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BROWN’S DIHEDRAL MODULI SPACE AND
FREEDOM OF THE GRAVITY OPERAD

 J ALM  D PETERSEN

A. – Francis Brown introduced a partial compactificationM ı
0;n of the moduli spaceM0;n.

We prove that the gravity cooperad, given by the degree-shifted cohomologies of the spaces M0;n,
is cofree as a nonsymmetric anticyclic cooperad; moreover, the cogenerators are given by the coho-
mology groups of M ı

0;n. As part of the proof we construct an explicit diagrammatically defined basis
ofH �.M0;n/which is compatible with cooperadic cocomposition, and such that a subset forms a basis
of H �.M ı

0;n/. We show that our results are equivalent to the claim that Hk.M ı
0;n/ has a pure Hodge

structure of weight 2k for all k, and we conclude our paper by giving an independent and completely
different proof of this fact. The latter proof uses a new and explicit iterative construction of M ı

0;n

from An�3 by blow-ups and removing divisors, analogous to Kapranov’s and Keel’s constructions
of M 0;n from Pn�3 and .P1/n�3, respectively.

R. – Francis Brown a introduit une compactification partielle M ı
0;n de l’espace de mo-

dules M0;n. Nous démontrons que la coopérade gravité, définie par la cohomologie (décalée en
degré) des espaces M0;n, est colibre comme coopérade non symétrique anti-cyclique; de plus, les
cogénérateurs sont donnés par les groupes de cohomologie de M ı

0;n. La preuve construit une base
explicite de H �.M0;n/ en termes de diagrammes. Cette base est compatible avec la cocomposition
coopéradique, et admet un sous-ensemble qui est une base de H �.M ı

0;n/. Nous montrons que nos

résultats sont équivalents au fait que Hk.M ı
0;n/ a une structure de Hodge pure de poids 2k pour

tout k, et nous donnons de plus dans notre article une seconde preuve, plus directe, de ce dernier fait.
Cette seconde preuve utilise une construction itérative nouvelle et explicite de M ı

0;n à partir de An�3

par éclatements et enlèvements de diviseurs, qui est analogue aux constructions de Kapranov et Keel
de M 0;n, respectivement à partir de Pn�3 et .P1/n�3.

Introduction

LetM0;n for n � 3 be the moduli scheme of n distinct ordered points onP1 up to the action
of PGL2, and M 0;n its Deligne-Mumford compactification. These are smooth affine (resp.
projective) varieties over Q (or Z) of dimension .n � 3/. Motivated by the study of multiple
zeta values, Brown introduced an intermediate space M0;n � M ı

0;n � M 0;n, depending

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/05/© 2017 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2340



1082 J. ALM AND D. PETERSEN

on a dihedral structure ı on the set f1; : : : ; ng; that is, an identification with the integers
from 1 to n with the edges of some unoriented n-gon. The space M ı

0;n is again affine, and
the union of all spaces M ı

0;n over all dihedral structures constitutes an open affine covering
of the schemeM 0;n. In more detail, letXın �M 0;n.R/ be the closure of the cell parametrizing
n distinct points on the circleP1.R/, ordered compatibly with the chosen dihedral structure ı.
ThenM ı

0;n is the subvariety ofM 0;n formed by adding toM0;n only those boundary divisors
that have nonempty intersection with Xın .

The relevance of M ı
0;n in the theory of periods and multiple zeta values resides on the

following. By Grothendieck’s theorem on algebraic de Rham cohomology, the cohomology
of M0;n can be computed using the global sections of the complex of algebraic differential
forms. It is thus interesting to study integrals of the formZ

Xın

!

where Œ!� is any top degree cohomology class. Such integrals typically diverge, since the
form ! may have poles along the boundary of Xın ; the integral converges precisely when
Œ!� is in the image of the restriction map Hn�3.M ı

0;n/ ! Hn�3.M0;n/. Brown proved
that any relative period integral of M0;n (in the sense of Goncharov and Manin) can be
decomposed as a QŒ2i��-linear combination of integrals of this form, with ! defined over Q.
Moreover, each such integral evaluates to a rational linear combination of multiple zeta
values. The cohomology groups H k.M ı

0;n/ and their Hodge structures are thus relevant to
our understanding of motives and periods.

The degree-shifted cohomologies fH ��1.M0;n/gn�3 constitute an (anti)cyclic cooperad
with Poincaré residue as cocomposition. This cooperad was introduced by Getzler, who
called it the gravity cooperad, and we denote it coGrav. The homologies fH�.M 0;n/gn�3
constitute a cyclic operad with composition given, simply, by the maps induced by inclusions
of boundary strata of M 0;n. This operad is known as the hypercommutative operad, Hycom,
and features prominently in Gromov-Witten theory. Ginzburg, Kapranov and Getzler have
shown that the two are interchanged by Koszul duality: in particular, there is a quasi-
isomorphism �cyccoGrav ! Hycom between the cyclic cobar construction on the gravity
cooperad and the hypercommutative operad. The statement is, in a sense, encoded by the
geometry of M 0;n. The set of complex points decomposes as a union

M 0;n.C/ D
a

T2Treen

Y
v2Vert.T /

M0;n.v/.C/

of strata labeled by trees. This decomposition says that fM 0;n.C/gn�3 is the free cyclic operad
of sets generated by the collection fM0;n.C/gn�3 of points of the open moduli spaces. Once
we include topology and go from sets to varieties it is no longer a free operad; instead the
decomposition is (morally speaking) transformed into said Koszul duality relation.

Brown’s partial compactification has a similar structure:

M ı
0;n.C/ D

a
T2PTreen

Y
v2Vert.T /

M0;n.v/.C/

is now a union over strata indexed by planar trees, which can be read as saying that
fM ı

0;n.C/gn�3 is the planar operad of sets freely generated by the collection fM0;n.C/gn�3.
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BROWN’S DIHEDRAL MODULI SPACE AND THE GRAVITY OPERAD 1083

What we here term a planar operad might also be called a nonsymmetric cyclic operad. We
call them planar because they are encoded by the combinatorics of planar (non-rooted) trees,
just like cyclic operads are encoded by trees, operads by rooted trees, and nonsymmetric
operads by planar rooted trees.

Note that, by Poincaré duality we could equally well take the hypercommutative operad
as defined by Hycomn D H ��2.M 0;n/, with Gysin maps as composition. Analogously, the
collection Primn D H

��2.M ı
0;n/ is an operad. Our first statement says that coGrav and Prim

satisfy a duality relation of planar (co)operads, analogous to the duality relation of cyclic
(co)operads between coGrav and Hycom.

T 0.1. – The planar cobar construction�plcoGrav and Prim are quasi-isomorphic
as planar operads if and only if the mixed Hodge structure on H k.M ı

0;n/ is pure of weight 2k.
Moreover, the compositions of Prim are all zero, so either condition is equivalent to the statement
that coGrav is (noncanonically) isomorphic to the cofree cooperad cogenerated by Prim (with
degree shifted by one).

We remark that we throughout write “cofree cooperad” for what should properly be called
“cofree conilpotent cooperad”; we assume all cooperads to be conilpotent.

In the second and third parts of the paper we give independent proofs of the two properties
mentioned. This may be logically redundant (the properties are, after all, equivalent), but we
believe the proofs to be of independent interest. The second part is devoted to proving the
following:

T 0.2. – The gravity operad is the linear hull of a free nonsymmetric operad of sets.

Thus coGrav, the linear dual of the gravity operad, is cofree on the (dual of the) linear
hull of the generators of said nonsymmetric operad of sets. That we have to switch to the
gravity operad at this point (and this point only) is an unfortunate minor hiccup, but it
is necessary: coGrav is conilpotent, so it could not possibly be the linear hull of any kind
of cooperad of sets. On the other hand we want to compute with differential forms and
residues throughout, and the arguments are naturally formulated in terms of the cohomology
of M0;n. Thus working with the gravity operad rather than coGrav throughout would have
been somewhat cumbersome.

In any case, this implies that�plcoGrav and Prim are quasi-isomorphic as planar operads,
but can also be regarded as showing something stronger. In particular, the result involves
construction of an explicit basis f˛Gg of H �.M0;n/, with a subset f˛P g � f˛Gg forming a
basis for the image of H �.M ı

0;n/ in H �.M0;n/.
In the third and final part we give a direct proof of:

T 0.3. – The mixed Hodge structure on H k.M ı
0;n/ is pure of weight 2k.

The proof relies on an inductive construction of M ı
0;n from An�3, alternating between

blowing up a smooth subvariety and then removing the strict transform of a divisor
containing the blow-up center. It is inspired by Hassett’s work on moduli spaces of weighted
pointed stable curves. This construction of M ı

0;n is new.
Our results have several interesting consequences. Let us begin with a rather immediate

one:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1084 J. ALM AND D. PETERSEN

C 0.4 (Bergström-Brown). – The ordinary generating functions for the Poincaré
polynomials of M0;n and M ı

0;n are compositional inverses of each other.

Indeed, this result was proven in [3], assuming that H k.M ı
0;n/ is pure of weight 2k; thus

our result fills a gap in their argument. We refer to their paper for a more precise statement
of Corollary 0.4. The result gives in particular a simple recursive procedure for computing
the Betti numbers of M ı

0;n. In brief, the point is that M ı
0;n has a stratification all of whose

strata are products of moduli spaces of the form M0;ni , and it is easy to express M0;ni (say,
in the Grothendieck ring of varieties) as a polynomial in the class of the affine line. Thus also
ŒM ı

0;n� D p.ŒA1�/ for some polynomialp, and Theorem 0.3 implies that its coefficients record
the Betti numbers of M ı

0;n.
Another corollary is the deduction of an explicit left inverse to the restriction

H �.M0;n/! H �.M ı
0;n/, which is compatible with operadic structure. This gives a recipe

for how to regularize any possibly divergent integral over Xın of a form ! 2 Hn�3.M0;n/ in
a coherent way, by first projecting ! to Hn�3.M ı

0;n/. This is used by the first author [1] to
prove:

C 0.5. – There is a nontrivial universal A1 structure f�ngn�2 on Batalin-
Vilkovisky algebras, such that the coefficients of �n are multiple zeta values of weight at
most .n � 2/ and, a priori, any multiple zeta value occurs in the structure.

While this paper was in the final stages of preparation, a preprint of Dupont and
Vallette [11] appeared on the arXiv, whose results overlap significantly with ours. They,
too, show that cofreedom of the gravity cooperad is essentially equivalent to purity of the
mixed Hodge structure on H �.M ı

0;n/, and that (once one has proven cofreedom or purity)
the cogenerators of coGrav will be given by the cohomology groups of M ı

0;n. However,
the actual proof of cofreedom they give is completely different. In particular, our proof is
constructive, in the sense that we write down an explicit isomorphism between coGrav and
a cofree cooperad defined in terms of diagrams.

Outline of the paper

This paper is divided into three parts which are more or less logically independent, and
the reader is invited to begin reading whichever one she finds most interesting.

The first part, Section 1, is primarily devoted to the proof of Theorem 0.1. We first
recall the Koszul duality result of Getzler and Ginzburg-Kapranov, that there is a quasi-
isomorphism of cyclic operads

�cyccoGrav! Hycom:

After sketching Getzler’s proof of this theorem we explain an alternative approach to this
result. This involves constructing suitable (co)chain versions of both (co)operads, coGrav
and Hycom, and proving that we have an isomorphism

�cyccoGrav Š Hycom:

Then one can use Hodge theory to deduce that both (co)chain (co)operads are formal, which
proves the result in a slightly different way. We then discuss how this has an analog in the
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planar (nonsymmetric cyclic) case: we construct a chain operad Prim, with cohomology
Primn D H

��2.M ı
0;n/ and obtain an isomorphism

�plcoGrav Š Prim

of planar operads. Theorem 0.1 is proved by arguments based on this isomorphism.

The second part, Section 2, is devoted to a proof of Theorem 0.2. We construct an explicit
basis f˛Gg of H �.M0;n/ defined in terms of certain diagrams of chords on a polygon, which
we call gravity chord diagrams. This basis is compatible with the operadic composition in
the nonsymmetric gravity operad, and this makes the set of gravity chord diagrams into an
operad in the category of sets. From the combinatorial description of gravity chord diagrams
it becomes immediate that this operad is in fact freely generated by a subset of prime chord
diagrams, which implies Theorem 0.2.

In the third part, Section 3, we define and study a generalization M ı
0;A of M ı

0;n, where
the points are not just labeled but weighted. These are analogs of Hassett’s notion of
weighted stable pointed curves studied in [19]. Hassett’s curves are parametrized by a moduli
space M 0;A depending on a “weight vector” A which assigns a weight to each marked
point. The usual space M 0;n is recovered when all points have weight 1; in general one gets
new birational models of the moduli space. We then introduce subspaces M ı

0;A � M 0;A ,
which generalize M ı

0;n �M 0;n.

