0, thanks

to a uniform ODE comparison result for Equation (1). Then, gathering the previous
information, we obtain the conclusion of Theorem 2.
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Step 1: Exponential decay inL2� of .T Œu��T Œ NuA �/. – We prove item (i) in Theorem 2 here.
Since the formulation is the same as the one done in [12], we therefore follow in extent the
strategy of [12] and focus on the novelties. The general idea is that we first find an equivalent
of the difference .T Œu� � T Œ Ou�/ in L2� through the dynamics of the linearized operator L

defined in (4), which yields the fact that the mode of the eigenvalue 1 � k0
2

of L for some
k0 � 2 is dominant. Then, we replace Ou by NuA with a particular choice of A such that the
case when the null mode (k0 D 2) is dominant is excluded, hence a negative mode (k0 � 3)
is dominant which yields the exponential decay of the difference in L2�. More precisely, we
claim the following proposition:

P 3.1 (Exponent decay of the difference in L2�). – Consider u 2 B0;T and
Ou 2 B00;T , where Ou is the given radially symmetric and decreasing solution to Equation (1),
then, there exists a matrix A 2MN .R/ such that

kT Œu�.s/ �T Œ NuA �.s/kL2�.RN / D O

 
e�s=2

s3

!
as s !C1:(70)

where

NuA .x; t/ D uA .x; t C TA � T /(71)

and uA .x; t/ 2 B00;TA
is the solution to (1) constructed in Theorem 1.

Proof. – Applying Proposition A.1 to u and Ou, we have
– either there is a matrix A .u; Ou/ 2MN .R/, A .u; Ou/ ¤ 0 such that

(72) T Œu�.y; s/�T Œ Ou�.y; s/ D
1

s2

�
1

2
yT Ay � t r.A /

�
Co

�
1

s2

�
in L2� as s !C1;

– or there is a constant C > 0 such that for s large,

(73) kT Œu�.s/ �T Œ Ou�.s/kL2� �
Ce�s=2

s3
:

Applying Theorem 1 with A D A .u; Ou/, we get the existence of a solution uA 2 B00;TA
to

Equation (1) such that
(74)

T ŒuA �.y; s/ �T Œ Ou�.y; s/ D
1

s2

�
1

2
yT Ay � t r.A /

�
C o

�
1

s2

�
in L2� as s !C1:

Note that (74) is also true when replacing uA by NuA defined in (71) by the translation
invariance of Equation (1). Thus, we directly obtain from (74) and (72),

(75) T Œu�.y; s/ �T Œ NuA �.y; s/ D o

�
1

s2

�
in L2� as s !C1:

Since NuA 2 B0;T , an alternative application of Proposition A.1 to u and NuA also yields
(72) and (73) with T Œ Ou� replaced by T Œ NuA �. However, the case (72) is excluded by (75). This
concludes the proof of Proposition 3.1.

Standard parabolic regularity estimates show that (70) also holds in L1.jyj � R/ for any
R > 0, this concludes the proof of item (i) in Theorem 2.
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Step 2: L1 estimate in the blow-up region jyj � K
p
s. – In this step, we use the L2� estimate

on the difference .T Œu� � T Œ NuA �/ given in Proposition 3.1 to extend the uniform estimate
of the difference on compact sets jyj � K to larger sets jyj � K

p
j log.T � t /j.T � t /.

Our technique is the same as in [12] where the authors followed the ideas of [32] and [41]
to estimate the effect of the convective term �y

2
� r in Lq� spaces with q > 1. Therefore, we

only sketch the proof and refer to [12] for details. We claim the following proposition:

P 3.2 (L1 estimate of the difference in the blow-up region)

For all K > 0, there exist s00.A / 2 R and C D C.K/ > 0, such that

(i) For all s � s00 and for all jyj � K
p
s,

jT Œu�.y; s/ �T Œ NuA �.y; s/j � C
e�s=2

s3=2
:

(ii) For all t 2
h
T � e�s

0
0 ; T

�
and for all x 2 B.0;K

p
j log.T � t /j.T � t //,

ju.x; t/ � NuA .x; t/j � C.K/
.T � t /

1
2�

1
p�1

j log.T � t /j3=2
:

Proof. – Part (ii) immediately follows from part (i) by the transformation (2). As for
part (i), we introduce

gA .y; s/ D T Œu�.y; s/ �T Œ NuA �.y; s/;

then, we see from (3) that gA (or g for simplicity) solves the following equation:

(76) @sg D �g �
y

2
� rg C .1C �.y; s//g; 8.y; s/ 2 RN � ŒOs;C1/;

where Os D maxf� logT;� logTA g and

(77) �.y; s/ D
jT Œu�jp�1T Œu� � jT Œ NuA �j

p�1T Œ NuA �

T Œu� �T Œ NuA �
�

p

p � 1
:

We claim that the conclusion (i) is a direct consequence of the following lemma:

L 3.3 (Extension of the convergence from compact sets to sets jyj � K
p
s)

Consider g a solution to (76) and assume that �.y; s/ � M
s

and jg.y; s/j � M for all

.y; s/ 2 RN � ŒOs;C1/. Then, for all s0 � Os and s � s0 C 1 such that e
s�s0

2 D K
p
s, we

have
sup

jyj�K4
p
s

jg.y; s/j � C.M;K/es�s
0

kg.s0/kL2� :

Proof. – Lemma 3.3 is a corollary of Proposition 2.1 in [41]. It is proved in the course
of the proof of Proposition 2.13 in [41]. The reader also find its proof in [12], pages 1204-
1205.

