We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the S 2 target in all homotopy classes and for the critical equivariant SO(4) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.
@article{PMIHES_2012__115__1_0, author = {Rapha\"el, Pierre and Rodnianski, Igor}, title = {Stable blow up dynamics for the critical co-rotational wave maps and equivariant {Yang-Mills} problems}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {1--122}, publisher = {Springer-Verlag}, volume = {115}, year = {2012}, doi = {10.1007/s10240-011-0037-z}, zbl = {1284.35358}, language = {en}, url = {http://www.numdam.org/articles/10.1007/s10240-011-0037-z/} }
TY - JOUR AU - Raphaël, Pierre AU - Rodnianski, Igor TI - Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems JO - Publications Mathématiques de l'IHÉS PY - 2012 SP - 1 EP - 122 VL - 115 PB - Springer-Verlag UR - http://www.numdam.org/articles/10.1007/s10240-011-0037-z/ DO - 10.1007/s10240-011-0037-z LA - en ID - PMIHES_2012__115__1_0 ER -
%0 Journal Article %A Raphaël, Pierre %A Rodnianski, Igor %T Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems %J Publications Mathématiques de l'IHÉS %D 2012 %P 1-122 %V 115 %I Springer-Verlag %U http://www.numdam.org/articles/10.1007/s10240-011-0037-z/ %R 10.1007/s10240-011-0037-z %G en %F PMIHES_2012__115__1_0
Raphaël, Pierre; Rodnianski, Igor. Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems. Publications Mathématiques de l'IHÉS, Tome 115 (2012), pp. 1-122. doi : 10.1007/s10240-011-0037-z. http://www.numdam.org/articles/10.1007/s10240-011-0037-z/
[1.] Construction of instantons, Phys. Lett. A, Volume 65 (1978), pp. 185-187 | DOI | MR | Zbl
[2.] Metastable states of two-dimensional isotropic ferromagnets, JETP Lett., Volume 22 (1975), pp. 245-247 (Russian)
[3.] Pseudoparticle solutions of the Yang-Mills equation, Phys. Lett. B, Volume 59 (1975), p. 85 | DOI | MR
[4.] Formation of singularities for equivariant (2+1)-dimensional wave maps into the 2-sphere, Nonlinearity, Volume 14 (2001), pp. 1041-1053 | DOI | MR | Zbl
[5.] Collapse of an instanton, Nonlinearity, Volume 17 (2004), pp. 1179-1191 | DOI | MR | Zbl
[6.] The stability of classical solutions, Sov. J. Nucl. Phys., Volume 24 (1976), pp. 449-454 (Russian) | MR
[7.] Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields, Ann. Inst. Henri Poincaré, A, Volume 68 (1998), pp. 315-349 | Numdam | MR | Zbl
[8.] On the regularity of spherically symmetric wave maps, Commun. Pure Appl. Math., Volume 46 (1993), pp. 1041-1091 | DOI | MR | Zbl
[9.] Instability of nonconstant harmonic maps for the (1+2)-dimensional equivariant wave map system, Int. Math. Res. Not., Volume 2005 (2005), pp. 3525-3549 | DOI | Zbl
[10.] Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system, Commun. Math. Phys., Volume 284 (2008), pp. 203-225 | DOI | Zbl
[11.] Geometry of Four-Manifolds, Clarendon Press, Oxford, 1990 | Zbl
[12.] Two Reports on Harmonic Maps, World Scientific Publishing Co., Inc., River Edge, 1995 | DOI | Zbl
[13.] Régularité des applications faiblement harmoniques entre une surface et une sphére, C. R. Acad. Sci. Paris Sér. I Math., Volume 311 (1990), pp. 519-524 | Zbl
[14.] Singularity formation in 2+1 wave maps, J. Math. Phys., Volume 43 (2002), pp. 678-683 | DOI | MR | Zbl
[15.] Finite energy self-similar solutions of a nonlinear wave equation, Commun. Partial Differ. Equ., Volume 15 (1990), pp. 1381-1420 | DOI | MR | Zbl
[16.] Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., Volume 201 (2008), pp. 147-212 | DOI | MR | Zbl
[17.] On the regularity properties of a model problem related to wave maps, Duke Math. J., Volume 87 (1997), pp. 553-589 | DOI | MR | Zbl