The spaces M 0;A satisfy wall-crossing with respect to the weight vector A : when A

crosses a wall, M 0;A is modified in a predictable way by a blow-up. This was used by
Hassett to recover descriptions of M 0;n as an iterated blow-up of Pn�3 (resp. .P1/n�3)
originally due to Kapranov (resp. Keel). We prove that when crossing a wall, the moduli
space M ı

0;A is modified by blowing up a smooth subvariety and then removing the strict
transform of a divisor containing the blow-up center. In this way we obtain an inductive
construction ofM ı

0;n from An�3. The heart of the proof of Theorem 0.3 consists in showing
that the property of having H k pure of weight 2k is preserved at each step of this inductive
construction.

The concluding Appendix collects terminology regarding operads. There are many flavors
of operad in the literature, often described in terms of grafting together graphs of some sort.
The usual theory of operads arises when the graphs are rooted trees, but there are also cyclic
operads, which correspond to trees without a root (the moduli spaces M 0;n give an example
of a cyclic operad), and nonsymmetric operads, which correspond to rooted trees with an
embedding into the plane up to isotopy (equivalently, a ribbon graph structure). We wish
to consider “nonsymmetric cyclic” operads, corresponding to unrooted trees with a planar
embedding; we propose to call these planar operads. We define the notions of planar and
antiplanar operad and cooperad, and we define the bar and cobar constructions which act
on them. This material will be routine to the experts, but we have included it for completeness
since the notion of planar operad seems to have received very little attention in the literature
previously.

Acknowledgements. – We would like to thank Clément Dupont for valuable discussions.
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1. Duality

We begin this section by recalling the duality between the anticyclic cooperad coGrav

and the cyclic operad Hycom. We recall this in some detail since we will later generalize the
argument to the planar case. As we explain, one can either prove duality on the level of
cohomology or on the level of chains. The argument for duality on the level of cohomology
is in some sense much easier; however, one needs to use that coGrav and Hycom carry pure
Hodge structures of certain weights.

We then study the analogous relationship between coGrav, considered as an antiplanar
cooperad, and the planar operad Prim given by the cohomology of the spaces M ı

0;n, with
operadic composition given by the pushforward (Gysin) maps in cohomology. We will prove
later (Section 3) that H k.M ı

0;n/ carries a pure Hodge structure of weight 2k, and using this
result one could prove that coGrav and Prim are duals of each other under planar bar-cobar
duality. However, we believe that it will clarify the logic of the paper to instead prove a chain
level statement in this section, namely that coGrav and a certain dg operad Prim such that
H.Prim/ Š Prim are planar duals of each other. This can be proved without knowing
anything about weights.

Using this duality, we then show that purity of H �.M ı
0;n/, formality of the operadPrim,

and cofreedom of coGrav are all equivalent to each other.

1.1. The main operads

For terminology and conventions regarding operads, see the concluding Appendix. Our
terminology should be familiar, except for the notion of planar operads. These are what one
might also term nonsymmetric cyclic operads, i.e., they have no action of general permu-
tations, only of cyclic groups. Just like there is a forgetful functor from ordinary operads to
nonsymmetric operads, there is a forgetful functor from cyclic operads to planar operads (we
simply forget the permutation action, but retain the action of cyclic groups). Each flavor of
operads has a machinery of free operads and bar and cobar constructions: they only thing
that changes is which notion of trees the constructions employ.

We begin with some recollections on the moduli space M0;n and its Deligne-Mumford
compactification M 0;n. The open moduli space of smooth genus zero curves with n labeled
points is

M0;n D ..P1/n n diagonals/=PGL2;

where PGL2 is the algebraic group of automorphisms of P1 and acts by Möbius trans-
formations. The compactification M 0;n is a smooth projective variety. The complement
M 0;n nM0;n is a strict normal crossing divisor, and as such there is an induced stratification
of M 0;n whose closed strata are the intersections of boundary divisors. This stratification
is called the stratification by topological type, and can be equivalently defined by declaring
that two points lie in the same stratum if and only if the corresponding pointed curves are
homeomorphic (working over C).

The strata in the space M 0;n are usually indexed by stable dual graphs � with n external
half-edges (legs), see e.g., [2, Section 1]. One associates to a stable n-pointed curve a graph
whose vertices correspond to irreducible components, whose edges correspond to nodes, and
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whose legs correspond to the markings. Thus, in the genus zero case all graphs are actu-
ally trees. The stratum corresponding to a tree T can be written as

Q
v2Vert.T /M0;n.v/ and

its closure as
Q
v2Vert.T /M 0;n.v/, where n.v/ denotes the number of half-edges adjacent to

a vertex. Stability of the graph means that n.v/ > 2 for all v. It follows that the collec-
tion fM 0;ngn�3 is a cyclic operad in the category of projective varieties: The composition

ı
j
i WM 0;mC1 �M 0;nC1 !M 0;mCn

is simply inclusion of a closed stratum. By functoriality the homology fH�.M 0;n/gn�3 is a
cyclic operad, too. It is usually denoted Hycom and called the hypercommutative operad.
However, since we want to have all dg operads with a cohomological grading (and we
will later consider a chain level model of Hycom), it will be more convenient to make the
“Poincaré dual” definition that Hycom is the operad fH ��2.M 0;n/gn�3, with composition
maps given by the Gysin maps (the maps which are Poincaré dual to the pushforwards in
homology).

The open moduli space is not an operad. However, we can consider M0;nC1 �M0;n0C1 as
a codimension one open stratum insideM 0;nCn0 , adjacent to the open stratumM0;nCn0 , and
get a Poincaré residue

H �.M0;mCn/! H ��1.M0;nC1 �M0;n0C1/:

P 1.1 (Getzler). – The collection of suspensions fH ��1.M0;n/gn�3 is an anti-
cyclic cooperad, with cocomposition given by the Poincaré residue just defined.

This cooperad is called the gravity cooperad and denoted coGrav. We note that taking
Poincaré residue is only coassociative up to a sign, which is treated carefully in [7, Section 3.1];
it is this sign factor that causes the gravity cooperad to be anticyclic.

As it stands, both coGrav and Hycom carry natural mixed Hodge structures, but in neither
(co)operad are the (co)composition maps compatible with this mixed Hodge structure. To
remedy this we need to introduce a Tate twist. We thus let

coGravn D H
��1.M0;n/˝Q.�1/

and

Hycomn D H
��2.M 0;n/˝Q.�1/:

P 1.2. – The degree k component of Hycomn has a pure Hodge structure of
weight k, and the degree k component of coGravn has a pure Hodge structure of weight 2k.

Proof. – The first statement is clear: since M 0;n is smooth and projective, H k.M 0;n/ is
pure of weight k. Taking into account the degree-shift and the Tate twist, the conclusion
follows.

For the second statement, we note that the spaceM0;n is isomorphic to the complement of
an arrangement of hyperplanes in An�3. It follows from this that the mixed Hodge structure
on H k.M0;n/ is pure of weight 2k. Indeed, the cohomology ring of such a complement is
generated by the differential forms d log.f /, where f is the defining equation for one of the
hyperplanes [4]; thus the generators in H 1 manifestly have Hodge type .1; 1/. Alternatively,
see the short proof in [33].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1088 J. ALM AND D. PETERSEN

To avoid cluttering the notation, we omit these Tate twists in most of what follows, but
they will be quite relevant.

1.2. Cyclic bar-cobar duality between coGrav and Hycom, take one

In this subsection we recall a result proven by Ginzburg-Kapranov [16, Theorem 3.4.11]
and Getzler [13], that the gravity cooperad is Koszul dual to the hypercommutative operad.
To prove this theorem one must in one way or another use the purity results of Proposi-
tion 1.2. We will outline a proof of this theorem, following the original approaches of Getzler
and Ginzburg-Kapranov.

However, we will then proceed to take a second approach, which is to work instead on
the chain level. There exist suitable dg (co)operads coGrav and Hycom whose cohomolo-
gies are coGrav and Hycom, respectively, and which one can prove are duals of each other
without knowing anything about purity of the weights of either (co)operad. The construction
of suitable such chain models coGrav and Hycom is somewhat subtle, which makes this kind
of argument more involved, but it has the advantage of working also in more general situa-
tions where purity fails. We follow here the approach taken by Getzler-Kapranov [15, Propo-
sition 6.11], which uses substantially results in the theory of residues and currents. After this,
we shall explain that the purity results of Proposition 1.2 imply formality of both dg operads
coGrav andHycom, which will then give a somewhat different proof of the following theorem.

T 1.3 (Getzler, Ginzburg-Kapranov). – Let Bcyc denote the cyclic bar construc-
tion of a cyclic operad, and �cyc the cyclic cobar construction. There are quasi-isomorphisms

�cyccoGrav ' Hycom and BcycHycom ' coGrav:

In other words, Hycom and coGrav are Koszul duals to each other.

Proof. – Note that either of the two quasi-isomorphisms in the theorem implies the other,
by bar-cobar-duality; we prove the first one.

We considerM 0;n as a filtered space: ifXi denotes the union of all strata of dimension� i
in the stratification of M 0;n by topological type, then we get a filtration

; D X�1 � X0 � X1 � � � � � Xn�3 DM 0;n:

Associated to this filtration is a homology spectral sequence

E1pq D HpCq.Xp; Xp�1/ Š H
p�q.Xp nXp�1/ H) HpCq.M 0;n/:

The isomorphism in the above is a version of Lefschetz duality. Lefschetz duality may at
first not seem to apply, since Xp is not a manifold; however, it is enough that Xp n Xp�1 is
a manifold, since we may resolve the singularities of Xp by blowing up without affecting the
relative homology group HpCq.Xp; Xp�1/. We have

Xp nXp�1 Š
a
T

Y
v2Vert.T /

M0;n.v/

where T ranges over all trees with n legs and exactly .n� 2�p/ vertices. The E1-differential
maps the summand corresponding to T to those trees T 0 from which T can be obtained
by contracting a single edge, and the corresponding degree �1 map from the cohomology
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of
Q
v2Vert.T /M0;n.v/ to the cohomology of

Q
v2Vert.T 0/M0;n.v/ is exactly the Poincaré

residue; that is, the cocomposition map in the gravity cooperad.

All in all, this shows that theE1 page of the above spectral sequence may be identified (up
to some reindexing) with the cobar construction�cyccoGrav. Moreover,E1pq is nonzero only
in the region 0 � q � p, which implies the existence of an edge map E1p;p ! H2p.M 0;n/.
One can verify that this edge map is compatible with operadic composition, therefore giving
a map of dg operads �cyccoGrav! Hycom.

To show that this map is a quasi-isomorphism, we need to prove that the spectral sequence
degenerates at E2, and that E2p;q is nonzero only for p D q. This is where we need to use
purity. Keeping track of the Tate twist by Q.p/ in the isomorphism HpCq.Xp; Xp�1/ Š

Hp�q.Xp nXp�1/, Proposition 1.2 implies that E1pq is pure of weight �2q (since the weights
on E1 are determined by the weights of H �.M0;n), and on the other hand that E1pq is pure
of weight �p � q (since the weights on E1 are determined by the weights of H �.M 0;n),
for all p and q. It follows that only the E1-differential can be compatible with weights, and
that the classes that can survive to E1 must be concentrated along the diagonal for weight
reasons.

R 1.4. – One can give a “dual” proof of this theorem, by instead computing
the cohomology of M0;n using the Leray spectral sequence of the open embedding
M0;n ,!M 0;n. The Leray spectral sequence for the inclusion of the complement of a
strict normal crossing divisor has an easily described E2 page: the entries are given by the
cohomologies of all possible intersections of divisors. In our case, a q-fold intersection of
boundary divisors has the form

Q
v2Vert.T /M0;n.v/, where T is a stable tree with n legs and

.q C 1/ vertices. One finds that

E
pq
2 D

M
T

Hp

0@ Y
v2Vert.T /

M n.v/

1A H) HpCq.M0;n/

where T ranges over trees with .q C 1/ vertices as above. The E2-differential here is given
by the Gysin map for the inclusion of a .q C 1/-fold intersection of boundary divisor
into a q-fold intersection. Since the Gysin map is how we defined the composition maps
in Hycom, this means that after some reindexing of the above E2 page we obtain exactly the
bar construction BcycHycom. Again there is an edge homomorphism giving a map between
BcycHycom and coGrav, and an almost exactly identical weight argument shows that the
spectral sequence degenerates at E3 and that the map is a quasi-isomorphism.

1.3. Forms and currents with log singularities along a divisor

We briefly recall material explained in more detail in Getzler-Kapranov [15, pp. 96–97], to
which we refer for definitions and references for assertions made below. Let us first remind
the reader about Borel-Moore homology. IfM is a smooth manifold, then the Borel-Moore
homology of M is computed by the complex C�.M/ of currents on M . If M is oriented
of dimension d , then there is a cap product isomorphism H �.M/ Š HBM

d��
.M/. If M is

a smooth algebraic variety of complex dimension d , then the cap product isomorphism is
compatible with mixed Hodge structure up to a Tate twist Q.d/. For instance, if H i .M/ is
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pure of weight i for all i , thenHBM
i .M/ is pure of weight�i , and ifH i .M/ is pure of weight

2i for all i , then HBM
i .M/ is pure of weight 2.d � i/.