Since T Œu� and T Œ NuA � are bounded, then kg.s/kL1 � M . To show that �.y; s/ � M
s

,
we note from the Definition (77) of � that in general, if u ¤ NuA , then

�.y; s/ D pj Nw.y; s/jp�1 �
p

p � 1
; for some Nw 2 .T Œu�;T Œ NuA �/:
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The use of Proposition A.3 yields

�.y; s/ � p

�
� C

C

s

�p�1
� p�p�1 �

M

s
:

Therefore, Lemma 3.3 and Proposition 3.1 yield for all jyj � K
p
s and s � s00,

sup
jyj�K4

p
s

jg.y; s/j � Ces�s�
e�s�=2

s3�
;

where e
s�s�
2 D K

p
s. Since s� D s � log.K2s/ � s as s !C1, conclusion (i) follows. This

ends the proof of Proposition 3.2.

Step 3: Estimates in the original variables .x; t/ and conclusion. – In this step, we use the
uniform bound on u� NuA in the region f.x; t/; jxj � K

p
j log.T � t /j.T � t /g derived in the

previous step and a uniform ODE comparison result in order to extend this bound to the
region where "0 � jxj � K

p
j log.T � t /j.T � t / for some "0 > 0. For sake of completeness,

we recall their result below and kindly refer the reader to [12] for the details of the proof.

P 3.4 (Estimates in the intermediate region). – There exists "0 > 0 such that
for all x 2 B.0; ı/ and t 2 Œ0; T /, if K

p
j log.T � t /j.T � t / � jxj � "0, then

ju.x; t/ � NuA .x; t/j � C.T � Qt /
1
2�

1
p�1 j log.T � Qt /j�

3
2

� C jxj1�
2
p�1 j log jxjj�

�
2� 1

p�1

�
;

where Qt D Qt .jxj/ is defined by

jxj D K

q
j log.T � Qt /j.T � Qt /:

Proof. – See pages 1207-1208 in [12].

Thus, we have from Propositions 3.2 and 3.4,

– if jxj � K
p
j log.T � t /j.T � t /, then

ju.x; t/ � uA .x; t C TA � T /j � C.K/.T � t /
1
2�

1
p�1 j log.T � t /j�

3
2 ;

– if "0 � jxj � K
p
j log.T � t /j.T � t /, then

ju.x; t/ � uA .x; t C TA � T /j � C.K/jxj
1� 2

p�1 j log jxjj�
�
2� 1

p�1

�
;

which follows estimates (18). This concludes the proof of Theorem 2 and Corollary 1.5 as
well.

Appendix A

Some general results on blow-up solutions to Equation (1).

In this section, we recall some earlier results and techniques concerning blow-up solutions
of Equation (1).
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A.1. Existence of symmetric and radially decreasing solutions to Equation (1) in B00;T .

We give in this appendix the existence of radially symmetric and decreasing solutions to
Equation (1) in B00;T . Let us recall the following result from Bricmont and Kupiainen [7] and
Merle and Zaag [30]:

There exists T0 > 0 such that for each T 2 .0; T0�, there exists .d0; d1/ 2 R � RN such that
Equation (1) with initial data

(78) u0.x/ D T
� 1
p�1

8<:f .�/
0@1C d0 C d1 � �

p � 1C .p�1/2

4p
j�j2

1A9=; ; � D
xp

T j logT j
;

where f is defined in (9), has a unique solution u 2 B00;T . Moreover, there exists A > 0 such
that

(79) T Œu�.s/ � '.s/ 2 QVA.s/; 8s � � logT;

where '.y; s/ D f
�
y
p
s

�
C

N�
2ps

and QVA.s/ is the set of all functions r in L1.RN / such that

(80)
jrm.s/j � As

�2 m D 0; 1; jr2.s/j � A
2s�2 log.s/;

jr�.y; s/j � As
�2.1C jyj3/; jre.y; s/j � A

2s�1=2;

where r is expanded as in (42).

Note that even though the expansion (42) was introduced for functions of both variables y
and s, it naturally extends to functions of only the variable y, as we explain in Remark 2.1
right after Equation (45).

