[Valeurs zêta multiples et périodes des espaces de modules
Nous démontrons une conjecture de Goncharov et Manin qui prédit que les périodes des espaces de modules
We prove a conjecture due to Goncharov and Manin which states that the periods of the moduli spaces
Keywords: moduli spaces, multiple zeta values, iterated integrals, polylogarithms, associators, associahedra
Mot clés : espace des modules, multizêtas, intégrales itérées, polylogarithmes, associateurs, associaèdres
@article{ASENS_2009_4_42_3_371_0, author = {Brown, Francis C. S.}, title = {Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {371--489}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {3}, year = {2009}, doi = {10.24033/asens.2099}, mrnumber = {2543329}, zbl = {1216.11079}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2099/} }
TY - JOUR AU - Brown, Francis C. S. TI - Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 371 EP - 489 VL - 42 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2099/ DO - 10.24033/asens.2099 LA - en ID - ASENS_2009_4_42_3_371_0 ER -
%0 Journal Article %A Brown, Francis C. S. %T Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$ %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 371-489 %V 42 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2099/ %R 10.24033/asens.2099 %G en %F ASENS_2009_4_42_3_371_0
Brown, Francis C. S. Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 3, pp. 371-489. doi : 10.24033/asens.2099. https://www.numdam.org/articles/10.24033/asens.2099/
[1] Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 149-156. | MR | Zbl
,[2] Addition theorem of Abel type for hyper-logarithms, Nagoya Math. J. 88 (1982), 55-71. | MR | Zbl
,[3] Special values of hyperlogarithms and linear difference schemes, Illinois J. Math. 34 (1990), 191-216. | MR | Zbl
,[4] The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227-231. | MR | Zbl
,[5] Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of a pair of triangles in the plane, in Grothendieck Festschrift, 86, Birkhäuser, 1990, 135-171. | MR | Zbl
, , & ,[6] Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436-491. | EuDML | MR | Zbl
& ,[7] Polylogarithmes multiples uniformes en une variable, C. R. Math. Acad. Sci. Paris 338 (2004), 527-532. | MR | Zbl
,[8] Single-valued hyperlogarithms and unipotent differential equations, preprint.
,
[9] Extension of
[10] Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831-879. | MR | Zbl
,[11] Équations différentielles à points singuliers réguliers, Lecture Notes in Math., Vol. 163, Springer, 1970. | Zbl
,[12] Théorie de Hodge. III, Publ. Math. I.H.É.S. 44 (1974), 5-77. | EuDML | Numdam | MR | Zbl
,[13] Le groupe fondamental de la droite projective moins trois points 1987), Math. Sci. Res. Inst. Publ. 16, Springer, 1989, 79-297. | MR | Zbl
,[14] Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup. 38 (2005), 1-56. | EuDML | Numdam | MR | Zbl
& ,[15] Tessellations of moduli spaces and the mosaic operad, in Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math. 239, Amer. Math. Soc., 1999, 91-114. | MR | Zbl
,[16] Combinatorial equivalence of real moduli spaces, Notices Amer. Math. Soc. 51 (2004), 620-628. | MR | Zbl
,[17] On a certain double integral, Proc. London Math. Soc. 2 (1905), 8-15. | JFM | MR
,
[18] On quasitriangular quasi-Hopf algebras and on a group that is closely connected with
[19] Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73-164. | EuDML | Numdam | MR | Zbl
,[20] The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), 77-88. | EuDML | MR | Zbl
& ,[21] Groupes de Rhin-Viola et intégrales multiples, J. Théor. Nombres Bordeaux 15 (2003), 479-534. | EuDML | Numdam | MR | Zbl
,
[22] Operads and moduli spaces of genus
[23] The dihedral Lie algebras and Galois symmetries of
[24] Multiple
[25] Multiple polylogarithms and mixed Tate motives, preprint arXiv:math.AG/0103059.
,[26] Periods and mixed motives, preprint arXiv:math.AG/0202154.
,
[27] Multiple
[28] Série de Drinfel'd, monodromie et algèbres de Hecke, Thèse de doctorat, École Normale Supérieure, 1998.
,[29] Recent developments in Hodge theory: a discussion of techniques and results, in Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, 1975, 31-127. | MR | Zbl
& ,[30] On the de Rham cohomology of algebraic varieties, Publ. Math. I.H.É.S. 29 (1966), 95-103. | EuDML | Numdam | MR | Zbl
,[31] The geometry of the mixed Hodge structure on the fundamental group, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 247-282. | MR | Zbl
,[32] Classical polylogarithms, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 3-42. | MR | Zbl
,[33] Higher logarithms, Illinois J. Math. 34 (1990), 392-475. | MR | Zbl
& ,[34] Shuffle algebra and polylogarithms, in Formal Power Series and Algebraic Combinatorics 1998, Toronto.
, & ,[35] Quasi-shuffle products, J. Algebraic Combin. 11 (2000), 49-68. | MR | Zbl
,[36] The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra 85 (1993), 119-142. | MR | Zbl
,[37] Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83-103. | MR | Zbl
& ,[38] Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), 57-75. | EuDML | MR | Zbl
,[39] Differential algebra and algebraic groups, Academic Press, 1973, Pure and Applied Mathematics, Vol. 54. | MR | Zbl
,[40] Mémoires sur la théorie des systèmes des équations différentielles linéaires, Chelsea, New York, 1953. | Zbl
,[41] Lectures on differential Galois theory, University Lecture Series 7, Amer. Math. Soc., 1994. | MR | Zbl
,[42] Polylogarithmes, http://www.math.jussieu.fr/~boutet.
,[43] Arrangements of hyperplanes, Grund. Math. Wiss. 300, Springer, 1992. | MR | Zbl
& ,[44] Sur les groupes d'équations linéaires, Acta Mathematica 4 (1884). | JFM
,[45] Doubles mélanges des polylogarithmes multiples aux racines de l'unité, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 185-231. | EuDML | Numdam | MR | Zbl
,[46] A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra 58 (1979), 432-454. | MR | Zbl
,
[47] On a permutation group related to
[48] Homotopy associativity of
[49] Selberg integrals and multiple zeta values, Compositio Math. 133 (2002), 1-24. | MR | Zbl
,[50] Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics 77, Cambridge University Press, 2003. | MR | Zbl
,[51] Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordeaux 12 (2000), 581-595. | EuDML | Numdam | MR | Zbl
,[52] Fuchsian differential equations, Aspects of Mathematics, E11, Friedr. Vieweg & Sohn, 1987. | MR | Zbl
,[53] Multiple polylogarithms: analytic continuation, monodromy, and variations of mixed Hodge structures, in Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000), Nankai Tracts Math. 5, World Sci. Publ., River Edge, NJ, 2002, 167-193. | MR | Zbl
,[54] Integrals that can be represented as linear forms of generalized polylogarithms, Mat. Zametki [Math. Notes] 71 (2002), 782-787 [711-716]. | MR | Zbl
,[55] Well-poised hypergeometric transformations of Euler-type multiple integrals, J. London Math. Soc. 70 (2004), 215-230. | MR | Zbl
,Cité par Sources :