Let X be a d -dimensional complex manifold and D � X a strict normal crossing
divisor. We denote by E�.X;D/ the complex of C1 differential forms on X with logarithmic
singularities along the divisorD. This is a complex of nuclear Fréchet spaces, and it computes
the cohomology of X nD:

H.E�.X;D// Š H �.X nD;C/:

Getzler and Kapranov introduce another complex C�.X;D/, also of nuclear Fréchet
spaces, which they call “de Rham currents with logarithmic singularities along D”. All
these complexes (for varying D) are quasi-isomorphic to each other: there is an inclusion
C�.X;D/ ,! C�.X/ into the usual complex of currents, which is a quasi-isomorphism. In
particular,

H.C�.X;D// Š H
BM
� .X;C/:

The complexes E� satisfy a Künneth formula: if Y is another complex manifold with normal
crossing divisor E, then

E�.X � Y;D � Y [X �E/ Š E�.X;D/b̋E�.Y;E/
where b̋ denotes the projective tensor product.

IfD D D1[D2[ � � � [Dk , letDI D
T
i2I Di for I � f1; : : : ; kg; in particular,D; D X .

Then each DI is itself a complex manifold, and

D0I D DI \
[
j…I

Dj

is a strict normal crossing divisor on DI . The Poincaré residue defines a map E�.X;D/ !
E��1.Di ;D

0
i / for all 1 � i � k, and more generally for every l a map:M

jI jDl

E�.DI ;D
0
I /!

M
jI jDlC1

E��1.DI ;D
0
I /:

There is then an isomorphism

(1) C�.X;D/ Š
M

I�f1;:::;kg

E2.d�jI j/��.DI ;D
0
I /

where on the right hand side we mean the total complex of the double complex whose vertical
differential is given by the internal differentials in the complexes E�.DI ;D0I /, and whose
horizontal differential is given by the Poincaré residue. For any divisor Di there is a map
C�.Di ;D

0
i / ! C�.X;D/ given by pushforward of currents. The same isomorphism for the

divisor Di reads
C�.Di ;D

0
i / Š

M
I�f1;:::;kgnfig

E2.d�1�jI j/��.Di ;D
0
i /;

which is a subcomplex of the right hand side of (1). Under these isomorphisms, pushforward
of currents becomes identified with the inclusion of this subcomplex.

When D is empty the isomorphism (1) says that C�.X/ ' E2d��.X/; so it implements
the cap-product isomorphism between the cohomology and Borel-Moore homology of an
oriented manifold.
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1.4. Chain level duality

Let Dn D M 0;n n M0;n. Let Hycom denote the cyclic operad fC2n�4��.M 0;n;D
n/g

in the symmetric monoidal category of cochain complexes of nuclear Fréchet spaces with
projective tensor product. Specifically, fC2n�4��.M 0;n;D

n/g is the double suspension of the
operad fC��.M 0;n;D

n/g, whose operad structure is given by pushforward of currents. Let
also coGrav denote the anticyclic cooperad fE��1.M 0;n;D

n/g in the same category, whose
cooperad structure is given by taking the residue along a divisor. The cohomologies ofHycom
and coGrav are Hycom and coGrav, respectively.

T 1.5. – We have an isomorphism �cyccoGrav Š Hycom of cyclic operads of dg
nuclear Fréchet spaces.

Proof. – In arity n, �cyccoGrav is given byM
T

Ô
v2Vert.T /

E��2.M 0;n.v/;D
n.v//

with the sum ranging over trees with n legs. If we decompose the divisor Dn � M 0;n into
irreducible components, D1 [ : : : [Dk , then trees as above with q C 1 vertices correspond
to intersections of q distinct components of Dn. Thus we may rewrite �cyccoGravn asM

I�f1;:::;kg

E��2jI j�2.DI ;D
0
I / Š C2n�4��.M 0;n;D

n/

using the Künneth formula for the complexes E� and the isomorphism (1). Thus Hycomn Š
�cyccoGravn, which is in fact an isomorphism of cyclic operads.

An advantage of this argument is that it will work identically to prove an analogous
statement between coGrav considered as a antiplanar operad and a planar operadPrim built
out of the cohomology of M ı

0;n, as we shall see shortly.

1.5. The space M ı
0;n and the operad Prim

From now on we shall once and for all let ı denote the dihedral structure given by the
standard (cyclic) ordering on the set f1; : : : ; ng. In the introduction we defined M ı

0;n as
the union inside M 0;n of all strata meeting the closure of the particular component Xın
ofM0;n.R/. One can give somewhat more explicit alternative descriptions, that are easily seen
to be equivalent to each other:

1. Recall that boundary divisors in M 0;n correspond to partitions of f1; : : : ; ng into
subsets S t S 0, both of them with at least two elements. We define M ı

0;n to be the
complement of all boundary divisors such that S (and S 0) fail to be intervals with
respect to the cyclic order on f1; : : : ; ng.

2. Let � be the dual graph of an n-pointed nodal curve. We say that � is compatible with a
given dihedral structure on f1; : : : ; ng if it can be embedded in the plane such that the
induced dihedral structure on the set of legs coincides with the given one. We define
M ı
0;n to be the open subset of M 0;n given by strata whose corresponding dual graphs

are compatible with the dihedral structure.
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F 1. A configuration of three
pairwise non-crossing chords in an

octagon.

F 2. The Poincaré dual graph
to the collection of chords.

3. Every collection of pairwise non-crossing chords in an n-gon gives rise to a tiling of
the n-gon and a “Poincaré dual” graph, as illustrated in Figures 1 and 2. We define
M ı
0;n as the union of those strata inM 0;n whose corresponding dual graph arises from

a collection of chords in an n-gon.

Suppose that a given dual graph � is compatible with the given dihedral structure, so that
there exists an embedding of � in R2 inducing the dihedral structure on its legs. Then this
embedding is unique up to isotopy and orientation reversing. If we upgrade our dihedral
structure to a cyclic ordering of f1; : : : ; ng, then there is a unique embedding of � in R2 up to
isotopy, inducing the given cyclic ordering. The data of such an embedding is the same as the
structure of a ribbon graph on �. Thus the strata in the stratification of M ı

0;n by topological
type correspond bijectively to trees of exactly the same form as those in the stratification
of M 0;n, but which are additionally equipped with a planar structure. Accordingly, the
collection fM ı

0;ngn�3 is a planar operad.
In analogy to how we defined the operad Hycom, we define Prim to be the planar operad

with Primn D H
��2.M ı

0;n/˝Q.�1/ and composition given by Gysin maps. LetPrim denote
the planar operad fC2n�4��.M ı

0;n;D
n/gn�3, so that Prim D H.Prim/.

T 1.6. – We have an isomorphism �plcoGrav Š Prim of planar operads of dg
nuclear Fréchet spaces.

Proof. – Repeat the proof of Theorem 1.5, noting thatM ı
0;nnM0;n is again a strict normal

crossing divisor, but now the intersections of its components correspond to planar stable trees
with n legs.

1.6. Purity and formality of operads

There is some history of results showing that if an algebraic variety X has pure coho-
mology, then the topological space X.C/ is formal; that is, H �.X/ is quasi-isomorphic
toA�PL.X/ (or any other cdga model forX ) as a differential graded Q-algebra. The following
heuristic argument for why one might expect such a result is taken from the introduction to
Deligne-Griffiths-Morgan-Sullivan [9]. Suppose that each cohomology groupH k.X/ is pure
of weight k, e.g., if X is a smooth projective variety. By Kadeishvili’s theorem [21],H �.X/ is
equivalent to A�PL.X/ as an A1-algebra, for some collection of A1-operations f�ngn�2
on H �.X/ with �2 the usual cup product. But the operation �n has degree 2 � n, so if we
believe that these operations can be made compatible with the weight filtrations, then all �n
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for n � 3 should vanish. Then X must be formal. This heuristic was motivation for the
following theorem:

T 1.7 (Deligne-Griffiths-Morgan-Sullivan). – Let X be a compact Kähler mani-
fold, e.g., a smooth projective variety. Then there is a canonical zig-zag of quasi-isomorphisms

H �.X;R/ E�cl.X/! E
�.X/

where E�.X/ denotes the C1 de Rham complex and E�cl.X/ its subcomplex of d c-closed forms.
In particular, X is formal.

If H k.X/ is instead pure of weight 2k for all k, then the same heuristic is valid. In this
case a formality result can be obtained as follows:

T 1.8 (Deligne). – LetX be a smooth algebraic variety, andX a smooth compact-
ification of X such that D D X n X is a strict normal crossing divisor. Let ��

X
hDi be the

global sections of the logarithmic de Rham complex, i.e., the complex of meromorphic differen-
tial forms onX which are holomorphic onX and have at most logarithmic singularities alongD.
Then ��

X
hDi has vanishing differential, the natural map

��
X
hDi ! H �.X;C/

is an injection, and the image in degree k equals F kH k.X;C/, where F denotes the Hodge
filtration.

Proof. – This is a particular consequence of [7, Corollaire 3.2.13(ii)].

C 1.9. – IfX is a smooth algebraic variety for whichH k.X/ is purely of weight
2k for all k, then X is formal.

Proof. – The assumptions say that H k.X;C/ is of type .k; k/, so

H k.X;C/ D F kH k.X;C/ Š ��
X
hDi:

Then the inclusion of ��
X
hDi as a subalgebra of the C1 de Rham complex of X is a quasi-

isomorphism.

An alternative proof of formality in the smooth projective case was given by Deligne
[8, Section (5.3)], using `-adic cohomology. This latter proof is significantly closer to the
heuristics outlined in the beginning of this subsection.

Operads can be thought of as generalizations of associative algebras. The appropriate
operadic generalization of an A1-algebra is an operad up to homotopy [24]. By [17], operads
up to homotopy satisfy an analog of Kadeišvili’s theorem: if P is a dg operad, thenH.P / is
equipped with a collection of operations f�ng with �2 the usual operadic composition, such
that P and H.P / are equivalent as operads up to homotopy. Again �n has degree 2 � n.
Thus it seems plausible that any dg operad P of “algebro–geometric origin” whose coho-
mology can be equipped with a natural mixed Hodge structure (or structure of `-adic Galois
representation) for which H k is pure of weight k (or 2k) should have P and H.P / quasi-
isomorphic; that is, P should be formal. In particular, we expect both Hycom and coGrav to
be formal, by Proposition 1.2. This is indeed the case:

T 1.10. – Both Hycom and coGrav are formal (co)operads.
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Proof. – Note that coGrav.n/ D E��1.M 0;n;D
n/ contains ���1

M0;n
hDni as a subcomplex

(with notation as in Subsection 1.3 and Proposition 1.8), and that the latter is isomorphic
toH ��1.M0;n;C/. Since the Poincaré residue of a meromorphic form is meromorphic, these
subcomplexes are preserved by the cooperadic cocomposition. This proves formality.

Formality of Hycom is a special case of the results of [18]. In brief, the complexes E�cl.X/

and E�.X/ of Theorem 1.7 satisfy a Künneth theorem and are functorial for holomor-
phic maps, which implies that the zig-zag of Theorem 1.7 (or rather its dual, in terms of
the complex of currents) defines a quasi-isomorphism between the operad Hycom with its
cohomology Hycom.

In particular, we observe that Theorem 1.10 and Theorem 1.5 combine to give a second
proof of Theorem 1.3, that coGrav and Hycom are Koszul dual to each other.

Since formality of the cooperad coGrav relied so strongly on the fact that H k.M0;n/ is
pure of weight 2k, and this fails in higher genus, it would seem likely that the modular
(higher genus) version of the cooperad coGrav fails to be formal. This is indeed the case.
In the following proof we use the Feynman transform, which is just the version of the
cobar construction that acts on modular operads. The Feynman transform interchanges
K�1-modular cooperads and modular operads, just like the bar–cobar transforms inter-
change anticyclic cooperads and cyclic operads.

P 1.11. – The K�1-modular cooperad coGrav is not formal.

Proof. – By [15, Theorem 6.11], the Feynman transform of coGrav is isomorphic to the
modular operad Hycom. In particular, this Feynman transform computes the cohomology
of M g;n. If coGrav were formal, the same would be true for the Feynman transform of its
cohomology coGrav. But by reasoning as in the proof of Theorem 1.3, we may identify the
Feynman transform of coGrav with the E1 page of the spectral sequence associated with the
filtration of M g;n by topological type, which also computes the cohomology of M g;n. Thus
if coGrav were formal, the latter spectral sequence would have to degenerate at E2, just by
considerations of Betti numbers. This spectral sequence does degenerate atE2 in genus zero,
but not in general: as explained in [30, Section 1], Getzler’s relation on M 1;4 gives rise to a
nonzero E2-differential.

This answers questions raised in [10, p. 3] and in the end of the introduction of [34].

1.7. Equivalence of freedom and purity

We are now in a position to state the main result of this section. Before stating it, we
remark that all of the equivalent statements in the following theorem are indeed true, and
we have two independent proofs: Theorem 2.22 in Section 2 shows that statement (1) below
is satisfied, and Theorem 3.11 in Section 3 shows that condition (4) is true.