In view of (78), if we take d1 D 0, then the initial data u0.x/ in (78) is radially symmetric
and decreasing, hence the corresponding solution, say u.d0/, has the same symmetry. In fact,
the argument of [7] and [30] works with only one variable d0, and we get a different version of
the result in the setting of radially decreasing solutions, yielding a particular value d0 D Od0
such that the corresponding solution u. Od0/ D Ou satisfies (79). In particular, Ou 2 B 00;T . Note
that the result of [7] is true for all N � 1 and p > 1, since the authors in [7] work in the L1

space, although the proof in [7] is given only forN D 1 for simplicity. Thus, the existence of a
radially symmetric and decreasing solution Ou 2 B00;T with (79) satisfied is true for all N � 1
and p > 1.

A.2. A classification result of the difference of two solutions in B0;T .

In this appendix, we recall the classification result of [12] mentioned in page 1244 of the
introduction. Let us recall their result in the following proposition:

P A.1 (Classification of the difference of two solutions in B0;T )

Consider ui 2 B0;T , i D 1; 2, then, two cases arise:
Either there is a matrix A D A .u1; u2/ 2MN .R/ ( A ¤ 0) such that

(81)

T Œu1�.y; s/ �T Œu2�.y; s/ D
1

s2

�
1

2
yT Ay � t r.A /

�
C o

�
1

s2

�
in L2�; as s !C1:
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Or there is a constant C > 0 such that for s large,

(82) kT Œu1�.s/ �T Œu2�.s/kL2� �
Ce�s=2

s3
:

Proof. – Let us define

g.y; s/ D T Œu1�.y; s/ �T Œu2�.y; s/

and denote
I.s/ D kg.s/kL2� ; `k.s/ D kPk.g/.s/kL2� ;

where Pk is defined as in (43). Then, we have the following:

L A.2 (Existence of a dominant component). – For s large enough, we have
(a) For k 2 f0; 1g, `k.s/ D O

�
I.s/
s

�
:

(b) Only two cases may occur:

(i) There exists k0 2 N, k0 62 f0; 1g so that I.s/ � `k0.s/ and

8k ¤ k0; `k.s/ D O

�
`k0.s/

s

�
:

Moreover, there exist two positive constants c and C such that

.csc/�1e

�
1�

k0
2

�
s
� I.s/ � CsC e

�
1�

k0
2

�
s
:

(ii) For all k 2 N, `k.s/ D O
�
I.s/
s

�
and there exists Ck > 0 such that

I.s/ D O
�
sCke.1�

k
2 /s
�
:

Proof. – See Proposition 2.6 in [12].

Let us give the proof of Proposition A.1 from Lemma A.2. We first observe that if case (i)
occurs with k0 � 4 or case (ii) occurs, then we immediately obtain (82). It remains to
examine what happens if (i) occurs with k0 D 2; 3. In particular, we have the following (see
Proposition 2.9 in [12]):

– If I.s/ � `2.s/, we have

8ˇ 2 NN ; jˇj D 2; g0ˇ .s/ D �
2

s
gˇ C O

�
I.s/

s3=2

�
;

where gˇ is defined in (36) (see page 1200 in [12] where a similar calculation was given for the
case jˇj D 3). From Definition (20) and (6), we note that I.s/ � C log s

s2
, hence,

8ˇ 2 NN ; jˇj D 2; gˇ .s/ D
cˇ

s2
C o

�
1

s2

�
for some cˇ 2 R:

By definition, this yields (81).
– If I.s/ � `3.s/, we have

8ˇ 2 NN ; jˇj D 3; g0ˇ .s/ D �

�
1

2
C
3

s

�
gˇ .s/C O

�
I.s/

s3=2

�
;

which implies (82). This concludes the proof of Proposition A.1.
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A.3. Uniform L1 estimates.

We recall here the refinedL1 estimates for solutions to Equation (1) at blow-up from [32]
and [33].

P A.3 (L1 estimates for solution to (1) at blow-up)
There exist positive constants C1, C2 and C3 such that if u is a solution to (1) which blows

up in some finite time T at point x D 0, then for all " > 0, there exists s1."/ such that for all
s � s1."/

(83) kT Œu�.s/kL1 � � C
1

s

�
N�

2p
C "

�
and kr

iT Œu�.s/kL1 �
Ci

si=2
;

for i D 1; 2; 3, where T Œu� is defined in (2).

Proof. – The proof of this proposition can be found in [32] and [33].

Appendix B

A toolbox for the construction proof.

In this section, we prove some elementary estimates needed for the proof of Theorem 1.
The following lemma gives some elementary estimates for the potential ˛ given in Equa-
tion (28):

L B.1 (Estimates for the potential ˛). – There exist a constant C > 0 and s1 > 0

such that for all y 2 RN and s � s1,

i) ˛.y; s/ � C
s
; j˛.y; s/j � C

s
.jyj2 C 1/;

ˇ̌
˛.y; s/C 1

4s
.jyj2 � 2N/

ˇ̌
�

C
s2
.jyj4 C 1/:

ii)
ˇ̌
ri˛.y; s/

ˇ̌
�

C

si=2
; i D 0; 1; 2:

Proof. – i) From the Definition (31) of ˛, we get

˛.y; s/ � p.'.0; s/p�1 � �p�1/ �
C

s
;

which yields the first estimate. For the next estimates, we introduce

W.Z; s/ D ˛.y; s/ with Z D
jyj2

s
:

Taylor expansion of W.Z; s/ near Z D 0 yields

W.Z; s/ D W.0; s/CZ
@W

@Z
.0; s/C O.Z2/;

whereW.0; s/ D N
2s
C O

�
1
s2

�
and @W

@Z
.0; s/ D �1

4
C O

�
1
s

�
. Returning to ˛ yields the last two

estimate for Z small. Since ˛ is bounded, the result for Z large is trivial.
ii) By introducing OW .z; s/ D ˛.y; s/ with z D y

p
s
, it is enough to bound jri OW .z; s/j

for i D 1; 2 which follows easily from the following key estimates

rf .z/ D
�2bz

.p � 1/
f p.z/ and jf j � j'j with b D

.p � 1/2

4p
:

This ends the proof of Lemma B.1.
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The following lemmas give estimates on the components of the nonlinear term and the
corrective term in Equation (28).

L B.2 ((Estimates for B.v/)). – For all A > 1, there exists �3.A/ such that for all
� � �3.A/, v.�/ 2 VA.�/ implies

m D 0; 1; 2; jBm.�/j �
C

�4
;

B�.y; �/1C jyj3


L1
�

CA4

�5=2C2�
; kBe.�/kL1 �

CA2p
0

� .1=2C�/p
0
;

where p0 D minfp; 2g.

Proof. – The proof follows directly from the definition of VA and the fact that

j�.y; �/B.v.y; �/j � C jv.y; �/j2; jB.v.y; �//j � C jv.y; �/jp
0

with p0 D minfp; 2g (see Lemma 3.15 in [30] for a similar proof of this fact). Indeed,
v.�/ 2 VA.�/ implies

8y 2 RN ; jv.y; �/j �
CA2

�2C�
.1C jy3j/C

kAk

�2
.1C jyj2/:

By definition of Bm.�/, we see that for m D 0; 1; 2,

8ˇ 2 NN ; jˇj D m; jBˇ .�/j D
1

k�ˇ .y/k
2

L2�

ˇ̌̌̌Z
RN

�ˇ .y/B.v.y; �//�.y; �/�.y/dy

ˇ̌̌̌
� C

�
A4

�4C2�
C
kAk2

�4

�
�
C

�4
;

for � sufficient large. This yields the estimates for Bm.�/, m D 0; 1; 2.
As for B�.�/, we write

j�.y; �/B.v.y; �/j � C jv.y; �/j2

� C

 
2X

mD0

jvm.�/j
2.1C jyj2/2 C jv�.y; �/j

2
C jve.y; �/j

2

!
� C

�
A4

�4C2�
.1C jyj6/C

kAk2

�4
.1C jyj4/

�
1fjyj�2Kpsg C

A4

�1C2�
1fjyj�Kpsg

� C

�
A4

�5=2C2�
C
kAk2

�7=2

�
.1C jyj3/

�
CA4

�5=2C2�
.1C jyj3/;

where 1X is the characteristic function of a set X .
Hence,

jB�.y; �/j � j�.y; �/B.v.y; �/j C

2X
mD0

jBm.�/j.jyj
2
C 1/ �

CA4

�5=2C2�
.1C jyj3/:

Since jB.v/j � C jvjp
0

, we have

kBe.�/kL1 � kB.�/kL1 � Ckv.�/k
p0

L1 �
CA2p

0

� .1=2C�/p
0
:

This concludes the proof of Lemma B.2.
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L B.3 (Estimates for . � ˛/v). – For all A > 1, there exists �4.A/ > 0 such that
for all � � �4, v.�/ 2 VA.�/ implies

m D 0; 1; 2; jRm.�/j �
C log �
�4

;

R�.y; �/1C jyj3


L1
�
C log �
�5=2

; kRe.�/kL1 �
CA2

�1=2C�

�
1
p
�

� Np
;

where R.y; s/ D ..y; s/ � ˛.y; s//v.y; s/ and Np D minfp � 1; 1g.

Proof. – The proof is similar to the proof of Lemma B.2. One can remark from the
definition of  and ˛ given in (31) and (29) (respectively) that

j..y; s/ � ˛.y; s//�.y; s/j � C j Ow.y; s/ � '.y; s/j;

and
j..y; s/ � ˛.y; s//j � C j Ow.y; s/ � '.y; s/j Np;

where Np D minfp � 1; 1g.
Note from Appendix A.1 that Ow.s/ � '.s/ 2 QVA.s/ which gives

8y 2 RN ; j Ow.y; s/ � '.y; s/j �
C log s
s2

.1C jyj3/;

and

k Ow.s/ � '.s/kL1 �
C
p
s
;

for s large enough. Using these estimates together with the definition of VA.s/ yields the
results. This concludes the proof of Lemma B.3.

Appendix C

Proof of Lemma 2.9.

