Francis Brown a introduit une compactification partielle de l'espace de modules . Nous démontrons que la coopérade gravité, définie par la cohomologie (décalée en degré) des espaces , est colibre comme coopérade non symétrique anti-cyclique; de plus, les cogénérateurs sont donnés par les groupes de cohomologie de . La preuve construit une base explicite de en termes de diagrammes. Cette base est compatible avec la cocomposition coopéradique, et admet un sous-ensemble qui est une base de . Nous montrons que nos résultats sont équivalents au fait que a une structure de Hodge pure de poids pour tout , et nous donnons de plus dans notre article une seconde preuve, plus directe, de ce dernier fait. Cette seconde preuve utilise une construction itérative nouvelle et explicite de à partir de par éclatements et enlèvements de diviseurs, qui est analogue aux constructions de Kapranov et Keel de , respectivement à partir de et .
Francis Brown introduced a partial compactification of the moduli space . We prove that the gravity cooperad, given by the degree-shifted cohomologies of the spaces , is cofree as a nonsymmetric anticyclic cooperad; moreover, the cogenerators are given by the cohomology groups of . As part of the proof we construct an explicit diagrammatically defined basis of which is compatible with cooperadic cocomposition, and such that a subset forms a basis of . We show that our results are equivalent to the claim that has a pure Hodge structure of weight for all , and we conclude our paper by giving an independent and completely different proof of this fact. The latter proof uses a new and explicit iterative construction of from by blow-ups and removing divisors, analogous to Kapranov's and Keel's constructions of from and , respectively.
Keywords: Moduli of curves, mixed Hodge theory, operads, multiple zeta values, Koszul duality for operads.
Mot clés : Espaces de modules des courbes, théorie de Hodge mixte, opérades, valeurs zêta multiples, dualité de Koszul des opérades.
@article{ASENS_2017__50_5_1081_0, author = {Alm, Johan and Petersen, Dan}, title = {Brown's dihedral moduli space and freedom of the gravity operad}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1081--1122}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {5}, year = {2017}, doi = {10.24033/asens.2340}, mrnumber = {3720025}, zbl = {1401.14139}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2340/} }
TY - JOUR AU - Alm, Johan AU - Petersen, Dan TI - Brown's dihedral moduli space and freedom of the gravity operad JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 1081 EP - 1122 VL - 50 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2340/ DO - 10.24033/asens.2340 LA - en ID - ASENS_2017__50_5_1081_0 ER -
%0 Journal Article %A Alm, Johan %A Petersen, Dan %T Brown's dihedral moduli space and freedom of the gravity operad %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 1081-1122 %V 50 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2340/ %R 10.24033/asens.2340 %G en %F ASENS_2017__50_5_1081_0
Alm, Johan; Petersen, Dan. Brown's dihedral moduli space and freedom of the gravity operad. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 5, pp. 1081-1122. doi : 10.24033/asens.2340. http://www.numdam.org/articles/10.24033/asens.2340/
Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves, J. Algebraic Geom., Volume 5 (1996), pp. 705-749 (ISSN: 1056-3911) | MR | Zbl
A universal A-infinity structure on Batalin-Vilkovisky algebras with multiple zeta value coefficients, Int. Math. Res. Not., Volume 2016 (2016), pp. 7414-7470 | DOI | MR | Zbl
, Motives, quantum field theory, and pseudodifferential operators (Clay Math. Proc.), Volume 12, Amer. Math. Soc., Providence, RI, 2010, pp. 119-126 | MR | Zbl
The algebra of cell-zeta values, Compos. Math., Volume 146 (2010), pp. 731-771 (ISSN: 0010-437X) | DOI | MR | Zbl