T 1.12. – The following are equivalent:

1. The nonsymmetric cooperad coGrav is cofree.
2. coGrav is cofree as an antiplanar cooperad, cogenerated by the collection H ��1.M ı

0;n/.
3. The operad Prim is formal, and all composition maps on its cohomology operad Prim

vanish.

4 e SÉRIE – TOME 50 – 2017 – No 5



BROWN’S DIHEDRAL MODULI SPACE AND THE GRAVITY OPERAD 1095

4. H i .M ı
0;n/ has a pure Hodge structure of weight 2i .

5. H i .M ı
0;n/! H i .M0;n/ is an injection.

Proof. – (5) H) (4) is clear, since we have already noted that H i .M0;n/ has a pure
Hodge structure of weight 2i (Proposition 1.2).

(4) H) (3). There are quasi-isomorphisms Prim Š �plcoGrav ' �plcoGrav

by Theorem 1.6 and formality of coGrav. Purity of Prim implies that the cohomology
of �plcoGrav is concentrated in the summand corresponding to trees with a single vertex;
that is, the edge map Prim! �plcoGrav is a quasi-isomorphism.

Moreover, the assumption implies that all the composition maps in Prim go between
cohomology groups of different weights, as Primk

n D H
k�2.M ı

0;n/˝Q.�1/ is of weight 2k�2.
The composition maps must therefore vanish.

(3) H) (2) We have a chain of quasi-isomorphisms coGrav ' coGrav ' BplPrim '

BplPrim Š Tpl;�.†Prim/, using (respectively) formality of coGrav, Theorem 1.6 and bar-
cobar duality, the assumption thatPrim is formal, and the assumption that the composition
maps in Prim are zero.

(2) H) (1) is trivial.
(1) H) (5). By assumption we have coGrav D Tns.M/ D Bns.†�1M/ for some

collectionM , where Tns denotes the cofree conilpotent nonsymmetric cooperad functor. By
the nonsymmetric version of Theorem 1.6, bar-cobar duality and formality of coGrav, it
follows that †�1M ' -nscoGrav ' Prim. Taking cohomology we see that †�1M Š Prim.
But the inclusion of†Prim into BnsPrim as the summand corresponding to trees with a single
vertex is an injection, and then so mustH i .M ı

0;n/! H i .M0;n/ be. (The identification of the
two mapsH �.M ı

0;n/! H �.M0;n/ and†Prim! BnsPrim follows from our identification of
said bar construction with the Leray spectral sequence for M0;n !M ı

0;n.)

R 1.13. – The fact that the composition maps in the operad Prim are all zero can
be given an easy proof independent of the rest of the results in this paper. We need to show
that the Gysin maps

��WH
k.M ı

0;nC1 �M
ı
0;mC1/! H kC2.M ı

0;nCm/

are all zero. When k D 0, this is the same as saying that the cohomology class of the boundary
divisor D D M ı

0;nC1 � M
ı
0;mC1 � M ı

0;nCm is zero. If this boundary divisor corresponds
to a chord in an .n C m/-gon, consider the WDVV relation on M 0;nCm corresponding to
the 4 marked points that are “adjacent” to this chord. This is a linear relation between
boundary divisors on M 0;nCm, all of which except D are outside of M ı

0;nCm. Thus ŒD� D 0

in H 2.M ı
0;nCm/.

Secondly, we observe that the pullback map ��WH �.M ı
0;nCm/! H �.M ı

0;nC1�M
ı
0;mC1/ is

surjective. Indeed, the inclusion of this divisor is a retract; a left inverse is given by a product
of two forgetful maps.

Finally, to prove this vanishing also in higher degrees, we use the projection formula. Take
˛ 2 H �.M ı

0;nC1 �M
ı
0;mC1/ and let ˛ D ��.ˇ/ for some ˇ. Then

��.˛/ D ��.1 � �
�.ˇ// D ��.1/ � ˇ D 0;

since we have already verified that ��.1/ D 0.
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2. Freedom

2.1. Arrangements of hyperplanes

Let fHcgc2C be a finite set of affine hyperplanes in Cn. Let us write U D Cn n
S
c2C Hc

for the complement of the hyperplane arrangement. We denote by fc the linear form
corresponding to the hyperplane Hc . By a theorem of Brieskorn [4], the cohomology
ring H �.U;Z/ is isomorphic to the subalgebra of the de Rham complex of U generated by
the 1-forms 1

2i�
d log.fc/. Let ^�C denote the exterior algebra generated by the set C . We

write ec for the generator corresponding to c 2 C , and we put

eS D
^
c2S

ec

for S � C . (Unless C is ordered, eS is only well defined up to a sign.) Thus we have the
canonical surjection^�C ! H �.U;Z/, taking ec to the differential form 1

2i�
d log.fc/. Let J

denote the kernel of this surjection. One can define combinatorially a set of generators for J .
For this we shall need some terminology.

D 2.1. – A subset S � C is dependent if the intersection of the corresponding
hyperplanes is not transverse. An inclusion-minimal dependent subset is called a circuit.

D 2.2. – Suppose given a total order� on C . A broken circuit is a subset of C
of the form A nmin.A/, where A is a circuit.

D 2.3. – A subset S � C is called an nbc-set if no subset of S forms a broken
circuit and

T
c2S Hc ¤ ;.

Let @W ^kC ! ^k�1C be the Koszul differential, i.e., the unique derivation with @.ec/ D 1
for all c 2 C .

The following two theorems are fundamental in the theory of hyperplane arrangements.
For a textbook treatment we recommend [29, Chapter 3]. The original references (in the case
of a central arrangement) are [28, 12, 20].

T 2.4 (Orlik-Solomon). – The ideal J is generated by the elements @eA, where
A ranges over the circuits in C , and eS , where S ranges over the subsets of C for whichT
c2S Hc D ;.

T 2.5 (Gel0fand-Zelevinskiı̆, Jambu-Terao). – The elements eS , where S ranges
over the nbc-sets in C , give a basis for H �.U;Z/.

R 2.6. – The easier half of Theorem 2.5 is that the elements eS , where S ranges
over the nbc-sets in C , span H �.U;Z/. Indeed, if A is a circuit, then the equation @eA D 0 is
a linear relation in which exactly one of the terms corresponds to a broken circuit. Thus
the Orlik-Solomon relations of Theorem 2.4 can be successively used to eliminate broken
circuits. In doing so, we may introduce new broken circuits; nevertheless, this procedure must
terminate, since we are always replacing monomials with ones that are strictly smaller with
respect to (say) the lexicographic order on the set of monomials with respect to �.
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Suppose that S is a polynomial or exterior algebra equipped with a term order � on
its monomials. For f 2 S , we write in.f / for the initial term of f , i.e., the monomial
which is largest with respect to �. If I � S is an ideal, then we write in.I / for its initial
ideal, the ideal generated by in.f / for f 2 I . Recall that a Gröbner basis for I is a set of
generators f1; : : : ; fk for I such that in.f1/; : : : ; in.fk/ generate in.I /. A standard monomial
is a monomial in S which is not in in.I /. The set of all standard monomials forms a basis for
the quotient S=I .

Theorem 2.5 may be reformulated in these terms by saying that the generators for the
ideal J given by Theorem 2.4 are in fact a Gröbner basis for J over the integers, for any choice
of total order �. (It will not in general be a reduced Gröbner basis.) Indeed, for any circuit
A,

in.@eA/ D ˙eAnmin.A/;

so a broken circuit is nothing but the leading term of one of the Orlik-Solomon relations.
Thus the basis for H �.U;Z/ of nbc-sets is the basis of standard monomials with respect to
this Gröbner basis.

2.2. Moduli space M0;n and arc diagrams

Consider the moduli space M0;n, parametrizing distinct ordered points z1; : : : ; zn
on P1 modulo the action of PGL.2/. Using the gauge freedom to fix the marked points
z1; zn�1; zn D 0; 1; 1 leaves a configuration of distinct points z2; : : : ; zn�2 in C n f0; 1g.
This gives an identification of M0;n with the complement of a hyperplane arrangement. We
will find it convenient to write the corresponding affine space as

f.z1; z2; : : : ; zn�1/ 2 Cn�1 W z1 D 0; zn�1 D 1g

in which case the hyperplanes can be written in a uniform way as fzi � zj D 0g, for
1 � i; j � n � 1. Let us write Cn for the set of unordered pairs fi; j g with 1 � i; j � n � 1,
i ¤ j , and fi; j g ¤ f1; n � 1g. Then our set of hyperplanes can be written as fHi;j gfi;j g2Cn .

We define the length of the pair fi; j g to be ji �j j. Let� be an arbitrary total order on Cn
refining the partial order by reverse length; that is, if ji � j j > jk � l j, then fi; j g � fk; lg.

Let eij be the generator for^�Cn corresponding to fi; j g. We draw basis elements for^�Cn
graphically by marking the points 1; : : : ; n � 1 2 R as vertices on the boundary of an upper
half plane R�R�0, and for each generator eij in the monomial we draw an arc in the upper
half-plane with endpoints i and j . We call such a basis element an arc diagram. We write
!ij for the differential form 1

2i�
d log.zi � zj /, so that the natural map ^�Cn ! H �.M0;n/

takes eij to the class represented by the differential form !ij . Let J arc
n denote the kernel of

this map.

As an example of our notation, the “Arnol’d relation” !ij!jk C !ik!ij � !ik!jk D 0

(which is exactly the Orlik-Solomon relation corresponding to the circuit ffi; j g; fi; kg; fj; kgg � Cn)
can be interpreted as saying that the sum

i j k

C

i j k

�

i j k

goes to zero under ^�Cn ! H �.M0;n/.
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We observe that a circuit inCn is exactly an arc diagram for which the corresponding graph
is a closed cycle, such as the following three arc diagrams:

; ; and :

A broken circuit is an arc diagram from which the �-smallest arc has been removed, and
thus the corresponding graph is a path. The broken circuits corresponding to the above three
circuits would be

; ; and :

In these three examples there was a unique arc of maximal length in the circuit, which is
then necessarily the smallest arc under �; recall that we allowed � to be an arbitrary linear
extension of the partial order by reverse arc-length.

P 2.7. – The “no broken circuit”-basis ofH �.M0;n/ provided by Theorem 2.5
consist exactly of those arc diagrams which do not contain vertices i < j < k such that the
monomial has a factor eij ejk , and which do not contain vertices i < j < k < l such that
eikejkejl is a factor.

Proof. – It is clear that if an arc diagram has a factor eij ejk or eikejkejl , then it contains
a broken circuit; specifically, these are exactly the first two broken circuits given as examples
before the lemma.

Conversely, we need to show that any broken circuit, and any arc diagram for which the
corresponding set of hyperplanes has empty intersection, contains one of these two as a
factor. Take first an arc diagram corresponding to a broken circuit, and suppose it does not
contain any factor of the form

:

This means that the path given by the arc diagram switches directions from left to right at
each step. In particular, it is not possible for two successive arcs to have the same length.
Now suppose also that the broken circuit does not have a factor

:

Equivalently, at no step of the path is there an arc which has shorter length than both
its neighbors. It follows that the sequence of arc-lengths along the path is unimodal: the
arc-lengths are first strictly increasing, until they reach a maximum and become strictly
decreasing. Thus the path would look e.g., as follows:

:

But it is now clear that this could not have been a broken circuit: the missing arc that is needed
to close the path to a cycle is completely contained within the arc of maximal length in the
path.
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Suppose instead that we have an arc diagram for which the intersection of the corre-
sponding hyperplanes is empty. This can only happen if the vertex “1” and the vertex
“.n � 1/” are in the same connected component of the graph given by the arc diagram.
Choose a path in the arc diagram from the vertex 1 to the vertex .n � 1/. Since the arcs in
the diagram correspond to elements of Cn, and f1; n � 1g 62 Cn, the path must have length
at least 2. If this path does not contain a broken circuit, then the same argument as before
shows that the edge-lengths must be unimodal, which is clearly impossible.

D 2.8. – We define a gravity arc diagram to be an arc diagram satisfying the
conditions of the above proposition; that is, the set of gravity arc diagrams equals the set of
basis elements in the “no broken circuit”-basis for H �.M0;n/.

R 2.9. – Proposition 2.7 may be reformulated as saying that the initial ideal
of J arc

n is generated by the monomials eij ejk for i < j < k, and eikejkejl for i < j < k < l .

2.3. Chords and cross-ratios

By a chord in a convex polygon we mean a straight line connecting two non-consecutive
vertices. Let us label the sides of the standard n-gon clockwise from 1 to n. Each chord
partitions the set f1; : : : ; ng into two intervals (for the cyclic order). We shall label each chord
by the two endpoints of the corresponding interval in f1; : : : ; ng not containing the element n.
Below is the standard n-gon for n D 5, with the chord f1; 3g drawn on it.

4

3 2

1

5

Under this labeling, the set of chords becomes identified with the set of pairs fi; j g of
elements in f1; : : : ; n � 1g except f1; n � 1g, which is exactly the set Cn that we introduced
in the previous section. Recall that we defined the length of an element of Cn, and a total
order � on Cn; we will use this to freely talk about the relation � also on the set of chords.