In this appendix, we give the proof of Lemma 2.9. The proof follows from the techniques
of Bricmont and Kupiainen [7] with some additional care, since we give the explicit depen-
dence of the bounds in terms of all the components of initial data. As mentioned earlier, the
proof relies mainly on the understanding of the behavior of the kernel K .s; �; y; x/ (see (34)).
This behavior follows from a perturbation method around e.s��/ L .y; s/, where the kernel
of et L is given by Mehler’s formula:

(84) et L .y; x/ D
et

.4�.1 � e�t //
N
2

exp

"
�
jye�

t
2 � xj2

4.1 � e�t /

#
:

By Definition (34) of K , we use a Feynman-Kac representation for K :

(85) K .s; �; y; x/ D e.s��/ L .y; x/

Z
d�s��yx .!/e

R s��
0 ˛.!.�/;�C�/d� ;

where d�s��yx is the oscillator measure on the continuous paths ! W Œ0; s � �� ! RN with
!.0/ D x, !.s � �/ D y, i.e., the Gaussian probability measure with covariance kernel

�.�; � 0/ D !0.�/!0.�
0/

C 2
�
e�

1
2 j���

0j
� e�

1
2 j�C�

0j
C e�

1
2 j2.s��/C���

0j
� e�

1
2 j2.s��/����

0j
�
;(86)
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which yields
R
d�s��yx .!/!.�/ D !0.�/, with

!0.�/ D .sinh..s � �/=2//�1
�
y sinh.

�

2
/C x sinh.

s � � � �

2
/
�
:

In view of (85), we can consider the expression for K as a perturbation of e.s��/ L . Since
our potential ˛ defined in (31) is the same as in [7], we recall some basic properties of the
kernel K in the following lemma:

L C.1. – For all s � � � maxfs1; 1g with s � 2� and s1 given in Lemma B.1, for all
.y; x/ 2 RN , we have

a) jK .s; �; y; x/j � Ce.s��/ L .y; x/.
b) K .s; �; y; x/ D e.s��/ L .y; x/ .1C P2.y; x/C P4.y; x//, where

jP2.y; x/j �
C.s � �/

s
.1C jyj C jxj/2;

and jP4.y; x/j �
C.s � �/.1C s � �/

s2
.1C jyj C jxj/4:

c) kK .s; �/.1 � �/kL1 � Ce
�
.s��/
p .

Proof. – a/From the Definition (85) of K and the fact that˛.y; s/ � C
s

(see Lemma B.1),
we have

jK .s; �; y; x/j � e.s��/ L .y; x/

Z
d�s��yx .!/e

R s��
0 C.�C�/�1d�

� Ce.s��/ L .y; x/

Z
d�s��yx .!/ � Ce

.s��/ L .y; x/;

since s � 2� and d�s��yx is a probability.

For parts b/ and c/, the reader will find its proof in [7] (see Lemmas 5 and 7). Although
those proofs are written in the one-dimensional case, but they also hold in higher dimensional
cases.

Before going to the proof of Lemma 2.9, we would like to state some basic estimates which
will be frequently used in the proof.

L C.2. – For K large enough, we have the following estimates:
a) For any polynomial P ,

(87)
Z
P.y/1fjyj�Kpsg�.y/dy � C.P /e

�s :

b) Let r � 0 and jf .x/j � .1C jxj/r , then

(88) j.et Lf /.y/j � Cet .1C e�
t
2 jyj/r ;

Proof. – a/ follows from a direct calculation. b/ follows from the explicit expression (84)
by a simple change of variables.

Let us now give the proof of Lemma 2.9.
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Proof of Lemma 2.9. – Let us consider � > 0, �0 � �, � � �0 and #.�/ satisfying (52).
We want to estimate some components of �.y; s/ D K .s; �/#.�/ for each s 2 Œ�; � C ��.
Since � � �0 � �, we have

(89) � � s � 2�:

Therefore, up to a multiplying constant, any power of any � 2 Œ�; s� will be bounded
systematically by the same power of s.

Estimate for �e. – By definition, we write

�e.y; s/ D .1 � �.y; s//K .s; �/#.�/ D .1 � �.y; s//K .s; �/ .#b.�/C #e.�// :

Using c) of Lemma C.1, we have

k.1 � �.y; s//K .s; �/#e.�/kL1 � Ce
� s��p k#e.�/kL1 :

It remains to bound .1 � �.y; s//K .s; �/#b.�/. To this end, we write

#b.x; �/ D #0.�/C #1.�/ � x C
1

2
xT #2.�/x � t r.#2.�//C

#�.x; �/

1C jxj3
.1C jxj3/;

then use the fact that �.x; �/jxjk � C�k=2 � Csk=2 for k 2 N, and a/ of Lemma C.1 to
derive

k.1 � �.y; s//K .s; �/#b.x; �/kL1 � Ce
s��

2X
lD0

s
l
2 j#l .�/j

C Ces��s
3
2

#�.x; �/1C jxj3


L1

:

This yields the bound (54).