[18.] Remark on the optimal regularity for equations of wave maps type, Commun. Partial Differ. Equ., Volume 22 (1997), pp. 901-918 | DOI | MR | Zbl
[19.] J. Krieger and W. Schlag, Concentration compactness for critical wave maps, preprint, . | arXiv
[20.] Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math., Volume 171 (2008), pp. 543-615 | DOI | MR | Zbl
[21.] Renormalization and blow up for the critical Yang-Mills problem, Adv. Math., Volume 221 (2009), pp. 1445-1521 | DOI | MR | Zbl
[22.] Stable self similar blow up solutions to the relativistic gravitational Vlasov-Poisson system, J. Am. Math. Soc., Volume 21 (2008), pp. 1019-1063 | DOI | Zbl
[23.] Topological Solitons, Cambridge University Press, Cambridge, 2004 | DOI | Zbl
[24.] Blow up in finite time and dynamics of blow up solutions for the L2-critical generalized KdV equation, J. Am. Math. Soc., Volume 15 (2002), pp. 617-664 | DOI | MR | Zbl
[25.] Sharp upper bound on the blow up rate for critical nonlinear Schrödinger equation, Geom. Funct. Anal., Volume 13 (2003), pp. 591-642 | DOI | MR | Zbl
[26.] On universality of blow up profile for L 2 critical nonlinear Schrödinger equation, Invent. Math., Volume 156 (2004), pp. 565-672 | DOI | MR | Zbl
[27.] Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation, Ann. Math., Volume 161 (2005), pp. 157-222 | DOI | Zbl
[28.] Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Commun. Math. Phys., Volume 253 (2005), pp. 675-704 | DOI | Zbl
[29.] Sharp lower bound on the blow up rate for critical nonlinear Schrödinger equation, J. Am. Math. Soc., Volume 19 (2006), pp. 37-90 | DOI | Zbl
[30.] The problem of Plateau on a Riemannian manifold, Ann. Math., Volume 49 (1948), pp. 807-851 | DOI | MR | Zbl
[31.] On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré, Volume 2 (2001), pp. 605-673 | DOI | MR | Zbl
[32.] Shrinking of solitons in the (2+1)-dimensional S 2 sigma model, Nonlinearity, Volume 9 (1996), pp. 897-910 | DOI | MR | Zbl
[33.] Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann., Volume 331 (2005), pp. 577-609 | DOI | MR | Zbl
[34.] I. Rodnianski and J. Sterbenz, On the formation of singularities in the critical O(3) σ-model, Ann. Math., to appear | MR | Zbl
[35.] Weak solutions and development of singularities of the SU(2) σ-model, Commun. Pure Appl. Math., Volume 41 (1988), pp. 459-469 | DOI | MR | Zbl
[36.] On the Cauchy problem for equivariant wave maps, Commun. Pure Appl. Math., Volume 47 (1994), pp. 719-754 | DOI | MR | Zbl
[37.] I. M. Sigal and Y. N. Ovchinnikov, On collapse of wave maps, preprint, . | arXiv | MR | Zbl
[38.] J. Sterbenz and D. Tataru, Energy dispersed arge data wave maps in 2+1 dimensions, preprint, . | arXiv | MR
[39.] J. Sterbenz and D. Tataru, Regularity of wave-maps in dimension 2+1, preprint, . | arXiv | MR | Zbl
[40.] Equivariant wave maps in two space dimensions. Dedicated to the memory of Jürgen K. Moser, Commun. Pure Appl. Math., Volume 56 (2003), pp. 815-823 | DOI | MR | Zbl
[41.] Global regularity of wave maps. II. Small energy in two dimensions, Commun. Math. Phys., Volume 224 (2001), pp. 443-544 | DOI | MR | Zbl
[42.] T. Tao, Geometric renormalization of large energy wave maps. | Zbl
[43.] T. Tao, Global regularity of wave maps III–VII, preprints, . | arXiv
[44.] On global existence and scattering for the wave maps equation, Am. J. Math., Volume 123 (2001), pp. 37-77 | DOI | MR | Zbl
[45.] Removable singularities in Yang-Mills fields, Commun. Math. Phys., Volume 83 (1982), pp. 11-29 | DOI | MR | Zbl
[46.] Slowly moving lumps in the C P1 model in (2+1) dimensions, Phys. Lett. B, Volume 158 (1985), pp. 424-428 | DOI | MR
[47.] Some exact multipseudoparticle solutions of the classical Yang-Mills theory, Phys. Rev. Lett., Volume 38 (1977), pp. 121-124 | DOI
Cité par Sources :