Each chord is incident to four sides of the polygon, which correspond to four of the
markings onM0;n. Thus each chord defines a forgetful map uij WM0;n !M0;4 Š A1 n f0; 1g,
or more classically, a cross-ratio. More precisely, we let uij for i < j be the cross-ratio
Œ i i � 1 j j j C 1 �, where subtraction and addition is taken modulo n.

We caution the reader that our numbering of the chords does not agree with the one used
in [6]: our uij is his ui�1 j .

There is an evident notion of when two chords cross. Say that two subsets A;B � Cn
are completely crossing if whenever a chord c crosses all chords in A, then c 2 B, and vice
versa, if a chord c crosses all chords in B, then c 2 A. These notions can be used to give a
presentation of the coordinate ring of M0;n [6, Section 2.2]: one has

M0;n D Spec QŒu˙1c j c 2 Cn�=hRi;

where R is the set of relations that
Q
a2A ua C

Q
b2B ub D 1 for all pairs of completely

crossing subsets A;B � Cn. The codimension 1 strata are given by equations uc D 0. For
example, the stratum uf1;3g D 0 (corresponding to the chord shown in the picture above)
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corresponds to the partition into intervals f5; 4g t f1; 2; 3g. Strata of higher codimension
correspond to tilings and are explicitly given by setting uc D 0 for all chords c in the tiling.

This leads moreover to a presentation of the cohomology ring. The cohomology ring
H �.M0;n;Z/ is isomorphic to the subalgebra of the de Rham complex generated by the
differential forms

˛c D
1

2i�
d loguc ; c 2 Cn;

which gives us a second natural surjective map ^�Cn ! H �.M0;n;Z/. Let J chord
n denote the

kernel of this surjection. A set of generators for J chord
n , and hence a different presentation

of the cohomology ring H �.M0;n;Z/, was determined by Brown [6, Proposition 6.2]: the
ideal J chord

n is generated by all expressions�X
a2A

˛a

��X
b2B

˛b

�
;

where A;B � Cn are completely crossing subsets.

2.4. The basis of chord diagrams

LetR be a ring, and let S be the exterior algebra overR generated by elements x1; : : : ; xn.
(Everything we say now is true also in the more classical case of a polynomial algebra.)
Suppose we fix the ordering x1 � x2 � � � � � xn, and extend this to a term ordering on
the monomials in the generators (e.g., by the lexicographic order). There is a natural action
of G D GLn.R/ on S : an element g D .gij / 2 G acts on the generators via the rule

g � xj D

nX
iD1

gijxi :

Let U � G be the unipotent subgroup of upper triangular matrices with ones along
the diagonal. The action of G on the initial ideals and Gröbner bases is nontrivial and
interesting, and leads to the theory of generic initial ideals. However, all the action takes place
in the coset space U nG, by the following easy lemma:

L 2.10. – For any f 2 S and u 2 U , we have in.f / D in.u �f /. In particular, I and
u � I have the same initial ideal for any ideal I , and if f1; : : : ; fk is a Gröbner basis for I , then
u � f1; : : : ; u � fk is a Gröbner basis for u � I .

Proof. – If x˛ is a monomial in S , then

u � x˛ D x˛ C .terms strictly �-smaller than x˛/:

This implies the result.

After this brief interlude, let us return to the problem at hand. In terms of the coordi-
nates z1; : : : ; zn on M0;n defined in Subsection 2.2, the differential forms ˛ij may be written
in the form

˛ij D
1

2i�
d log

.zi � zj /.zi�1 � zjC1/

.zi�1 � zj /.zi � zjC1/
D !ij C !i�1 jC1 � !i�1 j � !i jC1:
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The reader may check that this is valid also if one of the four points equals zn D1, in which
case we must set !in D 0 D !1n�1. Thus there is a commutative diagram

^�Cn ^�Cn

H �.M0;n;Z/

u

f g

where f takes a generator eij to the class ˛ij , g takes eij to !ij , and

u.eij / D eij C ei�1 jC1 � ei�1 j � ei jC1:

Again we tacitly set e1n�1 D ein D 0. But now note that in the expression
eij C ei�1 jC1 � ei�1 j � ei jC1, the first term is strictly larger than the remaining three
under �. This implies that we are in the situation of Lemma 2.10, and we deduce:

T 2.11. – The initial ideal in.J chord
n / is generated by the monomials eij ejk for

i < j < k, and eikejkejl for i < j < k < l .

Proof. – The map u is an automorphism of the algebra^�Cn, taking the ideal J chord
n (the

kernel of f ) to the ideal J arc
n (the kernel of g). But since u is an automorphism of the form

considered in Lemma 2.10, this implies that J chord
n and J arc

n have the same initial ideal. The
initial ideal of J arc

n was determined in Proposition 2.7, see Remark 2.9.

We define a chord diagram on the n-gon to be a basis element in the exterior algebra^�Cn,
drawn as a collection of chords on a standard n-gon. Thus the sets of arc diagrams and chord
diagrams are in canonical bijection with each other, and with the set of subsets of Cn. The
difference between arc diagrams and chord diagrams is that they are drawn diagrammatically
in different ways, and that when we think of an arc diagram as a cohomology class on M0;n

we are applying the map eij 7! !ij , whereas arc diagrams are interpreted as cohomology
classes via eij 7! ˛ij .

D 2.12. – A gravity chord diagram is a chord diagram which is not divisible by
the monomials eij ejk for i < j < k, and eikejkejl for i < j < k < l .

C 2.13. – The set of gravity chord diagrams defines a basis for H �.M0;n/.

2.5. Cooperad structure of chord diagrams

Let us give a graphical interpretation of gravity chord diagrams. Recall that the side of the
n-gon labeled by n played a special role in the way we numbered the chords on the n-gon:
each chord partitions the set f1; : : : ; ng into two intervals for the cyclic ordering, and the
chord is labeled by the two endpoints of the interval not containing n. This corresponds
to the fact that gravity chord diagrams will form a basis for coGrav as a nonsymmetric
cooperad (as opposed to an antiplanar one), so the condition of being a gravity chord
diagram should depend on the choice of a total ordering of the sides, or equivalently, the
choice of a distinguished side of the polygon. Geometrically this corresponds to fixing a point
at infinity.
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The condition for being a gravity chord diagram is then the following: for every pair
of crossing chords in the chord diagram, consider the corresponding inscribed quadri-
lateral. The side of this quadrilateral that is opposite from the distinguished side of the
polygon is not allowed to be a side of the polygon, nor is it allowed to be a chord in the
diagram. The two forms of inadmissible chord diagrams are illustrated in Figures 3 and 4;
the “inscribed quadrilaterals” mentioned in the definition are depicted by dotted lines, and
the distinguished side of the polygon is the one on the top.

F 3. A chord diagram of the
form eij ejk for i < j < k.

F 4. A chord diagram of the
form eikejkejl for i < j < k < l .

A diagram with i chords in an n-gon and a diagram with j chords in an m-gon can be
grafted together to produce a diagram with .i C j C 1/ chords in an .n C m � 2/-gon, by
identifying two sides of the polygons with each other and including this side as a chord in
the .nCm � 2/-gon. As an example, grafting the two chord diagrams

5

4

3

2

1

6

and 3

2

1

4

along the sides labeled “6” and “3”, respectively, produces the chord diagram

7

6

5
4

3

2

1
8

:

In this case, we grafted together two gravity chord diagram, and the result was again a gravity
chord diagram. This was no coincidence:

P 2.14. – Grafting the distinguished side of a gravity chord diagram onto a
non-distinguished side of a gravity chord diagram produces a new gravity chord diagram.

Proof. – The proof amounts to checking a few cases. Suppose, for instance, that there is a
configuration of chords of the form displayed in Figure 4 after grafting. If this configuration
is completely contained in one of the two polygons which have been grafted together, then
this would contradict the assumption that both were gravity chord diagrams. The only
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other possibility is that the “middle” chord in this configuration is the new chord that was
introduced upon grafting, since the new chord introduced after grafting cannot cross any
other chord. But in this case, the other two chords were a configuration of the form displayed
in Figure 3 before grafting.

D 2.15. – Let g.n/ denote the set of gravity chord diagrams in an .nC1/-gon.
The grafting procedure of Proposition 2.14 makes the collection g D fg.n/gn�2 into a
nonsymmetric operad in the category of sets, which we call the operad of gravity chord
diagrams.

D 2.16. – We say that a chord in a chord diagram is residual if the diagram
contains no other chord which crosses it.

The dual procedure to grafting two chord diagrams is cutting along a residual chord: given
a chord diagram with d chords on an n-gon and a residual chord c, cutting along c gives two
chord diagrams: one on a .k C 1/-gon and one on an .n � k C 1/-gon (for some k), with a
total of .d � 1/ chords.

P 2.17. – Let c be a residual chord in a gravity chord diagram on an n-gon.
Cutting the diagram along c produces two gravity chord diagrams, where the distinguished side
on the polygon not containing the side labeled “n” is taken to be the side given by the chord c.

Proof. – The proof is entirely analogous to the proof of Proposition 2.14.

D 2.18. – We say that a gravity chord diagram is prime if it contains no
residual chords. Denote the set of prime chord diagrams on an .nC 1/-gon by p.n/ � g.n/.

T 2.19. – The operad of gravity chord diagrams g is the free nonsymmetric operad
generated by the collection p of prime chord diagrams.

Proof. – Every residual chord in a gravity chord diagram gives a way of writing the
diagram as an operadic composition of two smaller gravity chord diagrams, and vice versa,
by Propositions 2.14 and 2.17. It follows that prime chord diagrams are exactly the inde-
composable elements in the operad g. Moreover, every element of g can be written in a
unique way as a composition of prime chord diagrams, by cutting along all possible residual
chords.

R 2.20. – The preceding proof is perhaps best illustrated by an example. Figure 5
shows a gravity chord diagram on the 10-gon, and Figure 6 shows the unique way of writing
this gravity chord diagram as an operadic composition of prime chord diagrams. The distin-
guished (“output”) side of each polygon is illustrated by a thick edge.

Note that the set of gravity chord diagrams is partitioned g.n/ D
`
d�0 g.n/d by the

number d of chords, and the set of prime chord diagrams similarly. Define coG.n/ DL
d�0†

�d�1Qg.n/d . This becomes a nonsymmetric graded cooperad, by dualizing the
operad structure of Definition 2.15. It is cofree on P.n/ D

L
d�0†

�d�1Qp.n/d .
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F 5. An element of g.9/. F 6. The decomposition of
the element on the right into prime
chord diagrams.

R 2.21. – Notice that the collection g is not a cooperad of sets, even though it
linearly spans the cooperad coG and the partial cocompositions take basis vectors to basis
vectors (if the partial cocomposition is nonzero). In pictures this is visible in that there is no
way, at the level of sets, to cocompose a gravity chord diagram along a chord not present
in the diagram. In coG the problem evaporates, such a cocomposition is simply set to be
zero. Abstractly, the cooperad coG is conilpotent and no such cooperad can be spanned by
a cooperad of sets.

T 2.22. – The map coG ! coGrav is an isomorphism of nonsymmetric graded
cooperads. In particular, coGrav is cofree as a nonsymmetric cooperad.

Proof. – Since we have already shown that gravity chord diagrams give a basis for the
cohomology of M0;n, we only need to verify that this is in fact a morphism of cooperads.
Modulo signs involving the convention for how to order chords in a gravity diagram, the
statement amounts to showing that the Poincaré residue is given diagrammatically by cutting
along a residual chord. To argue this we shall use Brown’s presentation

H �.M0;n/ D ^
�Cn=

��X
a2A

˛a

��X
b2B

˛b

��
;

forA;B � Cn completely crossing subsets. We propose that the Poincaré residue to a stratum
uc D 0 is given by Resc D �c ı @=@˛c , where �c is the operation of “cutting along c”. Let
A;B � Cn be a pair of completely crossing subsets and define

RA;B D

�X
a2A

˛a

��X
b2B

˛b

�
:

Assume first that c … A [ B. Then @
@˛c
RA;B D 0: Assume conversely, without loss of

generality, that c 2 A. Then @
@˛c
RA;B D

P
b2B ˛b : However, we note that all b 2 B

must then cross c; and since �c˛b D 0 if b crosses c, we can conclude that, in all cases,
�c

@
@˛c
RA;B D 0: This proves that the expression is well-defined as a map on cohomology.

That it equals the Poincaré residue is then clear since uc D 0 is the equation defining the
stratum and ˛c D duc

2i�uc
.

R 2.23. – Taking the Poincaré residue of Arnol’d forms !ij is a lot more subtle—
the simple formula Resc D �c ı @=@˛c , using the chord-diagrammatic description, is the
reason why the basis given by the f˛ij g is better suited for cooperadic computations.
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R 2.24. – In fact, our proof shows that the integral cohomology

fH ��1.M0;nC1;Z/gn�2

forms a cooperad, and that this integral gravity cooperad is cofree.

Recall that Primn D H
��2.M ı

0;n/.