Estimate of ��. – By definition and from decomposition (42), we write

��.y; s/ D P�
�
�.s/K .s; �/#.�/

�
(90)

D P�

24�.s/K .s; �/

0@#0.�/C X
jˇ jD1

#ˇ .�/�ˇ C
X
jˇ jD2

#ˇ .�/�ˇ

1A35(91)

C P�
�
�.s/K .s; �/#�.�/

�
C P�

�
�.s/K .s; �/#e.�/

�
WD I C II C III:

In order to bound I , we write K .s; �/ D K .s; �/� e.s��/ L C e.s��/ L , then we use the fact
that e.s��/ L�ˇ D e.1�

l
2 /.s��/�ˇ for all jˇj D l , part b/ of Lemma C.1 and (88) to derive

for l D 0; 1; 2, 8jˇj D l ,ˇ̌̌
�.s/

�
K .s; �/ � e.s��/.1�

l
2 /
�
�ˇ

ˇ̌̌
D

ˇ̌̌
�.s/e.s��/ L .P2 C P4/ �ˇ

ˇ̌̌
�
Ces�� .s � �/

s
�.y; s/ .1C jyj/2Cl C

Ces�� .s � �/.1C s � �/

s2
�.y; s/ .1C jyj/4Cl

�

�
Ces�� .s � �/

s1�
1
2 ı2;l

C
Ces�� .s � �/.1C s � �/

s
3
2�

l
2

�
.jyj3 C 1/:

From the easy-to-check fact that

(92) if jf .y/j � m.1C jyj3/; then jP� Œf .y/�j � Cm.1C jyj3/;
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we obtain for l D 0; 1; 2,

8jˇj D l;
ˇ̌̌
P�

h
�.s/

�
K .s; �/ � e.s��/.1�

l
2 /
�
.#ˇ .�/�ˇ /

iˇ̌̌
�

�
Ces�� .s � �/

s1�
1
2 ı2;l

C
Ces�� .s � �/.1C s � �/

s
3
2�

l
2

�
j#ˇ .�/j.jyj

3
C 1/:(93)

Note that P�.�ˇ / D 0 for all jˇj � 2 and that j.1 � �.y; s//�ˇ .y/j � Cs�
3
2C

l
2 .1 C jyj3/.

Therefore, we have for l D 0; 1; 2;

8jˇj D l;
ˇ̌̌
P�

h
�.s/e.s��/ L .#ˇ .�/�ˇ /

iˇ̌̌
D

ˇ̌̌
P�

h
#ˇ .�/e

.s��/.1�l=2/�.s/�ˇ

iˇ̌̌
D

ˇ̌̌
#ˇ .�/e

.s��/.1� l2 /P�
�
�.s/�ˇ

�ˇ̌̌
D

ˇ̌̌
#ˇ .�/e

.s��/.1� l2 /P�
�
.1 � �.s//�ˇ

�ˇ̌̌
�
Ce.s��/.1�l=2/

s
3
2�

l
2

j#ˇ .�/j.1C jyj
3/:(94)

Since the estimates (93) and (94) hold for all jˇj D l with l D 0; 1; 2, we then obtain

(95) jI j �
Ces��

�
.s � �/2 C 1

�
s

�
j#0.�/j C j#1.�/j C

p
sj#2.�/j

�
.1C jyj3/:

In order to bound III , we use part a/ of Lemma C.1 and the Definition (84) of e.s��/ L to
write �.y; s/K .s; �/#e.x; �/

1C jyj3


L1
� Ces��k#e.�/kL1

sup
jyj�2K

p
s;jxj�K

p
�

e
� 12
jye�.s��/=2�xj

2

4.1�e�.s��// .1C jyj3/�1

�

(
Cs�

3
2 k#e.�/kL1 if s � � � s�

Ce�sk#e.�/kL1 if s � � � s�

for a suitable constant s�. Using (92), we then get

(96) jIII j � Cs�
3
2 e�.s��/

2

k#e.�/kL1.1C jyj
3/:

We still have to consider II . We consider two cases:

Case 1. – s � � � 1. We directly get from part a/ of Lemma C.1 and part b/ of Lemma C.2
the following:

jK .s; �/#�.�/j D

ˇ̌̌̌Z
K .s; �; y; x/

#�.x; �/

1C jxj3
.1C jxj3/dx

ˇ̌̌̌
� C

#�.x; �/1C jxj3


L1

Z
e.s��/ L .y; x/.1C jxj3/dx

� C

#�.x; �/1C jxj3


L1

es�� .1C jyj3/

� C

#�.x; �/1C jxj3


L1

e�
s��
2 .1C jyj3/ with s � � � 1:(97)
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Case 2. – s � � � 1. We proceed as in [7] and write

(98) K .s; �/#�.�/ D

Z
dxe

jxj2

4 K .s; �/.�; x/f .x/ D

Z
dxG.�; x/E.�; x/f .x/;

where

f .x/ D e�
jxj2

4 #�.x; �/;(99)

G.y; x/ D
es��e

jxj2

4�
4�.1 � e�.s��/

�N
2

e
�
jye�.s��/=2�xj2

4.1�e�.s��// ;(100)

E.y; x/ D

Z
d�s��yx .!/e

R s��
0 ˛.!.�/;�C�/d� :(101)

We claim the following lemma whose proof will be given later:

L C.3. – Assume that

(102)
Z
RN

g.x/dx D 0 and jg.x/j � A
.1C jxjqCN�1/

jxjN�1
e�
jxj2

4 for some A > 0; q � 1:

Then, we can define g.�1/ W RN ! RN the “antiderivative” of g such that
(i) div g.�1/.x/ D g.x/,

(ii)
ˇ̌
g.�1/.x/

ˇ̌
� CA

.1C jxjqCN�2/

jxjN�1
e�
jxj2

4 .