Sur les groupes de tresses [d'après V. I. Arnol'd], Séminaire Bourbaki, vol. 1971/1972, exposé no 401, Lecture Notes in Math., Volume 317 (1973), pp. 21-44 | DOI | Numdam | MR | Zbl
Multiple zeta values and periods of moduli spaces , Ann. Sci. Éc. Norm. Supér., Volume 42 (2009), pp. 371-489 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Théorie de Hodge. II, Publ. Math. IHÉS, Volume 40 (1971), pp. 5-57 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
La conjecture de Weil. II, Publ. Math. IHÉS, Volume 52 (1980), pp. 137-252 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Real homotopy theory of Kähler manifolds, Invent. math., Volume 29 (1975), pp. 245-274 (ISSN: 0020-9910) | DOI | MR | Zbl
Givental group action on topological field theories and homotopy Batalin-Vilkovisky algebras, Adv. Math., Volume 236 (2013), pp. 224-256 (ISSN: 0001-8708) | DOI | MR | Zbl
Brown's moduli spaces of curves and the gravity operad (preprint arXiv:1509.08840, to appear in Geometry and Topology ) | MR
, The moduli space of curves (Texel Island, 1994) (Progr. Math.), Volume 129, Birkhäuser, 1995, pp. 199-230 | DOI | MR | Zbl
Koszul duality for operads, Duke Math. J., Volume 76 (1994), pp. 203-272 (ISSN: 0012-7094) | DOI | MR | Zbl
, Geometry, topology, & physics (Conf. Proc. Lecture Notes Geom. Topology, IV), Int. Press, Cambridge, MA, 1995, pp. 167-201 | MR | Zbl
Modular operads, Compos. math., Volume 110 (1998), pp. 65-126 (ISSN: 0010-437X) | DOI | MR | Zbl
Strong homotopy properads, Int. Math. Res. Not., Volume 2007 (2007) | MR | Zbl
Moduli spaces and formal operads, Duke Math. J., Volume 129 (2005), pp. 291-335 (ISSN: 0012-7094) | DOI | MR | Zbl
Algebraic and combinatorial aspects of the general theory of hypergeometric functions, Funktsional. Anal. i Prilozhen., Volume 20 (1986), p. 17-34, 96 (ISSN: 0374-1990) | DOI | MR | Zbl
Moduli spaces of weighted pointed stable curves, Adv. Math., Volume 173 (2003), pp. 316-352 (ISSN: 0001-8708) | DOI | MR | Zbl
, Singularities (Iowa City, IA, 1986) (Contemp. Math.), Volume 90, Amer. Math. Soc., Providence, RI, 1989, pp. 147-162 | DOI | MR | Zbl
On the theory of homology of fiber spaces, Uspekhi Mat. Nauk, Volume 35 (1980), pp. 183-188 (ISSN: 0042-1316) | MR | Zbl
, I. M. Gel'fand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 29-110 | DOI | MR | Zbl
Intersection theory of moduli space of stable -pointed curves of genus zero, Trans. Amer. Math. Soc., Volume 330 (1992), pp. 545-574 (ISSN: 0002-9947) | DOI | MR | Zbl
Wonderful compactification of an arrangement of subvarieties, Michigan Math. J., Volume 58 (2009), pp. 535-563 (ISSN: 0026-2285) | DOI | MR | Zbl
, Grundl. math. Wiss., 346, Springer, Heidelberg, 2012, 634 pages (ISBN: 978-3-642-30361-6) | DOI | MR | Zbl
Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, -Theory, Volume 32 (2004), pp. 231-251 (ISSN: 0920-3036) | DOI | MR | Zbl
Combinatorics and topology of complements of hyperplanes, Invent. math., Volume 56 (1980), pp. 167-189 | DOI | MR | Zbl
, Grundl. math. Wiss., 300, Springer, Berlin, 1992, 325 pages (ISBN: 3-540-55259-6) | DOI | MR | Zbl
The structure of the tautological ring in genus one, Duke Math. J., Volume 163 (2014), pp. 777-793 (ISSN: 0012-7094) | DOI | MR | Zbl
A spectral sequence for stratified spaces and configuration spaces of points, Geom. Topol., Volume 21 (2017), pp. 2527-2555 | DOI | MR | Zbl
The mixed Hodge structure of the complement to an arbitrary arrangement of affine complex hyperplanes is pure, Proc. Amer. Math. Soc., Volume 117 (1993), pp. 931-933 (ISSN: 0002-9939) | DOI | MR | Zbl
The operad Lie is free, J. Pure Appl. Algebra, Volume 213 (2009), pp. 224-230 | DOI | MR | Zbl
Operads up to homotopy and deformations of operad maps (preprint arXiv:math/0208041 )
Maurer-Cartan elements and cyclic operads, J. Noncommut. Geom., Volume 10 (2016), pp. 1403-1464 (ISSN: 1661-6952) | DOI | MR | Zbl
Cité par Sources :