C 2.25. – The projection from the basis g.n/ onto the subset p.n/ cogenerates
an isomorphism

coGrav! Tpl;�.†Prim/

of antiplanar cooperads, where Tpl;� denotes the cofree antiplanar cooperad functor.

Proof. – It follows from 1.12 that if coGrav is cofree as a nonsymmetric cooperad, then
it must be cogenerated by †Prim and, moreover, †Prim must be isomorphic to its image in
coGrav. Thus we must only argue that the projection H �.M0;n/ ! H �.M ı

0;n/ is a map of
planar collections, i.e., that it respects cyclic group actions. But this is clear since the cyclic
action preserves residual chords, H �.M ı

0;n/ � H
�.M0;n/ is a subrepresentation of the cyclic

group, and the projection is a left inverse of the inclusion.

2.6. The Lie operad

According to a theorem of Salvatore and Tauraso [32], the operad Lie is the linear hull of
a free nonsymmetric operad in the category of sets. According to Theorems 2.19 and 2.22,
the same holds true for the gravity operad Grav. In the highest cohomological degree, Grav is
isomorphic to the suspension ƒLie of the Lie operad; in particular, we have recovered an
independent proof of Salvatore and Tauraso’s result.

In fact, there is an easy isomorphism between the operad in sets which they construct,
and the suboperad of g given by gravity chord diagrams of largest degree. In [32, 227] it
is explained how the elements of their operad can be drawn diagrammatically in terms of
diagrams of arcs in a half-plane. Their diagrams are equivalent to our arc diagrams—the
only difference is that in our diagrams, the largest arc e1n is not allowed to occur, whereas
for them it must always be present. The isomorphism between their operad and ours is then
given by taking one of their diagrams, interpreting it as an arc diagram in our sense, and using
the bijection between arc and chord diagrams.

According to Theorem 2.22 and Theorem 1.12, coGrav is in fact cofree as an antiplanar
cooperad. In the highest cohomological degree, coGrav is isomorphic to the suspension
ƒcoLie of the Lie co-operad. Desuspending and dualizing, we conclude:

C 2.26. – The operad Lie is free as a planar operad.

This is a mild improvement on what is proven in [32]—it says that not only is the
Lie operad free, but the space of generators in arity n can be given an action of the
cyclic group Z=.nC 1/Z, compatible in a suitable sense with the actions of the cyclic
groups Z=.nC 1/Z on the spaces Lie.n/.

Given this, it is natural to ask if Lie is in fact the linear hull of a free planar operad in the
category of sets. This is, however, false: one may verify (e.g., by using the computations of
[5, Subsection 4.4.1]) that a generator of Z=6Z acts on the 4-dimensional space of generators
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in arity 5 with trace �1, so the action cannot be given by permuting a basis. In particular,
Grav is not the linear hull of a free planar operad in the category of sets, either.

3. Purity

3.1. The constructions of Kapranov and Keel

There are many ways one can construct the moduli space M 0;n as an iterated blow-up.
One is due to Kapranov [22]: start with Pn�3, and choose n � 1 points in general linear
position (such a choice is unique up to a change of coordinates). Consider the collection
of subvarieties of Pn�3 given by all projective subspaces spanned by subsets of these points.
Choose a minimal element Z of this collection. Replace Pn�3 by the blow-up BlZPn�3 and
replace the remaining elements of the collection of subvarieties by their strict transforms.
Repeat this procedure until every member of the collection has been blown up. Then the
result is isomorphic to M 0;n.

A similar construction was used by Keel [23]: start instead with .P1/n�3, and consider the
collection of subvarieties defined by the condition that some subset of the n � 3 points are
equal to each other, or that some subset of the points are equal to 0, 1 or1. An identical
procedure of iteratively blowing up a minimal element of the collection and replacing the
remaining ones by their strict transforms again produces M 0;n.

Both constructions just described are special cases of wonderful compactifications of an
arrangement of subvarieties [25]. We have taken the liberty of changing the order of blow-
ups compared to the ones used by Keel and Kapranov: one of the main results of [25] is that
as long as certain combinatorial conditions are satisfied—which in particular always hold
when blowing up a minimal element—then the end result of this procedure is insensitive to
the order in which the subvarieties are blown up.

3.2. Weighted stable pointed rational curves

The notion of weighted stable pointed curve was introduced by Hassett [19]. One thing
that Hassett realized is that both Kapranov’s and Keel’s results can be seen as special cases
of a more general construction, which also allows modular interpretations of all the inter-
mediate steps in the sequence of blow-ups. Before explaining this, let us recall the relevant
definitions.

D 3.1. – A weight vector is an n-tuple A D .a1; : : : ; an/ of numbers with
0 < ai � 1 for all i and

Pn
iD1 ai > 2.

D 3.2. – Fix a weight vector A . Let C be a nodal curve of arithmetic genus
zero, equipped with n marked points x1; : : : ; xn contained in the smooth locus. We say that
ai is the weight of xi . We say that .C; x1; : : : ; xn/ is A -stable if:

1. For every irreducible component C0 of C , the number of nodes of C0 plus the sum of
the weights of all markings on C0 is strictly greater than 2.

2. For every S � f1; : : : ; ng such that xi D xj when i; j 2 S , we have
P
i2S ai � 1.
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Hassett has proved that for every weight vector A , there exists a fine moduli spaceM 0;A

parametrizing n-pointed A -stable curves of genus zero. It is a smooth projective scheme
over Z. When A D .1; : : : ; 1/ we recover the usual Deligne-Mumford compactifica-
tion M 0;n.

3.3. Stratification by topological type

Recall that the strata in the spaceM 0;n are indexed by stable dual graphs� with n external
half-edges (legs). The situation for the spaces M 0;A is entirely analogous. The complement
of the locus of smooth curves is a strict normal crossing divisor, and the intersections of
boundary strata define a stratification, which coincides with the natural stratification by
topological type. The strata are again indexed by dual graphs, but with a different stability
condition: if the external half-edges are assigned weights according to the weight vector A ,
and the internal half-edges are all given weight 1, then for any vertex the sum of the weights
of the adjacent half-edges is greater than 2. We can write the closed stratum corresponding to
such a graph � as

Q
v2Vert.�/M 0;A .v/, where A .v/ is the weight vector given by the weights

of all half-edges adjacent to v.
For example, boundary divisors correspond to subsets S � f1; : : : ; ng with

P
i2S ai > 1

and
P
i…S ai > 1, and each such boundary divisor is a productM 0;A 0 �M 0;A 00 . Here A 0 is

the weight vector obtained by deleting all elements of S and adding a marking of weight 1,
and A 00 is the weight vector obtained by deleting elements not in S and replacing them with
a marking of weight 1.

3.4. Coincidence sets and chamber structure

For S � f1; : : : ; ng, let �S � M 0;A denote the subset defined by the condition that
xi D xj for i; j 2 S . We call these loci coincidence sets. If �S ¤ ; then

P
i2S ai � 1. Each

coincidence set is itself a moduli space of weighted stable pointed curves: let A 0 be the weight
vector obtained by removing all but one of the elements of S , and assigning the remaining
element the weight

P
i2S ai . Then �S ŠM 0;A 0 .

Let now A D .a1; : : : ; an/ and A 0 D .a01; : : : ; a
0
n/ be weight vectors. We write A 0 � A

if a0i � ai for all i . In this case, there is a natural reduction map M 0;A ! M 0;A 0 , given by
contracting any components that may become unstable when the weights are lowered from A

to A 0.
We say that S � f1; : : : ; ng is large if

P
i2S ai > 1; otherwise, the subset is called small.

The spaceM 0;A only depends on the weight vector A via the information of which subsets
of f1; : : : ; ng are large. Geometrically, this means the following. The region

W D f.a1; : : : ; an/ 2 Rn W 0 < ai � 1 for all i;
nX
iD1

ai > 2g

is subdivided into polyhedral chambers by the hyperplanes 1 D
P
i2S ai , for any S � f1; : : : ; ng.

If A 0 and A are in the interior of the same chamber, then M 0;A ŠM 0;A 0 .
Suppose instead that A and A 0 lie in adjacent chambers, with A 0 � A . Then there is

a unique subset S which is large with respect to A but not A 0, namely the subset corre-
sponding to the hyperplane separating the two chambers. Then we have

M 0;A Š Bl�SM 0;A 0 :
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In other words, allowing the markings labeled by S to “bubble off” onto a new component
is equivalent to blowing up the coincidence set�S . For any subset T , the coincidence set�T
in M 0;A is the strict transform of the coincidence set �T in M 0;A 0 .

We remark that if jS j D 2, then the coincidence set �S is a divisor and the blow-up
in �S is an isomorphism. In this case, crossing the corresponding wall changes the moduli
functor (that is, the universal family over M 0;A is modified) but not the moduli space itself.
Hassett calls the decomposition of W by the hyperplanes corresponding to all S the fine
chamber decomposition, and the one obtained from S with jS j � 3 the coarse chamber
decomposition.

3.5. Kapranov and Keel again

Consider first the weight vector A D .a; a; : : : ; a; 1/ with a D 1
n�1
C �, where � > 0 is

sufficiently small. Then an A -stable curve cannot have any extra components, so the moduli
spaceM 0;A just parametrizes configurations of points onP1. Specifically, we are considering
.x1; : : : ; xn/ with xi ¤ xn for all i < n, and such that not all xi with i < n coincide. Up
to a projectivity we may assume x1 D 0 and xn D 1, in which case we are considering
.x2; : : : ; xn�1/ 2 An�2, not all equal to zero, up to the diagonal action of Gm. We have thus
found that

M 0;A Š Pn�3:

Under this isomorphism, the collection of coincidence sets �S � M 0;A becomes identified
with the collection of projective subspaces spanned by all subsets of the n � 1 points with
projective coordinates

Œ1 W 0 W 0 W : : : W 0�; Œ0 W 1 W 0 W : : : W 0�; Œ0 W 0 W 1 W : : : W 0�; : : : ; Œ0 W 0 W 0 W : : : W 1�; Œ1 W 1 W : : : W 1�:

Now suppose that we gradually increase the weights in the vector A from .a; a; : : : ; a; 1/

to .1; 1; : : : ; 1/, in such a way that we never intersect two distinct hyperplanes 1 D
P
i2S ai

simultaneously. Then by the description in the previous subsection, the moduli spaceM 0;A is
transformed from Pn�3 to M 0;n by a sequence of blow-ups. At each step we blow up a
minimal coincidence set, and each coincidence sets is the strict transform of one of the
above projective subspaces in Pn�3. Thus we see that we have exactly recovered Kapranov’s
construction of M 0;n.

Keel’s construction is recovered in exactly the same way, starting instead with the weight
vector A D .2

3
; 2
3
; 2
3
; �; : : : ; �/. Then up to a projectivity the first three markings are 0, 1

and 1, and the remaining markings can be assigned arbitrarily. Thus M 0;A D .P1/n�3.
The collection of coincidence sets is given by all subsets where some markings coincide with
each other or with 0, 1 or1. In exactly the same way we see that gradually increasing the
weights in A from .2

3
; 2
3
; 2
3
; �; : : : ; �/ to .1; 1; : : : ; 1/ recovers Keel’s construction of M 0;n.

Since each intermediate step in the construction is explicitly given by some space M 0;A

with smaller weights, and each blow-up center is given by some space M 0;A with fewer
marked points, Hassett’s construction is ideally suited for inductive arguments.

4 e SÉRIE – TOME 50 – 2017 – No 5



BROWN’S DIHEDRAL MODULI SPACE AND THE GRAVITY OPERAD 1109

3.6. Weighted version of Brown’s partial compactification

We now wish to define analogous spaces M ı
0;A � M 0;A for arbitrary weight vectors A ,

generalizing M ı
0;n � M 0;n. For this we will need a dihedral structure ı on f1; : : : ; ng, which

we continue to assume is the standard one. We say that a subset I � f1; : : : ; ng is an interval
if it is so for this dihedral structure. For instance, f2; 3; 4; 5g is an interval, but so is also
fn � 2; n � 1; n; 1; 2g.

One could define M ı
0;A simply as the Zariski open subset parametrizing those curves

whose dual graph is compatible with the dihedral structure, but for our purposes this does
not turn out to be the right definition.

The space M 0;A only depended on the weight vector A via the collection of subsets
S � f1; : : : ; ng such that

P
i2S ai > 1. Similarly, we want the spaceM ı

0;A to depend only on
the collection of intervals I � f1; : : : ; ng such that

P
i2I ai > 1. As before, we say that such

an interval is large, and I is said to be small otherwise.

D 3.3. – We defineM ı
0;A to be the Zariski open subset ofM 0;A parametrizing

those weighted stable n-pointed curves which are compatible with the given dihedral struc-
ture, and such that if xi D xj for i; j 2 S � f1; : : : ; ng, then S is contained in a small
interval.

Clearly M ı
0;A DM

ı
0;n if A D .1; 1; : : : ; 1/.

3.7. Stratification of M ı
0;A by topological type

The spaceM ı
0;n has a stratification by topological type, whose strata correspond bijectively

to pairwise disjoint collections of chords in the n-gon. Such a collection of chords gives rise
to a tiling of the n-gon by smaller polygons. The closure of such a stratum is a product of
moduli spaces M ı

0;ni
, one for each polygon in the tiling, where ni is the number of edges of

the corresponding polygon.