An induction application of Lemma C.3 yields the following corollary:

C C.4. – For m D 1; 2; 3, there are F .�m/ such that

F .�1/ W RN ! RN and divF .�1/.x/ D F .0/.x/ � f .x/;

F .�2/ W RN ! RN � RN and divF .�2/i .x/ D F
.�1/
i .x/; 8i 2 f1; : : : ; N g;

F .�3/ W RN ! RN � RN � RN and divF .�3/i;j .x/ D F
.�2/
i;j .x/; 8i; j 2 f1; : : : ; N g;

and

(103)
ˇ̌̌
F .�m/.y/

ˇ̌̌
� C

#�.y; �/1C jyj3


L1

�
1C jyjNC2�m/

�
jyjN�1

e�
jyj2

4 :

Proof. – From (38) and the Definition (99) of f , we see that

(104)
Z
RN

xˇf .x/dx D 0; 8ˇ 2 NN ; jˇj � 2:

Let us write f .x/ D #�.x;�/

1Cjxj3
.1C jxj3/e�

jxj2

4 , and note that

jf .x/j � 2

#�.x; �/1C jxj3


L1

�
1C jxj3CN�1

�
jxjN�1

e�
jxj2

4 ; 8x 2 RN :

Now, we use (104) with ˇ D 0, then apply Lemma C.3 with g D f , A D 2
#�.x;�/
1Cjxj3


L1

and

q D 3, we get estimate (103) for F .�1/. Using again (104) with jˇj D 1, we find that

8i 2 f1; : : : ; N g;

Z
F
.�1/
i .x/dx D 0:
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For each i 2 f1; : : : ; N g, we apply Lemma C.3 with g D F
.�1/
i , A D C

#�.x;�/
1Cjxj3


L1

and

q D 2 to define F .�2/i W RN ! RN such that div F .�2/i .x/ D F
.�1/
i .x/, and to get the

estimate (103) for F .�2/i . Similarly, we can define F .�3/ from F .�2/ and derive the estimate
(103) by exploiting (104) with jˇj D 2 and applying Lemma C.3. This concludes the proof
of Corollary C.4.

Now, using the integration by parts in (98), we write

K .s; �/#�.�/ D �

NX
iD1

NX
jD1

NX
kD1

Z
@3

@xk@xj @xi
G.y; x/E.y; x/F

.�3/

i;j;k
.x/dx

�

NX
iD1

NX
jD1

Z
@2

@xj @xi
G.y; x/

h
rxE.y; x/ � F

.�3/
i;j .x/

i
dx

C

NX
iD1

Z
@

@xi
G.y; x/

h
rxE.y; x/ � F

.�2/
i .x/

i
dx

�

Z
G.y; x/

h
rxE.y; x/ � F

.�1/.x/
i
dx:(105)

From the Definition (100) of G.y; x/, we have

(106) jr
m
x G.y; x/j � Ce

�
m.s��/
2 .1C jxj C jyj/me

jxj2

4 e.s��/ L .y; x/; m � 3:

Using the integration by parts formula for Gaussian measures (see pages 171-172 in [19]), we
write

rxE.y; x/ D
1

2

Z s��

0

Z s��

0

d�d� 0rx�.�; �
0/

Z
d�s��yx .!/rx˛.!.�/; � C �/

� rx˛.!.�
0/; � C � 0/e

R s��
0 d� 00˛.!.� 00/;�C� 00/

C
1

2

Z s��

0

d�rx�.�; �
0/

Z
d�s��yx .!/�x˛.!.�/; � C �/e

R s��
0 d� 00˛.!.� 00/;�C� 00/:

Recalling from Lemma B.1 that ˛.y; s/ � C
s

and
ˇ̌
ri˛.y; s/

ˇ̌
�

C

si=2
for i D 0; 1; 2, this yieldsR s��

0
˛.!.�/; � C �/d� � C since s � 2� . Because d�s��yx is a probability, we then obtainZ

d�s��yx .!/e
R s��
0 d� 00˛.!.� 00/;�C� 00/d� 00

� C:

Combining this with (86), we have

(107) jE.y; x/j � C; jrxE.y; x/j � C
.s � �/.1C s � �/

s
.jyj C jxj/:

Substituting (103), (106) and (107) into (105), we get

jK .s; �/#�.�/j

#�.y; �/1C jyj3

�1
L1
� Ce�

3
2 .s��/

Z
RN

e.s��/ L .y; x/.1C jyj C jxj/3
�
1C jxjN�1

jxjN�1

�
dx

CC

2X
mD0

e�
m
2 .s��/

.s � �/.1C s � �/

s

Z
RN

e.s��/ L .y; x/.1C jyj C jxj/mC1
�
1C jxjNC1�m

jxjN�1

�
dx;
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where et L .y; x/ is defined in (84). Since .s��/.1Cs��/
s

� e�
3
2 .s��/ for � large, we obtain

jK .s; �/#�.�/j � Ce
�
3.s��/
2

#�.y; �/1C jyj3


L1

Z
RN
e.s��/ L .y; x/.1C jyj C jxj/3

�
1

jxjN�1
C 1

�
dx

D Ce�
3.s��/
2

#�.y; �/1C jyj3


L1

�
I1 C I2

�
;

where

I1 D

Z
jxj�1

e.s��/ L .y; x/.1C jyj C jxj/3
�

1

jxjN�1
C 1

�
dx

� 2

Z
jxj�1

e.s��/ L .y; x/.1C jyj C jxj/3dx � Ces�� .1C jyj3/ .by (88)/;

and (note that we are considering the case s � � � 1)

I2 D

Z
jxj�1

e.s��/ L .y; x/.1C jyj C jxj/3
�

1

jxjN�1
C 1

�
dx

� C.1C jyj3/

Z
jxj�1

e.s��/ L .y; x/jxj1�Ndx

D Ces�� .1C jyj3/

Z
jxj�1

1

.4�.1 � e�.s��///N=2
exp

 
�
jye�

s��
2 � xj2

4.1 � e�.s��//

!
jxj1�Ndx

�
Ces��

.4�.1 � e�1//N=2
.1C jyj3/

Z
jxj�1

jxj1�Ndx

D
Ces��

.4�.1 � e�1//N=2
.1C jyj3/N!N

Z 1

0

rN�1r1�Ndr � Ces�� .1C jyj3/;

(we used in the last line the change of variable r D jxj and !N denotes the volume of the ball
of radius 1 in RN ). Therefore, for s � � � 1 and for � large enough, we have

jK .s; �/#�.�/j � Ce
�
.s��/
2

#�.y; �/1C jyj3


L1

.1C jyj3/:

Note that this estimate also holds when s � � � 1 as proved in (97). Hence, we obtain
from (92),

(108) jII j � Ce�
.s��/
2

#�.y; �/1C jyj3


L1

.1C jyj3/:

Substituting (95), (108) and (96) into (91), we get the estimate (53). This concludes the proof
of Lemma 2.9, assuming Lemma C.3 holds.

Let us give the proof of Lemma C.3 to complete the proof of (53) and the proof of
Lemma 2.9 as well.

Proof of Lemma C.3. – We apply the Fourier transform to the aimed identity g D divg.�1/

on the one hand to find

(109) F .g/.�/ D F .divg.�1//.�/ D �{
NX
kD1

�k F .g
.�1/

k
/.�/:
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On the other hand, we use Taylor expansion to F .g/.�/ and note that F .g/.0/ D 0 thanks
to the first identity of (102) to write

F .g/.�/ D

NX
kD1

�k

Z 1

0

@

@�k
F .g/.��/d�:

Since � is arbitrary, let us define g.�1/ W RN ! RN by its Fourier transform as follows:

F .g
.�1/

k
/.�/ D {

Z 1

0

@

@�k
F .g/.��/d�

and check that it satisfies the desired estimate. By (109), it satisfies estimate (i). By the inverse
Fourier transform, we obtain the explicit formula for g.�1/

k
with k 2 f1; : : : ; N g as follows:

g
.�1/

k
.y/ D

{

2�

Z
e{��y

�Z 1

0

@

@�k
F .g/.��/d�

�
d�

D
{

2�

Z 1

0

�Z
e{��y

@

@�k
F .g/.��/d�

�
d�

D
{

2�

Z 1

0

�Z
e{�
0�y=� 1

�N
@

@�k
F .g/.� 0/d� 0

�
d�

D �
{

2�

Z 1

0

�Z
e{�
0�y=� {yk

�NC1
F .g/.� 0/d� 0

�
d� D

Z 1

0

yk
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Hence,

g.�1/.y/ D

Z 1

0

y

�NC1
g
�y
�

�
d�:

Using the second identity of (102) and a change of variable, we get

jg.�1/.y/j �
A

jyjN�1

Z 1

0

jyj

�2

�
1C
jyjqCN�1

�qCN�1

�
e
�
jyj2

4�2 d�

D
2A

jyjN�1

Z C1
jyj
2

.1C �qCN�1/e��
2

d� � CA
1C jyjqCN�2

jyjN�1
e�
jyj2

4 ;

which concludes part (ii). This finishes the proof of Lemma C.3 and closes the proof of
Lemma 2.9.
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