The space M ı
0;A also has a stratification by topological type, whose strata correspond to

collections of chords as above satisfying the following additional stability condition: if each
chord is given weight 1, and the i th edge of the n-gon is given weight ai , then the sum of all
weights along the edges of each smaller polygon is greater than 2. Again the closure of such
a stratum is a product of smaller moduli spaces of the form M ı

0;A , one for each polygon in
the tiling, with weight vector and dihedral structure specified by the weights along the edges
of each polygon. An example is illustrated in Figures 7 and 8.

As in the case of M ı
0;n this stratification is given by a strict normal crossing divisor

inM ı
0;A ; each divisor corresponds to a single chord in the n-gon, dividing the weight vector

into two large intervals.
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a1

a2

a3

a4

a5

a6

a7

a8

F 7. A stratum inside M ı
0;A ,

A D .a1; : : : ; a8/. The stability
condition is equivalent to a1 C a2 >
1, a4 C a5 > 1.

1a2

a1

a3

1

1

a8
a7

a6

1

1

a5
a4

1

F 8. The stratum depicted on
the left is the product of the moduli
spaces corresponding to these four

polygons.

3.8. Coincidence sets in the dihedral case

For S � f1; : : : ; ng we continue to denote the coincidence set by �S �M ı
0;A .

For the remainder of this subsection, we fix a subset S such that �S ¤ ;. Then there is a
minimal small interval containing S ; let us denote it I .

L 3.4. – The topological type of a point of �S is given by a configuration of chords
disjoint from I .

Proof. – The topological type cannot contain a chord contained in I , since I is small. It
cannot contain a chord that starts in I and ends outside it, either, since such a chord separates
the endpoints of the interval I , but the markings corresponding to the endpoints need to
coincide along the locus �S .

Choose an arbitrary element s 2 S . Let A 0 be the weight vector with nC1�jS j elements
obtained by removing all elements of S n fsg, and assigning the weight

P
i2S ai to s. (We

formulate the procedure in this way to emphasize that the dihedral structure on A 0 depends
on the choice of element s 2 S .) In the situation of Hassett’s spaces, we had that�S �M 0;A

was isomorphic to M 0;A 0 . For the dihedral spaces, this statement needs to be modified; we
have instead the following lemma:

L 3.5. – Let I 0 be the small interval in the .n C 1 � jS j/-gon just defined, obtained
by deleting the elements of S n fsg from I . Then �S �M ı

0;A is isomorphic to the open subset
ofM ı

0;A 0 which is the complement of all boundary divisors corresponding to chords that meet I 0.

Proof. – By Lemma 3.4, the image of the natural map �S ! M ı
0;A 0 is contained in this

open subset. Conversely, it is not hard to see that this map has a well defined inverse given
by adding new markings on top of xs away from said boundary divisors.

L 3.6. – The inclusion i W�I ,! �S is a retract; that is, there is a map r in the opposite
direction with r ı i D id.
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Proof. – The map is the only natural one: it sets all markings xi for i 2 I equal to xj
for j 2 S . We should verify that this is well defined. By Lemma 3.4, this does not affect
the topological type of the curve, and in particular will not cause any component to become
unstable. Moreover, if this causes some collection of points fxigi2T to coincide, then the
markings indexed by .T n I / [ S must have coincided already before applying r . Thus
.T n I / [ S is contained in a short interval, and this interval must contain all of T .

R 3.7. – It is not true in general that if S � T , then �T ,! �S is a retract.

3.9. Wall-crossing for M ı
0;A

Suppose that A 0 � A . Then the reduction map M 0;A ! M 0;A 0 maps the open
subset M ı

0;A into M ı
0;A 0 , so we get well defined reduction maps also between the dihedral

spaces.
Consider the region W from Subsection 3.4, parametrizing all possible weight vectors.

It can be subdivided into polyhedral chambers by the hyperplanes 1 D
P
i2I ai where

I � f1; : : : ; ng is an interval, giving rise to a coarser chamber decomposition than the one
considered in the previous section. If A and A 0 lie in the interior of the same chamber with
respect to this coarser decomposition, then M ı

0;A ŠM
ı
0;A 0 .

Suppose that A and A 0 lie in adjacent chambers and that A 0 � A . We wish to under-
stand the relationship between the spacesM ı

0;A andM ı
0;A 0 . There will be a unique interval I

which is small with respect to A 0 and large with respect to A . Suppose that i and j are the
endpoints of the interval. What happens is that the reduction mapM ı

0;A !M ı
0;A 0 admits a

factorization:
M ı
0;A ,! Bl�IM

ı
0;A 0 !M ı

0;A 0 :

The second map is the blow-up along the coincidence set�I . The first map is an open immer-
sion, which is the inclusion of the complement of the strict transform of the divisor �fi;j g.

These statements follow from the corresponding ones for Hassett’s spacesM 0;A . Indeed,
Hassett’s spaces are modified by blowing up �S when crossing the wall 1 D

P
i2S ai . If

S D I is an interval, then Bl�IM
ı
0;A 0 is naturally an open subset of Bl�IM 0;A 0 D M 0;A .

The only difference between this open subset and M ı
0;A is that xi and xj are allowed to

coincide in Bl�IM
ı
0;A 0 . Thus removing the strict transform of �fi;j g produces M ı

0;A . (We
remark that this is true also in case fi; j g D I : in this case�I is a divisor and blowing up�I
is an isomorphism. Then we remove the strict transform of �fi;j g, which is empty.)

3.10. An inductive construction of M ı
0;A

The results proven thus far in this section can be used to give an explicit procedure for
constructing the moduli space M ı

0;n from the affine space An�3 by repeatedly blowing up a
subvariety and then removing the strict transform of a divisor containing the blow-up center.
More precisely, we have the following theorem:

T 3.8. – Let A D .a1; : : : ; an/ be a weight vector with an D 1. As in Section 2.2,
identify An�3 with the space

X D f.z1; : : : ; zn�1/ 2 An�1 W z1 D 0; zn�1 D 1g:
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For every large interval I D fi; i C 1; : : : ; j � 1; j g f1; : : : ; n � 1g with respect to this
weight vector, let ZI be the affine subspace fzi D ziC1 D : : : D zj g of An�3, and YI the
hyperplane fzi D zj g.

Iteratively carry out the following procedure:

1. Let ZJ be a minimal element of the collection fZI g.
2. Replace X with BlZJ .X/ n eYJ , the blow-up of X in ZJ minus the strict transform of the

divisor YJ . Moreover, replace eachZI and YI with their strict transforms in this blow-up.
3. Repeat steps (1) and (2) until all elements ZI have been blown up.

The end result is isomorphic to the space M ı
0;A .

Proof. – Let us first make the observation that if an D 1, then every interval containing n
is automatically large, and the interval f1; : : : ; n� 1g is also large (since the total weight is at
least two). Thus the set of large intervals I f1; : : : ; n�1g is exactly the set of intervals which
are not automatically large because of the fact that an D 1.

We prove the result by induction on the number of large intervals I f1; : : : ; n � 1g. The
base case is if there are no such large intervals, which happens e.g., for the weight vector

.a; a; : : : ; a; 1/

where a D 1
n�1
C �. In this case (by the observation in the previous paragraph),M ı

0;A para-
metrizes n points .x1; : : : ; xn/ on P1 such that xi ¤ xn for any i < n, and x1 ¤ xn�1. Up to a
projectivity we can set x1 D 0, xn�1 D 1 and xn D1, and the moduli space is equal to An�3.
This proves the base case. Moreover, we make the observation that if I D fi; i C 1; : : : ; j g,
then the subvariety ZI 2 An�3 becomes identified with the subvariety �I � M ı

0;A , and YI
the subvariety �fi;j g.

For the induction step, suppose that A is a weight vector, and that A 0 � A is in an
adjacent chamber. Then there is a unique interval I with endpoints fi; j g which is large with
respect to A but not A 0. As described in Subsection 3.9 M ı

0;A is obtained from M ı
0;A 0 by

blowing up �I and removing the strict transform of �fi;j g. Moreover, the strict transform
of a coincidence set is a coincidence set, so �I is the iterated strict transform of ZI � An�3

and �fi;j g is the iterated strict transform of YI � An�3. The result follows.

Already the first non-trivial example n D 5 is very instructive. In this case, our description
says thatM ı

0;5 is isomorphic to the variety obtained by blowing up A2 in the points .0; 0/ and
.1; 1/, and removing the strict transforms of the two lines y D 0 and x D 1. See Figure 9.

When n D 6, the construction is illustrated in Figure 10. Here we will need to perform
five blow-ups, in which the blow-up centers are given by the three thick lines and their two
intersection points, and remove the strict transforms of five planes, which are drawn as the
planes bounding the solid prism in the figure. We begin by blowing up the points .0; 0; 0/ and
.1; 1; 1/ in A3, which are the two intersection points of the thick lines, and then removing the
strict transforms of the planes z D 0 and x D 1, which are the two rectangular backsides of
the prism. Then we blow up the strict transforms of the remaining three lines (x D y D 0,
x D y D z and y D z D 1), and remove the iterated strict transforms of the remaining three
planes (y D 0, x D z and y D 1).
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F 9. M ı
0;5 is obtained

from A2 by blowing up the two thick
marked points and removing the
strict transform of the two lines.

F 10. Diagram illustrating
the construction of M ı

0;6 from A3.

3.11. Proof of purity

We are almost ready to prove the assertions about the mixed Hodge structure ofM ı
0;n, but

we shall need two further cohomological lemmas. The first of the two contains the heart of
the whole argument.

L 3.9. – Let Z � Y � X be a chain of smooth closed subvarieties, where Y has
codimension 1 in X . Suppose that H k.X/ and H k.Y / are pure of weight 2k for all k, and
that H �.Y / ! H �.Z/ is onto. Let eX D BlZX , and let eY be the strict transform of Y . Then
H k.eX n eY / is pure of weight 2k for all k.

Proof. – If d denotes the codimension of Z, then by the blow-up formula we have

H k.eX/ D H k.X/˚H k�2.Z/.�1/˚H k�4.Z/.�2/˚ � � � ˚H k�2d .Z/.�d/

and

H k.eY / D H k.Y /˚H k�2.Z/.�1/˚ � � � ˚H k�2dC2.Z/.�d C 1/:

There is also a long exact sequence

� � � ! H k�1.eX n eY /! H k�2.eY /.�1/! H k.eX/! H k.eX n eY /! � � � :
Consider the Gysin map H k�2.eY /.�1/ ! H k.eX/. Each summand in the direct sum
decomposition above has different weight, so compatibility of weights forces the Gysin map
to be the direct sum of the restriction map H k�2.Y /.�1/ ! H k�2.Z/.�1/ (which we
assumed surjective) and the identity maps ofH k�2i .Z/.�i/. This implies that the long exact
sequence splits up into a sum of exact sequences of the form

0! H k.X/! H k.eX n eY /! H k�1.Y /.�1/! H k�1.Z/.�1/! 0:

In particular it follows that H k.eX n eY / is pure of weight 2k.
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L 3.10. – Suppose thatX is a smooth variety andD � X is a strict normal crossing
divisor, D D D1 [ : : : [ Dk . For I � f1; : : : ; kg we let DI D

T
i2I Di , including D; D X .

Suppose that H k.DI / is pure of weight 2k for all I and k. Then there exists an isomorphism

H k.X nD/ Š
M

IDfi1;:::;iqg

H k�q.DI /.�q/:

In particular, also H k.X nD/ is pure of weight 2k.

Proof. – The Leray spectral sequence of the embedding of X n D in X reads [31,
Example 3.5]

E
pq
2 D

M
jI jDq

Hp.DI /.�q/ H) HpCq.X nD/:

The hypothesis says thatEpq2 is pure of weight 2.pCq/, so compatibility with weights forces
the spectral sequence to degenerate immediately, and the claimed isomorphism follows.

Let us now turn to the proof of Theorem 0.3 from the introduction.

T 3.11. – Let A be a weight vector such that at least one marking has weight 1.
ThenH k.M ı

0;A / is pure of weight 2k for all k. In particular, this holds for the moduli spaceM ı
0;n.

Proof. – We are going to prove this by induction on the number of large intervals, using
the inductive construction of M ı

0;A from An�3 described in Theorem 3.8. The base case for
the induction is thus An�3 itself, which clearly has H k pure of weight 2k for all k.

For the induction step, suppose that A 0 � A are weight vectors, with a unique interval I
with endpoints fi; j g which is large with respect to A but not A 0. By induction, M ı

0;A 0 has
H k pure of weight 2k. We wish to prove the same thing for M ı

0;A , which is the blow-up
of M ı

0;A 0 in �I minus the strict transform of �fi;j g. By Lemma 3.9, we are done if we can
prove: (i) thatH k.�fi;j g/ is pure of weight 2k for all k, and (ii) thatH �.�fi;j g/! H �.�I / is
a surjection.

For (i), let B be the weight vector given by deleting aj and replacing ai by the sum aiCaj .
By Lemma 3.5, �fi;j g is isomorphic to the complement of a union of boundary divisors
in M ı

0;B. By induction on n, M ı
0;B and all intersections of boundary divisors on it have

H k pure of weight 2k (note that all smaller moduli spaces involved will have a marking of
weight 1). We conclude from Lemma 3.10 that the same is true for �fi;j g.

For (ii), the inclusion�I ,! �fi;j g is a retract by Lemma 3.6, which implies in particular
that the restriction map in cohomology is surjective. This concludes the proof.

R 3.12. – It seems plausible that the same result holds for all the moduli spaces
M ı
0;A —that is, also those which do not have a marking of weight 1—but we do not have

a proof of this fact. One would need to verify that H k.M ı
0;A / is pure of weight 2k for all

collections of weights with
Pn
iD1 ai arbitrarily close to 2.
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Appendix

Preliminaries on (planar) operads

In this appendix we review some necessary background material on operads, both for
completeness and to fix notation. All dg (co)operads are assumed to be (co)augmented.
This allows one to discard with the distinction between dg (co)operads and dg pseudo-
(co)operads, and we will accordingly drop the qualifying prefix “pseudo” in front of operads
and cooperads outside this section. We assume all dg cooperads to be conilpotent. We
otherwise follow the conventions concerning operads adopted in [26]. A notable exception is
the notion of planar (co)operads, which to our knowledge has only one real precedent in the
literature, see [27, Section 3], though many have remarked on the basic idea. The idea for the
concept is simple enough: just like cyclic operads are based on trees, operads on rooted trees,
and nonsymmetric operads on planar rooted trees, our notion of planar operads is based
on planar (non-rooted) trees. Given the established terminology in the field, planar operads
should perhaps be called nonsymmetric cyclic operads. For those who are already familiar
with operads, the geodesic definition of a planar operad O is as follows.

A.1. The brief definition

D A.1. – A planar pseudo-operad is a nonsymmetric pseudo-operad O (in
some cocomplete symmetric monoidal category) where each component O.n/ has an
action of the cyclic group Z=.n C 1/Z, satisfying the following compatibility relations: if
� W O.n/! O.n/ is the right action of the generating cycle .nC 1 1 : : : n/, then

.� ı1  /� D  � ın ��; 8� 2 O.m/;  2 O.n/; m; n � 2;

while

.� ıi  /� D �� ıi�1  �; 8� 2 O.m/;  2 O.n/; m; n � 2; 2 � i � m:

A planar operad is a nonsymmetric operad with a compatible collection of cyclic group
actions, as above, and additionally satisfying that the generator of Z=2Z maps the operad unit
1 2 O.1/ to itself. Suitably reversing arrows defines the notion of planar (pseudo-)cooperads.

The definition has an important sibling notion in the special case when the ambient
monoidal category is the category of dg vector spaces over a field K, with Koszul sign rules.
This is the notion of an antiplanar dg operad, or what we might have called nonsymmetric
anticyclic dg operads—they are to anticyclic dg operads what planar dg operads are to cyclic
dg operads.

In the next section we give a more thorough treatment, not taking the definition of
nonsymmetric operads for granted. The reader is advised to refer to this portion of the paper
only as needed.
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A.2. The free planar operad functor

A stable labeled planar tree is a tree graph, where every vertex v has a specified cyclic order
on the set of adjacent half-edges, every vertex has valency� 3, and the set of legs is numbered
by an order-preserving bijection with the cyclically ordered set f1; : : : ; ng, for some n � 3.
An isomorphism of stable labeled planar graphs is an isomorphism of the underlying graphs
that respects all extra structure. With these conventions stable labeled planar trees form a
groupoid PT. Note that it decomposes into subgroupoids PTn of trees with n legs.

Fix a cocomplete symmetric monoidal category V, such that � ˝ � is cocontinuous in
both variables. A planar collection in V is an indexed family fKn j n � 3g of objects in V,
such thatKn is a representation of the cyclic group Z=nZ. Such collections form a category.
Moreover, every planar collection K defines a functor

KŒ � W PT! V

on the category of stable labeled planar trees and their isomorphisms, via

KŒT � D
O

v2Vert.T /

Kn.v/:

Above n.v/ is the number of half-edges adjacent to the vertex. To be precise, instead ofKn.v/
one should write � M

FvŠf1;:::;ng

Kn.v/

�
Z=nZ

;

a sum over order-preserving bijections between Fv—the cyclically ordered set of half-edges
adjacent to v—and a standard cyclically ordered set. This can be used to define an endo-
functor Tpl on the category of planar collections by

Tpl.K/n D colim
�
PTn

KŒ �
��! V

�
:

If we let PTreen denote the set of isomorphism classes of stable planar trees with n legs,
then one may write somewhat informally

Tpl.K/n D
M

T2PTreen

KŒT � D
M

T2PTreen

O
v2Vert.T /

Kn.v/:

D A.2. – We call Tpl the free planar operad functor.

A.3. The definition of planar operads

Assume that T is a stable, labeled planar tree and that for every vertex u 2 Vert.T / of T
we are given a stable planar tree Tu whose legs are labeled by the half-edges adjacent to u.
Then we can build a tree T 0 that contains each Tu as a subtree and has the property that
contracting all the subtrees Tu of T 0 produces the original tree T . In particular,

Vert.T 0/ D
a

u2Vert.T /

Vert.Tu/;

giving a canonical isomorphismO
u2Vert.T /

O
v2Vert.Tu/

Kn.v/ Š
O

w2Vert.T 0/

Kn.w/:
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Now note that

.Tpl
ı Tpl/.K/n D

M
T2PTreen

O
u2Vert.T /

M
Tu2PTreen.u/

O
v2Vert.Tu/

Kn.v/;

and using our assumption that ˝ is cocontinuous we may rewrite this as a the direct sum
of
N
u2Vert.T /

N
v2Vert.Tu/Kn.v/, where the sum is taken over all T 2 PTreen and all tuples

.Tu/u2Vert.T /. Taking the summand corresponding to T and .Tu/ to the summand corre-
sponding to the tree T 0 defines a natural transformation Tpl ı Tpl ! Tpl. The inclusion of
trees with one vertex gives a natural transformation id ! Tpl. Together these two natural
transformations give the free planar operad functor the structure of a monad.

D A.3. – A planar (pseudo-)operad in V is an algebra for the free planar
operad monad. A morphism of planar (pseudo-)operads is a morphism of algebras for the
free planar operad monad.

A planar operad is determined by a planar collection O and a family of composition
morphisms

ı
j
i W On ˝ Ok ! OnCk�2;

parametrized by 1 � i � n, 1 � j � k, satisfying certain associativity and equivariance
conditions. These morphisms arise as follows. Let tn be the tree with a single vertex and n legs.
Graft the i th leg of the tree tn to the j th leg of tk , to obtain a tree tn ı

j
i tk : the composition

of O is the morphism

OŒtn ı
j
i tk �! OŒtnCk�2�

defined by the algebra structure Tpl.O/! O. In fact, only the operations

ı
nC1
i W OmC1 ˝ OnC1 ! OmCn; 1 � i � n;

suffice. We could have defined a planar (pseudo-)operad as a stable collection O such that
the collection fO.n/ D OnC1gn�2 together with the operations ıi D ınC1i is a nonsymmetric
(pseudo-)operad, satisfying some compatibility with the cyclic group actions, as in the begin-
ning of this section.

R A.4. – One can phrase the theory of planar operads in dual language, using
dissected planar polygons in place of planar trees. Briefly, the dual of a n-legged planar
corolla tn is a planar n-gon �n. Let �r .n/ denote the set of dissections D of �n into
r C 1 smaller polygons (i.e., D D fc1; : : : ; crg is a collection of r pairwise nonintersecting
chords on �n). For instance, �0.n/ D f�ng, and �1.n/ denotes the set of chords of �n. Set
�.n/ D

`
r�0 �r .n/. The free planar operad on a collection K can equally well be regarded

as a colimit

Tpl.K/n D
a

D2�.n/

KŒD�:
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A.4. Antiplanar operads

Let us specialize now to the case when V is the category of dg vector spaces, with Koszul
sign rules. We can then define a slight variation of the free planar operad functor, as follows.
Define

det˝KŒ � W T 7! det.Vert.T //˝KŒT �;

where the determinant det.S/ of a finite set S is defined to be the top exterior power^#SKS ,
placed in degree zero. The formula

Tpl;�.K/n D colim
�
PTn

det˝KŒ �
�����! V

�
again defines a monad.

D A.5. – The free antiplanar monad is the functor Tpl;�. The algebras of this
monad are called antiplanar dg (pseudo-)operads.

A.5. Cooperads

The assumption that V is the category of dg vector spaces implies that the functors Tpl

and Tpl;� are not only monads, but also in a natural way comonads. The structure map

Tpl
! Tpl

ı Tpl

is given by “decomposing trees” as in [26, Section 5.8.7]. The counit is given by projection
onto trees with a single vertex. Coalgebras for the comonad Tpl are conilpotent planar coop-
erads, and coalgebras for Tpl;� are conilpotent antiplanar cooperads. All cooperads in this
paper will be conilpotent. A cofree (anti)planar cooperad is one of the form Tpl.M/ (resp.
Tpl;�.M/) for some planar collection M .

A.6. Cyclic operads

Cyclic operads are defined just like planar operads, except the construction is built on
stable labeled trees, rather than planar stable labeled trees. In particular, stable labeled trees
form a category T, and the free cyclic operad on a collection K is given functorially by a
formula

Tcyc.K/n D colim
�
Tn

KŒ �
��! V

�
;

exactly as in the planar case, but using the category T of (not necessarily planar) stable labeled
trees. The only differences are that (i) the free cyclic operad is built summing over a larger
class of trees, and (ii) the components of cyclic operads carry actions of symmetric groups.
The free anticyclic operad on K is in the same way given by

Tcyc;�.K/n D colim
�
Tn

det˝KŒ �
�����! V

�
:

For details on cyclic and anticyclic operads, see [14].
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A.7. Bar and cobar constructions

Given a collection K, we follow Getzler-Kapranov [14] and define its operadic suspen-
sion ƒK by

ƒKn D †
2�nKn ˝ sgnn:

Here the suspension † of a dg vector space is defined by .†V /n D V nC1. If K is a cyclic
dg (co)operad, then ƒK is an anticyclic dg (co)operad. The same remains true if we replace
the adjective (anti)cyclic by (anti)planar. This follows from noting that there is an equality
of functors

Tpl;�
D ƒ�1Tplƒ:

Assume that O is a planar dg operad. This can be used to define an extra differential dBpl on
the cofree conilpotent antiplanar cooperad Tpl;�.†O/, in the standard way. It is defined in
terms of decorated trees by using the operad compositions

OŒT �!
M

T 0DT=e

OŒT 0�

to contract an edge in all possible ways. (After the suspensions this will square to zero and
have degree plus one.) Moreover, dBpl is a coderivation of the cocompositions of Tpl;�.†O/.
(However, dBpl is not a derivation of the natural operadic composition maps of Tpl;�.†O/,
which is why the bar construction must be a cooperad.)

D A.6. – The planar bar construction on a planar dg operad O is the antiplanar
dg cooperad BplO obtained by adding the differential dBpl to the antiplanar dg coop-
erad Tpl;�.†O/.

Analogously, if O is an antiplanar dg operad one defines the planar bar construction by

BplO D
�
Tpl.†O/; dBpl

�
:

In this situation the bar construction is a planar dg cooperad.

Dually, if A is a planar dg cooperad, then we get a square-zero, degreeC1 derivation d�pl

on the free antiplanar operad Tpl.†�1A/ by summing over all ways to split a vertex into two
vertices connected by an edge, using the cocompositions.

D A.7. – The planar cobar construction on a planar dg cooperad A is the
antiplanar dg operad

�plA D
�
Tpl;�.†�1A/; d�pl

�
:

If A is instead antiplanar, we define the cobar construction

�plA D
�
Tpl.†�1A/; d�pl

�
as a planar dg operad.

D A.8. – A morphism O ! O0 of dg (co)operads is a quasi-isomorphism if
the induced map on cohomology is an isomorphism. If O and O0 are related by a zig-zag of
quasi-isomorphisms, then we say that O and O0 are quasi-isomorphic.
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P A.9. – The bar and cobar constructions are functorial, related by an adjunc-
tion

Hom.�pl.A/;O/ D Hom.A;Bpl.O//;

and the natural morphisms

�pl BplO! O; A! Bpl�plA;

are quasi-isomorphisms of operads and cooperads, respectively. Moreover, if O and O0 are quasi-
isomorphic planar operads, then BplO and BplO0 are again quasi-isomorphic; and if A! A0 is a
quasi-isomorphism on the associated gradeds of the coradical filtrations, then�plA! �plA0 is
a quasi-isomorphism.

Everything in this appendix is a specialization to the planar case of theory that is well-
known for cyclic operads. In the cyclic case, the bar construction BcycO of an anticyclic dg
operad O, for example, is given by adding an edge-contracting differential dBcyc to the free
cyclic operad Tcyc.†O/.
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